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ABSTRACT
Achieving high performance in task-parallel runtime systems, es-

pecially with high degrees of parallelism and �ne-grained tasks,

requires tuning a large variety of behavioral parameters according

to program characteristics. In the current state of the art, this tun-

ing is generally performed in one of two ways: either by a group

of experts who derive a single setup which achieves good – but

not optimal – performance across a wide variety of use cases, or

by monitoring a system’s behavior at runtime and responding to

it. �e former approach invariably fails to achieve optimal perfor-

mance for programs with highly distinct execution pa�erns, while

the la�er induces some overhead and cannot a�ect parameters

which need to be �xed at compile time.

In order to mitigate these drawbacks, we propose a set of novel

static compiler analyses speci�cally designed to determine program

features which a�ect the optimal se�ings for a task-parallel execu-

tion environment. �ese features include the parallel structure of

task spawning, the granularity of individual tasks, and an estimate

of the stack size required per task. Based on the result of these

analyses, various runtime system parameters are then tuned at

compile time.

We have implemented this approach in the Insieme compiler

and runtime system, and evaluated its e�ectiveness on a set of 12

task parallel benchmarks running with 1 to 64 hardware threads.

Across this entire space of use cases, our implementation achieves

a geometric mean performance improvement of 39%.

CCS CONCEPTS
•So�ware and its engineering→ Compilers; Runtime environ-
ments; •Computingmethodologies→ Parallel programming lan-
guages; •�eory of computation→ Program analysis;

1 INTRODUCTION
Task-based parallelism is one of the most fundamental parallel

abstractions in common use today [1], with applications in areas

ranging from embedded systems, over user-facing productivity and

entertainment so�ware, to high performance computing clusters.

It provides a convenient programming model for developers, and is

available in the majority of mainstream programming languages,

parallel extensions, and libraries.

While relatively easy to implement and use, achieving good

e�ciency and scalability with task parallelism can be challenging.

Consequently, it is the subject of ongoing research, and several

large projects seek to improve the quality of its implementations.

Of particular interest are the e�cient scheduling of tasks in ways

which optimally use the underlying hardware architecture [2, 11],

and research into reducing runtime overheads by e.g. carefully

avoiding creating more tasks than necessary [9]. What is common

to most research in this area is that it is performed at a library and

runtime system level and focuses primarily or exclusively on the

dynamic behavior of a program. For example, a runtime system

might monitor the execution of an algorithm and continuously

adjust its scheduling policy based on an active feedback loop [3].

Although these types of approaches have proven very success-

ful and seem inherently suitable for task-parallel programs which

might have highly input-data-dependent control �ow, they come

with some drawbacks: i) they can fundamentally not manipulate

se�ings which need to be �xed at compile time, e.g. because they

modify the layout of data structures in memory; ii) dynamic moni-

toring at the library level can never fully exclude any possible future

program behavior, preventing some types of optimizations; and

iii) any type of feedback loop will induce some degree of runtime

overhead. While its e�ect can be minimized by careful implemen-

tation, even just performing some additional jumps and branching

to check whether any adjustments should be performed has a mea-

surable impact in very �ne-grained scenarios.

In order to mitigate these drawbacks, we propose a set of static

analyses designed to determine features of a task-parallel program

that can be used to directly adjust the execution parameters of a

runtime system. �is approach is orthogonal to runtime optimiza-

tions, and can be combined with them in order to �nd an initial

con�guration – parts of which might be further re�ned during

program execution. Our concrete contributions are as follows:

• An overall method determining task contexts within a

parallel program, performing analyses on each of them,

and aggregating their results in order to derive a set of

compile-time parameters for a parallel runtime system.

• A set of novel task-speci�c analyses to determine code

features which signi�cantly in�uence parameter selection,

such as the parallel structure or granularity of execution.

• An implementation of this approach within the Insieme

compiler and runtime system [8], targeting a set of four

runtime parameters.

• An evaluation of our prototype implementation on 12 task-

parallel programs on a shared-memory parallel system

with up to 64 hardware threads.
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Figure 1: Execution time of the Strassen benchmark.

