
Characterizing Performance and Cache Impacts of
Code Multi-Versioning on Multicore Architectures

Peter Zangerl, Peter Thoman, Thomas Fahringer
University of Innsbruck, Institute of Computer Science,

Technikerstrasse 21a, Innsbruck, Austria
{peterz,petert,tf}@dps.uibk.ac.at

Abstract—Code multi-versioning is an increasingly widely
adopted tool for implementing optimizations which respond to
unknown or dynamically changing runtime conditions, without
the performance overhead of just-in-time compilation. A common
concern in its use is instruction cache performance, due to larger
binary sizes increasing cache pressure on the one hand and more
unpredictable branching on the other.

Despite this ongoing interest, there has been no comprehensive
study of the impact of multi-versioning so far – particularly in a
multi-threaded setting. In this paper, we present a categorization
of the parameter space potentially affecting multi-versioned
performance, a toolset for exploring this space, and an in-depth
characterization of three hardware platforms using this toolset.

I. INTRODUCTION

Over the past years, there has been an increasing interest in
adapting program optimizations to runtime conditions, partic-
ularly for parallel systems. These runtime conditions might
include factors unknown at compile time, the presence or
absence of external load on a system, or shifting optimization
priorities e.g. due to the battery state of an embedded device.

Three common methods exist for enabling this type of run-
time adaptivity: 1) Program-level and runtime system flags and
parameters, 2) Just-in-time compilation, and 3) Compile-time
multi-versioning with dynamic version selection at runtime.

Option 1 provides the flexibility of covering a practically
unlimited parameter space by varying combinations of these
parameters, however, it is infeasible for many purposes. For
example, varying the loop unrolling factor of a hot loop nest is
well-known to be an effective optimization [1] which can not
be performed without actually generating code implementing
it. Even in cases which can be parameterized in principle,
such as tiling factors, introducing a dependency on runtime
parameters might prevent a compiler from performing impor-
tant optimizations such as vectorization.

Just-in-time (JIT) compilation, listed as option 2, addresses
these issues in the most straightforward manner, by moving at
least part of the compilation process to the program execution
time. While this approach offers the most complete space
of possible optimizations and adaptations, it comes with the
cost of compilation times affecting execution time. Due to
this fact, high-end compiler optimization and analysis is only
viable for very long-running code bases. Recent research
approaches, such as performing compilation asynchronously
with program execution [2], improve the situation, but can
still only mitigate and not eliminate the performance impact.
Furthermore, JIT compilation approaches might be precluded
on many consumer, embedded or HPC platforms either due

to security concerns or issues with distributing the entire
toolchain required.

Option 3, compile-time multi-versioning with dynamic ver-
sion selection at runtime, is an attempt at attaining many
of the advantages of JIT compilation with a significantly
smaller overhead during program execution, and no additional
complexities in program distribution or security vetting. As we
will illustrate with a short survey in Section II, this approach
is broadly used in current practice and research.

A common point of discussion in the community regard-
ing these multi-versioning approaches with runtime version
selection are their practical limits, as well as if and to what
extent they impact performance on modern hardware when
approaching these limits. Of particular interest in this context
is the relation between the number and size of the generated
versions and the pressure on the instruction caches of a given
hardware platform. Despite these concerns, to the best of our
knowledge, there has been no comprehensive study so far
which analyses the performance impact of multi-versioning
across execution scenarios and hardware architectures in
depth. Furthermore, the relationship between hardware par-
allelism implementations such as multi-core or simultaneous
hardware multi-threading (SMT) and multi-versioning remains
largely unexplored.

In this paper, we will provide a comprehensive analysis
of the topic of code multi-versioning and how it affects
performance across a wide variety of scenarios and hardware
architectures. Our concrete contributions are as follows:

• A definition and categorization of the parameter space
potentially affecting multi-versioning performance.

• A set of utilities to explore and evaluate multi-versioning
impacts in this parameter space.

• In-depth characterization of the actual performance im-
pact, both in terms of wall time and highly relevant CPU
metrics across three distinct hardware platforms and the
complete parameter space identified previously.

The remainder of this paper is structured as follows. Sec-
tion II will provide an overview of related work and illus-
trate the importance of multi-versioning in current program
optimization research. Section III defines and justifies the
parameter space of code multi-versioning, as well as clarifying
our method of exploring it. In Section IV we apply this method
to a set of target platforms and interpret the obtained results.