�e remainder of this paper is structured as follows. We �rst pro-

vide some measurements illustrating the potential improvements

possible by optimal parameter selection in order to motivate our

approach in Section 2. Section 3 describes our method, including

the overall approach, the targeted runtime parameters, and each

compiler analysis. �e results of our prototype implementation are

discussed in Section 4. An overview of related work is provided in

Section 5 before concluding the paper.

2 MOTIVATION
Prior to investing the e�ort required to implement our envisioned

method, we estimated the potential gain which might be realized

by such a system. To accomplish this goal, we fully explored the

runtime parameter space outlined in Section 3.1.2 by exhaustive

benchmarking. �e hardware and so�ware setup as well as the

experimental procedure were the same as for our �nal evaluation

runs, and details concerning these are provided in Section 4.1.

Figure 1 depicts a comparison between the default compile-

time parameter con�guration for the Strassen matrix multiplication

benchmark, and the optimum determined by exhaustive search.

Note that the chart is in log-log scale, and that with 32 threads the

optimal con�guration is almost twice as fast as the default. Clearly,

the advantage increases with larger degrees of parallelism – a be-

havior that will be con�rmed across all benchmarks in our later

experiments, and which is a manifestation of the intuitive idea that

the parallel runtime system becomes a progressively larger factor

in performance with higher thread counts.

Since one of the runtime parameters we identi�ed as candidate

for static tuning primarily in�uences memory consumption, Fig-

ure 2 depicts a similar comparison for this aspect of performance.

�e relative advantage is lower, but still signi�cant, reaching 36%

at 64 threads.

Across the benchmarks described in Section 4.2, Strassen is an

average example in terms of optimization potential with optimal

static parameter selection. As such, a maximum improvement by a

factor of 1.97 and 1.36, for execution time and memory consumption

respectively, is a very encouraging sign for our approach.

3 METHOD
An overview of our proposed method is provided in Figure 3. Ini-

tially, a given task-parallel C or C++ program is translated to a
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Figure 2: Memory consumption of the Strassen benchmark.
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Figure 3: Overview of our method.

parallelism-aware compiler intermediate representation by the ex-

isting compiler frontend 1 . Subsequently, as a �rst pass in our

approach, the full lexical extent of each group of tasks is determined,

and the code fragments identi�ed are stored for future analysis 2 .

Several specialized analyses are then performed for each such code

fragment 3 . �e results of these are aggregated, and used to de-

termine parameter se�ings for the parallel runtime system 4 . �e

compiler backend generates some output code for the task parallel

program 5 , which, together with the automatically con�gured

runtime system, builds the �nal output binary 6 .

3.1 Runtime System
In this section, we provide an overview of the runtime system

our prototype implementation is based on, as well as the set of

parameters explored in this work. While these parameters are

speci�c to our runtime system, similar parameters and concerns

exist for all task-parallel systems we are aware of. Crucially, our
general approach of task-speci�c static analysis for determining per-
program compile-time parameter se�ings is equally applicable to other
runtime systems, and could also be extended to cover a larger set of

parameters than the one implemented in this proof-of-concept.

3.1.1 Runtime System Background. �e Insieme runtime system

which this work is based on is designed to enable low-overhead task-

parallel processing. At a basic level, its implementation includes a

set of workers – generally one per hardware thread – maintaining a

local deque of work items, which are distributed in a work-stealing

manner. �ese work items correspond to tasks in languages such

as Cilk, but provide additional features, including the ability to
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Figure 4: Behavior of available queue policies.

allow for work ranges with runtime-directed spli�ing, binary multi-

versioning [13], and annotation of meta-data by the compiler [14].

�is runtime system has been previously demonstrated [13]

to outperform many widely-used implementations of recursive

task parallelism, and match or exceed the performance of more

optimized and specialized frameworks including Cilk+.

3.1.2 Runtime Parameters. We will now describe the set of pa-

rameters explored in this work, including their e�ect on the behav-

ior of the runtime system.

�eue Policy. �e queue policy governs how the per-worker

deques are used by the runtime when new tasks are generated or

a worker is looking for a task to execute next. By default, newly

generated tasks are inserted at the end of the executing worker’s

deque, while a worker initially looks at the front of its deque in

order to �nd new tasks to execute. If its own deque is empty, it will

try to steal a task from the back of another worker’s deque.