II. RELATED WORK

The wide applicability of code multi-versioning as a tool
to improve program performance has been demonstrated in a



large body of work over the past two decades, of which we
only describe a representative subset.

Numerous publications investigate various uses of this tech-
nique to generate multiple versions of program functions with
different non-functional properties at compile time and then
select the one which best matches the user’s preference to
include in the final version for a given target architecture [3].

Regarding performing the selection among different variants
of a multi-versioned code fragment, there is a variety of
approaches. Some employ machine learning [4], while others
prune parts of the search space to find good candidates more
quickly [5]. Diniz et al. [6] describe a version selection scheme
which continuously adapts to changes in the environment.

Zhou et al. [7] present a space-efficient multi-versioning
algorithm targeting large code bases and space limited envi-
ronments, focusing on good performance improvements with
only small size increase. They do not investigate the impact
of code size increases on performance and cache behavior in
detail, and target primarily space-restricted embedded systems
rather than multi-core parallel environments.

Thoman et al. [8] deal with automatic multi-versioning for
task granularity control in parallel programs. They also sketch
the impact of large numbers of small versions in respect
to their overhead on a single hardware platform, but lack
a comprehensive evaluation of the parameter space across
different version selection strategies and platforms.

Multi-versioning or recompilation of code fragments and
adapting to the environment as well as program inputs can also
be done continuously as shown by [9] and others. The code
of an application gets improved by monitoring its execution
behavior and feeding back this information to the compiler,
which can then generate more specialized versions tailored
for the current environment. This process can also be carried
out during the run-time of the program where hot parts of
the application get optimized more aggressively and replaced
directly [10]. As discussed in the introduction, such JIT
compilation approaches come with their own set of drawbacks,
many of which can be mitigated or eliminated by offline multi-
versioning and online version selection.

III. METHOD

A. Parameter Space

In order to fully characterize the potential impact of multi-
versioning on program performance, we have identified a
set of parameters which may influence the performance and
cache behavior of a particular multi-versioned code fragment.
We designed our experimental setup such that each of these
parameters can be explored individually, as well as having the
option of analyzing how arbitrary combinations of them affect
the execution behavior.

In the following we explain the parameter space that may
influence the execution behavior of multi-versioned programs:
Version selection strategy How the runtime system selects

which version of a multi-versioned code fragment to run
is an important aspect and has a considerable influence
on the cache impact of an application. Our experimental
setup enables us to simulate different strategies employed
in practice, also including the two extremes – always

executing the same version, as well as selecting a random
version every time.

CPU architecture and cache properties The properties of
the CPU’s caches – especially their size and whether they
are dedicated or shared between different cores – affect
the runtime behavior of a multi-versioned program. We
performed our experiments on three different hardware
platforms with different cache properties to investigate
their effects on the execution behavior.

Concurrency Depending on the design of the CPU, certain
parts are shared between multiple cores and/or hardware
threads, and thus there is a potential for resource com-
petition. To observe the effects of these shared resources
on the runtime behavior of a multi-versioned code frag-
ment, we performed evaluations for different numbers
of threads, where each thread independently runs the
same program with the same properties. We also include
platforms with no, 2-way and 4-way SMT.

Number of versions The number of versions generated for a
certain code fragment is likely to be the most obvious
parameter to investigate. A large number of versions
increases the size of the generated executable and might
lead to an increase in instruction cache misses during
program execution.

Code size per version The size of each individual generated
function version in the executable also influences the
cache behavior of the application. Larger versions in-
crease instruction cache requirements, potentially result-
ing in more cache misses, however, they also require more
time to execute.

Execution time per version Another influential parameter is
the time spent in multi-versioned code fragments. Short
execution times exacerbate the relative overhead caused
by cache misses, while long ones mitigate them. This
parameter is indirectly related to the code size of each
version, as loops or function calls can increase the exe-
cution time of a certain code fragment without taking up
additional binary space.

B. Version Generation
In order to evaluate the properties of our parameter space we

used a custom toolset based on the Insieme research compiler
and runtime system [11]. Our goal was to create a configurable
number of versions of a function – all with the same runtime
properties such as code size and execution time. The runtime
system is then responsible for scheduling the execution of the
program being evaluated on the targeted platform with a given
number of concurrently running threads.

At runtime, each thread repeatedly performs a given ver-
sion selection procedure before calling the selected version.
The execution of the version selection and the execution of
the picked version itself is instrumented in-situ in order to
accurately gather the following data even for very short runs:
wall time, total CPU time, and instruction cache misses at all
levels provided by the hardware.

Listing 1 depicts the basic template used to generate the
multi-versioned code fragment for all of our experiments. Our
generator can insert an arbitrary number of instructions in the
loop of the generated functions as exemplified in lines 3 to 5.



Table I: Evaluation platforms hardware and software setup

System CPU Sockets / Frequency Memory Cache Software
Cores / Threads L1d / L1i L2 L3 OS Kernel

Intel Xeon E5-4650 4 / 32 / 64 2.7 GHz 256 GB 32 kB / 32 kB 256 kB 20 MB CentOS 6.7 2.6.32-573
AMD Opteron 2435 2 / 12 / 12 2.6 GHz 32 GB 64 kB / 64 kB 512 kB 6 MB Fedora 19 3.14.27

PowerPC POWER7 8406-71Y 1 / 8 / 32 3.0 GHz 32 GB 32 kB / 32 kB 256 kB 32 MB RHEL 6.3 2.6.32-279

1 double genFun#{version_id}(double a, double b) {
2 for(int j=0; j<numLoopIterations; ++j) {
3 a *= b + #{version_id};
4 ...
5 a *= b + #{version_id};
6 }
7 return a;
8 }
9

10 int num_versions = #{num_versions};
11 funType funVersions[#{num_versions}] =
12 { genFun1, genFun2, genFun3, genFun4, ... };

Listing 1: Code template used for version generation

The execution time consumed by the versions can be adjusted
by setting the value of the upper loop bound at runtime and
thus – combined with the number of instructions inside the
loop – the size and execution time of our generated versions
can be adjusted almost arbitrarily. A function pointer for each
generated version is inserted into an array, which enables a
fast and constant overhead version selection at runtime.

While the amount of work to be done is the same for all
versions, the actual calculation performed in the loop body
is purposefully distinguished in each version by the addition
of the version identifier. This is necessary to ensure that each
generated version is sufficiently different from all others to
prevent the compiler from optimizing any of them away or
reusing code.

IV. CHARACTERIZATION

We obtained measurement data across three hardware plat-
forms, the specifications of which are summarized in Ta-
ble I. Across all platforms we used GCC 5.1.0 with -O3
optimizations to replicate a realistic production scenario. PAPI
5.4.0 [12] was used to obtain CPU counter measurements. For
parallel execution, the thread affinity in all runs was fixed using
a fill-socket-first policy, in order to improve the reliability of
measurements and minimize variance. All reported numbers
and figures are based on medians over five runs.

Across our testing hardware platforms and parameter con-
figurations, we generated 302 400 results comprising five
measurements (CPU time, wall time, L1-L3 instruction cache
misses) each. All of these have informed our evaluation
and analysis in this section, and the selection of heatmaps
presented within the paper is chosen in order to illustrate the
most important effects for each topic being discussed. The
code generation, evaluation, and image generation toolset as
well as the binary result repository are available online1.

1) Single-threaded Cache Misses: We begin this evaluation
with a basic sanity check of our toolset. Figure 1 illustrates

1https://github.com/peterz-dps/multiversioning-eval

Figure 1: Intel system L1i cache misses, single-threaded.

Figure 2: Intel system normalized wall time, single-threaded.

the level 1 instruction cache misses measured on the Intel
system across a variety of version counts and code sizes, when
either always selecting the same version (Same) or selecting
a random version every time (Random). Note that both axes
as well as the color coding are logarithmic, and that the range
between the minimum and maximum number of cache misses
is over 5 orders of magnitude. Two points are worthy of note:
(i) If the same version is chosen, the number of cache misses
is completely independent of the total number of versions
generated. (ii) With a random choice, both a larger selection of
versions and larger code sizes lead to a significant increase in
instruction cache misses. Plotting L2 instruction cache misses
produces a very similar result, with smaller totals overall
and the front of significant increases with random selection
displaced to the upper right. The PowerPC and AMD platforms
behave similarly, though they top out at a lower number of
maximum cache misses.