�e position where newly created tasks are inserted and from

where tasks are stolen from other worker’s queues can be con�g-

ured, and thus our runtime can operate with a total of four di�erent

queue policies, as shown in Figure 4. In the illustration, S refers to

the worker itself while O refers to some other worker operating on

a remote deque during a stealing operation.

�e queue policy is expected to impact performance in three

major ways:

• Whether newer or older tasks are stolen will signi�cantly

in�uence the granularity of the task – and how many fur-

ther sub-tasks it might spawn – for recursively parallel

algorithms which follow a divide-and-conquer pa�ern.

• If a calculation is data-intensive, workers executing the

most recent task they generated can lead to improvements

in cache re-use, especially if e.g. parent tasks make use of

the data their children processed.

• When tasks are very �ne grained and produced frequently,

a large number of accesses being focused on one end of

the deque can lead to lock congestion.

�eue Size. �e size of the per-worker deques determines the

maximum number of work items which can be held at any point,

per worker. In this context, it is important to note that the Insieme

runtime system performs lazy task generation [9], as is common for

high-performance implementations of task parallelism. �at is, if a

worker’s deque is full, a newly launched task will be immediately

executed sequentially, rather than generating the full set of work

item data and registration information required for its eventual

asynchronous execution and synchronization.

Due to this behavior – which is essential in order to achieve

high performance with �ne-grained tasking – selecting an e�ective

queue size for a given problem requires a trade-o� between two

con�icting goals. On the one hand, the chosen size needs to be

su�ciently large in order to avoid a situation in which there are

few or no remaining tasks available in the system, leading to a

starvation of workers and ine�cient parallel execution. On the

other hand, choosing a shorter queue can reduce the overhead

incurred for work item generation while a su�cient number of

them is available and/or more are being generated at a good pace.

We investigated queue sizes of 4, 8, 16, 32, 64 and 128, with 16

being the default in the Insieme runtime system.

Event Table Buckets. For use cases which unavoidably require

some type of global knowledge or bookkeeping, such as work item

synchronization, the Insieme runtime system implements a thread-

safe event table based on open hashing and �ne-grained locking.

Since any delay in synchronization will lead to low worker uti-

lization, the e�cient implementation of this table is of utmost

importance, particularly for high degrees of shared-memory paral-

lelism. �e default event table bucket count in the Insieme runtime

system is 97. We also conducted experiments with the larger prime

numbers 1021, 64567 and 256019.

�e number of buckets in the event hash table should be chosen

based on the amount of active tasks which are expected to require

synchronization at the same time. If there are few such tasks, a

small bucket count will allow for more e�ective cache utilization.

However, if the number of active tasks at any point becomes sig-

ni�cantly higher than the number of buckets, the open hashing

implementation will become signi�cantly less e�ective, as the ex-

pected event registration and triggering performance drops from

O(1) to O(N ).

Stack Size. Starting the execution of a new work item requires

allocating a stack frame for this task. While a task-parallel run-

time system can potentially grow the stack based on demand, in

a large-scale user-level threading scenario this quickly becomes a

signi�cant performance hurdle and source of complexity. �erefore,

a simple solution in use in several existing systems, including the

Insieme runtime, is initially allocating a large stack (i.e. equal to the

OS maximum). By analyzing the per-task stack requirements, the

initial stack size can be reduced for programs only storing a small

amount of data on the stack, decreasing memory requirements –

and potentially increasing performance e.g. in case the new size is

small enough to �t into per-thread storage provided by the memory

allocator in use.

In our evaluation, we executed the programs with di�erent stack

sizes in powers of 2, ranging from 16 kB to 8 MB – the la�er rep-

resenting the conservative default se�ing in the Insieme runtime

system.

3.2 Compiler Analysis
A central component of our approach are a set of compiler analyses

explicitly designed to determine information about task-parallel

codes which is relevant for con�guring runtime system parameters.

In this section, we will �rst provide a short overview of the compiler

infrastructure we chose to implement these analyses, and then

describe each of them in detail.



Table 1: INSPIRE constructs for task parallelism

Construct / Type Semantics

parallel
(job)→ thread group

Launches a new parallel job with the sup-

plied job description, returning a thread

group to synchronize on it.

job
(range, f )→ job

Creates a new job with the given range,
executing the lambda f of type ()→ unit.

merge
(thread group)→
unit

Synchronizes the execution of the given

thread group, waiting for it to �nish be-

fore continuing the current thread.

merge all
()→ unit

Synchronizes the execution of all thread

groups launched by the current thread.

3.2.1 Compiler Background. In order to accomplish the analyses

required for our approach, a high-level intermediate representation

(IR) with native parallelism-awareness is advantageous. We chose

the Insieme research compiler infrastructure as its INSPIRE IR [7]

is designed to fully capture semantics relevant for parallelism from

a variety of input languages.

A full description of this IR is beyond the scope of this paper,

and we refer the interested reader to the description by Jordan et

al. [7]. For the purpose of our analysis discussion, some features

are of particular importance:

• Task-based parallelism is primarily encoded by the set of

constructs listed in Table 1, with an informal description of

their semantics. Note that the unit type is the equivalent

of void in C-like languages, i.e. representing the absence

of a return value.

• Built-in operands, functions in the original input program,

and functions generated during front-end processing and

optimization are encoded as Lambdas, and referred to using

LambdaReferences in a recursive context.

• Any data stored on the stack is allocated in Declaration
nodes. �is includes variables in declaration statements,

as well as function call arguments and return values.

• All operations and analyses on INSPIRE are inherently

whole-program and inter-procedural. As task execution

generally requires capturing of context data and passing

an executable parameter to a higher-order function, local

analysis does not provide useful insight for our use case.

In addition to these features, some terminology related to two

fundamental concepts will be referred to throughout the remainder

of this section:

IR Nodes are the basic components which the IR is comprised

of. Each node n may have an arbitrary number of child

nodes Cn forming the sequence [n1,n2, ...,nN ], and the

directed acyclic graph (DAG) of nodes starting from the

main lambda represents an entire program.

Starting from some node n, we write ni to refer to the

ith child node of n, with further child nodes indicated by

additional indices in a tuple.

IR Addresses represent a speci�c position within a program or

smaller IR fragment. �ey consist of a root node and a

path, with the la�er containing a list [i1, i2, ..., iD ] of child

node indices. For a path length of D, D − 1 nodes are

traversed starting from the root node before arriving at

the node pointed to by the given address. �erefore D
determines the depth of an address.

When referring to an address, the sequence of nodes

indicated by the indices starting from and including the

root node r is designated as the address node sequence
[r , r(i1), r(i1,i2), ..., r(i1,i2, ...,iD )]. In the context of a particu-

lar address, ri j is the parent node of r(i j ,i j+1).

3.2.2 Common Operations. Before describing individual analy-

ses, we will �rst de�ne a set of common operations which simplify

the formulation of our algorithms.

call of (f ,A) Refers to any call of the Lambda or LambdaRefer-
ence f with the list of argument expressions A.

all calls of (n, f ) �is operation returns a set of all addresses rooted

at node n to calls of the construct f in any child node of n,

at arbitrary depth, regardless of their arguments.

call of ref (l ) Refers to any call of the lambda l by LambdaReference,
regardless of its arguments.

def of (l ) Refers to the de�nition of a lambda with the LambdaRef-
erence l .

loop(i,b,h) Refers to any type of loop with i iterations, the body b
and header h. �e loop header includes all the nodes to

check the loop boundaries and update the loop counter.

declaration(τ , i) Refers to a declaration node of type τ with the

initialization expression i .
reverse sequence(a) For addressa with root r and path [i1, i2, ..., iD ],

returns the address sequence [r(i1,i2, ...,iD ), ..., r(i1), r ].
all leaf addresses(n) Returns the set full of all leaf addresses (with

|Ca | = 0) reachable from node n.

is builtin(f ) Checks whether the construct f is a built-in construct.

�e description of our analyses based on these primitives matches

the implemented semantics, but o�en does not match the imple-

mentation exactly. Various optimizations aimed at reducing the

execution time of the compiler, such as result caching and early

pruning, increase the complexity of describing an algorithm and

are therefore omi�ed in the depictions in this paper.