2) Single-threaded Wall Time: While cache misses are a
very useful metric for validating our approach and assump-
tions, as well as to serve as an explanation for execution time
results, those execution times are the most important factor
when judging the potential performance impact of a multi-
versioning method. Figure 2 depicts the normalized wall time
measured across the same space illustrated in Figure 1. The
normalization is performed in respect to the execution time of
the single-version configuration in each column, in order to
eliminate effects unrelated to multi-versioning. A noteworthy



Figure 3: Intel system normalized wall time, single-threaded, across varying inner iteration counts.

Figure 4: Intel system normalized wall time, single inner iteration, across varying numbers of threads.

Figure 5: PowerPC system normalized wall time, two inner iterations, across varying numbers of threads.

result which might not be apparent at first glance is that the
total range of values only spans a factor of three, despite a
difference in cache misses by several orders of magnitude.

For the Same selection policy, as the L1 misses would
indicate, there are no differences at all across different num-
bers of code versions. With the Random policy, performance
degradation up to a factor of three can be observed at the same
code size, with a large number of versions. This degradation
becomes less pronounced with larger code sizes – despite a
larger number of total cache misses – as it is mitigated by
larger per-function-call execution times.

3) Impact of Evaluation Time per Version: We will now
investigate the impact of varying the execution time per multi-
versioned function without varying its binary size. In order
to isolate this effect, in Figure 3, four different values for
the numLoopIterations variable described in Section III-B
were chosen, labeled it. Given a random selection policy, we
observe that with increasing execution time, the relative perfor-
mance impact of multi-versioning shrinks linearly. This occurs
because the instruction cache miss rate remains relatively
consistent, especially for larger code sizes and version counts,
while the absolute execution time per function increases.

4) Multi-Versioning Parallel Code: As multi-versioning in
an optimization context is often leveraged for parallel pro-

grams, we have also investigated the impact of multi-threading
on the performance of multi-versioned codes. Figure 4 sum-
marizes the impact of increasing the number of threads on
normalized wall times on our Intel system. All variants which
can be mapped to distinct hardware cores show only negligible
differences to the single-threaded cases investigated so far,
with slightly lower normalized time differences at 32 threads
due to a minor increase in the baseline overhead. Once
hardware multi-threading is engaged, the relative impact of
random version selection drops significantly. This is due to the
fact that, upon an instruction cache miss, the CPU core can
still keep most of its functional units occupied by switching
to the other hardware thread.

On the PowerPC architecture, which features up to 4
hardware threads per core, this behavior is consequently even
more pronounced. As Figure 5 illustrates, up to 8 threads the
behavior remains consistent. With 2 hardware threads used per
core (16 threads total), instruction cache misses are mitigated,
except in the very short-running function case with code
size 1. Using the full 4 hardware threads per core completely
eliminates any statistically significant relationship between the
number of versions and the normalized execution time.

As the AMD architecture we evaluated does not feature any
hardware multi-threading, there were no significant changes



Figure 6: Random strategy: worst-case wall time impact.

observed across all viable thread counts, and we omitted this
figure for brevity.

5) Hardware Evaluation – Conclusions: From our evalua-
tion of hardware characteristics and multi-versioning behavior
so far, we can draw the following conclusions:

• The maximum execution time impact in pathological sit-
uations (extremely short multi-versioned code fragments,
many versions, random choice each time) reaches a factor
of 2 to 3 depending on the hardware platform.

• If the same version is selected throughout the program
execution then there is no significant correlation between
either cache misses or execution time and the number of
code versions. (Disregarding minor fluctuations on one
platform related to code alignment)

• While the total number of instruction cache misses in-
creases greatly with any increase in code size, due to
the associated increase in execution time of the multi-
versioned code fragment the relative impact on execution
time actually decreases.

• Increasing the ratio between time spent executing a code
fragment and its binary size by e.g. introducing a loop
greatly mitigates the relative performance degradation
when applying multi-versioning. This is the case even
for very small loop iteration counts of a single loop
– for longer loops and loop nests the impact becomes
completely negligible.

• Multi-versioning a parallel program does not change any
of these observations, unless a hardware multi-threading
architecture is employed. These can leverage the addi-
tional threads in flight to reduce the impact of any multi-
versioning-related instruction cache misses.