3.2.3 Task Context Identification. Identifying the lexical IR frag-

ments relevant for each individual task is a prerequisite for all

subsequent analyses, and listed as step 2 in the overview provided

in Figure 3. �e input to this step is a full program in INSPIRE, and

its outputs are root IR nodes of the task code fragments identi�ed.

Algorithm 1 depicts the task context identi�cation process. Ini-

tially, a set T of the addresses of all parallel calls with a range of

[1, 1] – that is, task invocations – is determined. �e node address

sequences for these are then traversed bo�om-up until the �rst

original program function is found, and the addresses of those are

then added toT ′ which is the returned set. �e bo�om-up traversal

is necessary to include the entire original calling context of the task

for future analysis, as it might have been wrapped in additional

built-in calls during front-end translation to INSPIRE.

3.2.4 Determining the Parallel Structure. An essential feature of

each task context which heavily in�uences good decision-making,

in particular for the �eue Policy parameter, is its parallel structure.
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Algorithm 1 Task Context Identi�cation

m root node of the main lambda

1: P ← all calls of(m, parallel)
2: T ← {parallel(job(r , f )) ∈ P | r = [1, 1]}
3: T ′ ← {}
4: for all t ∈ T do
5: for all n ∈ reverse sequence(t) do
6: if ∃f ,A | n = call of(f ,A) ∧ ¬is builtin(f ) then
7: t ← f
8: break
9: T ′ ← T ′ ∪ {t}

10: return T ′

… Task invocation

a) Recursive b) Loop-like

Figure 5: Fundamental parallel program structures.

Figure 5 illustrates two fundamental types of parallel structures

that can be encountered in task-parallel programs. A recursive
structure indicates that individual tasks invoke self-similar sub-

tasks, while a loop-like structure is present if task invocation occurs

within an outer loop. Note that both can be present at the same

time, if a program spawns recursive tasks within a loop in the same

or a mutually recursive function. It is also possible in theory for

a task-parallel program to be neither recursive nor loop-like in

structure; in practice, such a program is unlikely, as its degree of

parallelism would be statically determined and independent of its

input data.

Algorithm 2 determines the set of recursive parallel paths within

a given task invocation context. It traverses the address node se-

quence of each possible leaf address bo�om-up, noting the call site

of a lambda invoked by reference. If such a call has occurred, and a

parallel call exists on the path between it and the de�nition of the

callee, then the path performs a recursive parallel invocation. �e

algorithm for determining parallel invocations within loops is quite

similar, and not listed separately due to space concerns. Instead of

searching for de�nitions of recursively invoked lambdas, it looks

for loop constructs along the path from each task invocation to the

main entry point of the program.

Figure 6 illustrates a simpli�ed example of an INSPIRE address

tree for a task-parallel program. �e de�nition of lambda foo at

A will be identi�ed as the task context by Algorithm 1, as it is

the innermost non-built-in lambda containing a parallel invocation

Algorithm 2 Determine Recursive Parallel Paths

t root node of the task context

1: P ← {}
2: for all a ∈ all leaf addresses(t) do
3: l ′ ← ⊥
4: p ← ⊥
5: c ← ⊥
6: for all n ∈ reverse sequence(a) do
7: if ∃l | n = call of ref(l) then
8: l ′ ← l
9: c ← n

10: else if c ∧ ∃A | n = call of(parallel,A) then
11: p ← >
12: else if c ∧ p ∧ n = def of(l ′) then
13: P ← P ∪ (n, c)
14: break
15: return P

LambdaExpr main
. . .

LambdaExpr foo A

. . .

CompoundStmt
. . .

IfStmt

CompoundStmt
. . .

CallExpr

LambdaReference foo B

. . .

CompoundStmt
. . .

CallExpr C

parallel

JobExpr

JobRange [1..1]

LambdaReference foo D

. . .

CallExpr

mergeAll

Figure 6: Example INSPIRE address tree structure.

with a job range of [1, 1] C . Algorithm 2 will evaluate all paths

from each leaf. �e path starting at B demonstrates the necessity

for checking for a parallel invocation on the closed recursion cycle:

it is recursive and within the parallel context, but not an instance

of parallel recursion. Conversely, the path starting at D contains a

call to parallel at C , and will be correctly detected by the algorithm.

3.2.5 Task Granularity Estimation. Knowledge of the expected

granularity of tasks – that is, the average time the program spends

between interactions with the runtime system, such as task creation

and synchronization – is a highly signi�cant feature for scheduling

decisions. While a completely accurate static analysis of this gran-

ularity is generally infeasible due to e.g. unknown input problem



Algorithm 3 E�ort Estimation

B e�ort mapping function for built-ins

1: function effort(n)

2: e ← 0

3: if ∃f ,A | n = call of(f ,A) then
4: for all α ∈ A do
5: e ← e + effort(α )

6: if n = call of ref(f ) then
7: return e
8: if is builtin(f ) then
9: return e + B(f )

10: return e + effort(f )

11: if ∃i,b,h | n = loop(i,b,h) then
12: return i ∗ (effort(b) + effort(h))
13: for all c ∈ Cn do
14: e ← e + effort(c)

15: return e

sizes, even having a rough indication at compile time of whether

tasks will be particularly �ne- or coarse-grained is helpful.

Algorithm 3 performs a static e�ort estimation on an arbitrary

INSPIRE node n. By default, it simply traverses all child nodes

(line 13). Function calls and loops are handled speci�cally. For all

function calls, initially the e�ort for evaluating their arguments

is determined. Built-ins – such as arithmetic operations, array

subscripts or assignments – are mapped to prede�ned values sup-

plied in an e�ort mapping function B. Other calls are evaluated by

recursive invocation of the algorithm. For loops, the e�ort deter-

mined for each iteration is multiplied by the number of iterations.

In case the iteration count cannot be determined statically, we

currently assume a �xed estimate of 100 iterations. While this

branch-invariant approach which ignores dynamic loop iteration

counts will be highly inaccurate when trying to make e.g. absolute

execution time predictions, in our use case some indication of gran-

ularity proves su�cient to improve compile-time decision making.

Including be�er analysis for loops with dynamic iteration counts

could be part of future work.

3.2.6 Stack Size Estimation. �e �nal analysis for our parameter

selection provides an estimation of the required stack frame size of

a given task context. As explained in Section 3.1.2, a good stack size

choice can improve both performance and particularly memory

consumption for programs generating many small tasks.

As Algorithm 4 illustrates, stack size estimation for a given task

context can be expressed quite succinctly due to the properties

of INSPIRE. All stack memory allocations derive from declaration
nodes, which are handled in the initial branch of the STACK SIZE

function. �is function requires a map S from types to their size in

bytes, and a constant recursion estimate ϕ as its inputs, and builds

up a set of visited references during its execution. It returns a pair

of two values: the stack requirement at node n itself and the total

stack requirement for the full sub-tree rooted at that node. �e

basic idea is that, for all nodes, the local stack requirements are

the sum of the local stack requirements of all child nodes, while

the total stack requirement is the maximum of all its child stack

Algorithm 4 Stack Size Estimation

t root lambda of the task context

ϕ constant recursion estimate factor

S type size mapping

V {} set of visited references

1: function stack size(n)

2: if ∃τ , i | n = declaration(τ , i) then
3: s ← S(τ )
4: return (s, s + stack size(i))
5: (p,q) ← (0, 0)
6: for all c ∈ Cn do
7: (p′,q′) ← stack size(c)

8: p ← p + p′

9: q ← max(q,q′)
10: if ∃l | n = call of ref(l) then
11: if def of(l) , t ∧ l < V then
12: V ← V ∪ l
13: (p′,q′) ← stack size(def of(l))
14: return (p + p′ ∗ ϕ,q + q′ ∗ ϕ)
15: return (p,q)

requirements. �anks to the IR structure, this simple principle

accurately covers various cases such as function call arguments,

compound statements, and control �ow.

3.3 Result Aggregation
As all parameters we currently study must be set once for the entire

runtime system – rather than per-task – the results derived by

our per-task analyses need to be aggregated before they can be

used to derive parameter se�ings. �e correct way to perform this

aggregation depends on the analysis in question and its use case.