Figure 6 compares the worst-case (across all code sizes,
thread counts, and execution times per version) slowdown
factors incurred by multi-versioning with random version
selection across version counts and our three evaluation plat-
forms. As discussed previously, the maximum performance
impact reaches a factor of 3.0 in the worst case (with 2048
versions on the Intel platform).

It is important to note that the relative impact is largest on
the Intel platform and lowest on AMD overall for two reasons:
(i) The base function invocation overhead and execution time
per code line is lowest on Intel, which makes any increases
relatively more significant. (ii) The AMD platform features a
first level instruction cache which is twice as large as those of
the other two hardware architectures.

V. CONCLUSION

We have presented a definition and categorization of pro-
gram code and environmental parameters which can poten-
tially affect the performance and cache effects of multi-
versioned programs. To explore this parameter space, we
created an evaluation toolset capable of determining the in-
fluence of each of these parameters individually, as well
as in arbitrary combinations. By leveraging this toolset we
carried out an in-depth analysis and characterization of multi-
versioning performance on three distinct hardware platforms.

One central conclusion we can draw from this characteriza-
tion is that once a version to use is decided upon, there is no
performance penalty for having a large number of versions
available in a binary. Another key observation is that the
parallel execution of multi-versioned functions in general does
not affect performance negatively compared to the single-
threaded case – on the contrary, for CPUs featuring hardware
SMT capabilities, executing multi-versioned code in parallel
can reduce the overhead by more effectively using the CPU’s
resources.

ACKNOWLEDGEMENT
This project has received funding from the European Union’s Horizon 2020

research and innovation programme as part of the FETHPC AllScale project
under grant agreement No 671603.

REFERENCES

[1] J. W. Davidson and S. Jinturkar, “Aggressive loop unrolling in a retar-
getable, optimizing compiler,” in International Conference on Compiler
Construction. Springer, 1996, pp. 59–73.

[2] I. Böhm, T. J. Edler von Koch, S. C. Kyle, B. Franke, and N. Topham,
“Generalized just-in-time trace compilation using a parallel task farm in
a dynamic binary translator,” in ACM SIGPLAN Notices, vol. 46, no. 6.
ACM, 2011, pp. 74–85.

[3] K. D. Cooper, M. W. Hall, and K. Kennedy, “Procedure cloning,” in
Computer Languages, 1992., Proceedings of the 1992 International
Conference on, Apr 1992, pp. 96–105.

[4] X. Chen and S. Long, “Adaptive multi-versioning for openmp paral-
lelization via machine learning,” in Parallel and Distributed Systems
(ICPADS), 2009 15th International Conference on, 2009, pp. 907–912.

[5] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam, A Practical Method
for Quickly Evaluating Program Optimizations. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 29–46.

[6] P. C. Diniz and M. C. Rinard, “Dynamic feedback: An effective
technique for adaptive computing,” in Proceedings of the ACM SIGPLAN
1997 Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’97. New York, NY, USA: ACM, 1997, pp. 71–84.

[7] M. Zhou, X. Shen, Y. Gao, and G. Yiu, “Space-efficient multi-versioning
for input-adaptive feedback-driven program optimizations,” in Proceed-
ings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’14.
New York, NY, USA: ACM, 2014, pp. 763–776.

[8] P. Thoman, H. Jordan, and T. Fahringer, “Compiler multiversioning
for automatic task granularity control,” Concurrency and Computation:
Practice and Experience, vol. 26, no. 14, pp. 2367–2385, 2014.

[9] T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff, “Iterative
compilation in program optimization,” in Proc. CPC’10 (Compilers for
Parallel Computers), 2000, pp. 35–44.

[10] D. R. Engler, “Vcode: A retargetable, extensible, very fast dynamic
code generation system,” in Proceedings of the ACM SIGPLAN 1996
Conference on Programming Language Design and Implementation, ser.
PLDI ’96. New York, NY, USA: ACM, 1996, pp. 160–170.

[11] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandtner,
T. Fahringer, and H. Moritsch, “A multi-objective auto-tuning frame-
work for parallel codes,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference for. IEEE,
2012, pp. 1–12.

[12] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189–204, 2000.