3.3.1 Parallel Structure. �e aggregate number of recursive par-

allel paths is chosen as the minimum across all task contexts in

the program. Since this number indicates whether or not tasks

produce additional work, which impacts parameters such as queue

size and policy, assuming that all tasks produce further tasks when

this is not necessarily the case can cause severe starvation issues.

�e opposite – under-estimating the amount of tasks generated –

can cause additional overhead, but not a sudden and severe per-

formance drop-o�. �e same reasoning applies to loops, and the

whole program is only treated as featuring loop-like parallelism if

all of its task contexts do.

3.3.2 Granularity. For granularity estimation across the whole

program, simply choosing the mean granularity across all task

contexts is intuitive and works well in practice.

3.3.3 Stack Size. As all work items instantiated during the pro-

gram’s execution need to be accommodated, the maximum of all

individual estimates is chosen. It is also rounded up to the next

power of two for alignment purposes, and a minimum of 16 kB is

applied.

3.3.4 Deriving Parameter Values. While the one-to-one mapping

from the stack size analysis result to the actual runtime parameter is
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obvious, de�ning the queue policy, queue size, and number of event

table buckets based on our analysis results requires some strategy.

For our prototype, this mapping was derived as a simple decision

tree per parameter, based on empirical experience. Note that in the

following description, ρ represents the number of recursive parallel

invocations detected, λ lists the number of loop-like parallel invoca-

tions, and e refers to the per-task granularity or E�ort estimated by

our analysis. Actual values for these analysis results are presented

in Table 3 in the evaluation section.

queue policy(ρ, λ, e) =

PF if ρ > 5 ∨ (1M < e ≤ 1T)

DEF otherwise

queue size(ρ, λ, e) =


128 if ρ = 0 ∧ λ > 0

8 else if 1M < e ≤ 1T

4 otherwise

table buckets(ρ, λ, e) =


256019 if ρ > 0

97 otherwise

For the queue policy parameter, the ”Self Push Front” (PF) strat-

egy is chosen over the default if a benchmark features many recur-

sive tasks or is of medium granularity. �e remaining two queue

policies mostly mirrored the results we obtained for the two used by

our selection strategy. A large queue length of 128 is advantageous

for loop-like parallel programs, while very �ne-grained recursive

ones favor a very short queue as new tasks are generated rapidly.

Finally, the optimal number of event table buckets depends purely

on whether recursive tasks are present – if so, a far larger number

of synchronization operations might be pending.

4 EVALUATION
4.1 Evaluation Platform and Setup
Our evaluation platform is a quad-socket system equipped with four

Intel Xeon E5-4650 processors, each o�ering 8 cores (16 hardware

threads) clocked at a frequency of 2.7 GHz. �e so�ware stack on

this system is based on CentOS 6.7 running kernel version 2.6.32-

573. All our binaries were compiled with GCC 5.1.0 using -O3

optimizations to approximate a realistic production scenario.

For parallel execution, the thread a�nity in all benchmark runs

was �xed using a �ll-socket-�rst policy, in order to improve the

reliability of measurements and minimize variance. All reported

numbers and �gures are based on medians over seven runs. Memory

consumption is measured as the maximum resident set size across

the entire execution of a given benchmark.

4.2 Benchmarks
Table 2 lists the benchmarks we used to validate and evaluate our

approach, along with their origin as well as their structure, gran-

ularity and parameters. Most benchmark code versions are taken

directly from the Barcelona OpenMP tasks suite [4], while the QAP2

benchmark was introduced in the Inncabs [12] suite. Both of these

publications describe each involved benchmark in some detail. �e

structure (loop-like, recursive balanced or recursive unbalanced)

Table 2: Benchmark Overview

Benchmark Origin Struct. Granularity Parameters

Alignment AKM loop coarse prot.100.aa

Delannoy - rec. b. very �ne 11

FFT Cilk rec. b. variable -n 16777216

Fib - rec. b. very �ne -n 35

Floorplan AKM rec. u. �ne input.20

Health BOTS loop moderate medium.input

N�eens Cilk rec. u. moderate -n 14

QAP2 Inncabs rec. u. �ne chr15a.dat

Sort Cilk rec. b. variable -n 134217728

SparseLU BOTS loop coarse -n 50 -m 100

Strassen Cilk rec. b. moderate -n 4096

UTS UNC rec. u. variable test.input

Table 3: Benchmark Properties (Analysis)

Benchmark ρ λ E�ort Stack

Alignment 0 1 2.6 T 8 M

Delannoy 3 0 131.0 16 k

FFT 27 1 970.0 M 256 k

Fib 2 0 52.0 16 k

Floorplan 1 1 39.0 G 2 M

Health 1 1 33.0 G 32 k

N�eens 1 1 601.0 M 2 M

QAP2 1 1 13.0 M 16 k

Sort 6 0 2.4 G 32 k

SparseLU 0 3 3.3 P 16 k

Strassen 7 0 282.0 G 256 k

UTS 1 1 12.0 T 2 M

and granularity indicators in Table 2 are sourced from these publi-

cations, and based on human judgment and measurements of each

code.

4.3 �ality of Analysis
Before presenting execution time and memory usage improvements

achieved by our prototype implementation, we will �rst evaluate

the accuracy of our analyses on the given set of benchmarks. Ta-

ble 3 lists the parallel structure, e�ort estimation, and stack size

properties determined by our analyses.

Comparing ρ and λ with the manual structure categorization

provided in Table 2 reveals interesting correlations:

• �e only benchmarks with ρ = 0 are categorized as loop-

like, con�rming this result.

• While Health is categorized as ”loop-like”, inspection of

the source code con�rms the analysis result: there is an

indirect recursive invocation within the loop. Here, our

analysis provides a more exact result than a cursory manual

inspection.

• Recursive benchmarks with ρ > 1 or λ = 0 are likely to

have a balanced task workload, while the ones with ρ = 1

are likely unbalanced.



�e �nal observation is of particular interest, as the balance or 
imbalance of recursive workloads is not something we expected 
to be indicated by static analysis. Clearly, load imbalance on an 
individual task level o�en occurs due to input data dependence, 
which appears to commonly manifest in a variable number of loop 
iterations containing task invocations.

�e E�ort column in Table 3 lists the results of our granularity 
analysis (Algorithm 3). Comparing this to the manual categoriza-

tion, we observe the following:

• �e benchmarks assumed to be of ”very �ne” granularity

are also the most �ne-grained according to analysis, by

several orders of magnitude.

• Benchmarks categorized as coarse-grained are in the peta-

and tera-scale range and at the upper end of values accord-

ing to analysis.

• Floorplan and UTS feature relatively high granularity val-

ues compared to their manual classi�cation based on mea-

surements. Inspecting their source code reveals that this is

due to their recursive invocations containing loops with

input-dependent iteration counts which are very low with

the problem sizes used in our evaluation.

Overall, while not as exact as the categorization of parallel structure,

our granularity analysis still provides a guideline which correlates

well with the actual program behavior in most cases. Fully accu-

rate granularity prediction at compile time remains impossible for

realistic programs with dynamic input data.

Finally, the Stack column in Table 3 lists the results of our stack

size estimation, in bytes. �e most important quality metric for

these results is the ability for each benchmark to complete without

running out of stack space, which is accomplished for all results.

Alignment is estimated to require a full 8 MB of stack size per task

– an investigation of its source code reveals that this is explained

by it allocating multiple large arrays on the stack in recursive calls.

4.4 Benchmark Performance Evaluation
While our evaluation so far has shown that our analyses provide

good approximations of important task features, we have not yet

demonstrated that these features are actually useful for their in-

tended purpose of optimizing runtime se�ings. In this section, we

apply our full method to the benchmarks presented in Section 4.2

and measure the resulting performance.

4.4.1 Execution Time. Figure 7 depicts the execution time us-

ing the optimized parameter se�ings determined by our approach

(T
optimized

) relative to the execution time using default se�ings

(T
default

). Note that the default se�ings in this comparison are

the out-of-the-box defaults of the Insieme runtime system, which

are highly competitive with several widely-used task-parallel sys-

tems [13]. Results from all benchmarks are summarized in a box

plot, which allows us to illustrate the overall e�ectiveness of our

approach without missing important outliers, particularly if they

were to occur in the negative direction. �ese results allow for the

following observations:

• �e lower quartile is always above 1.0, indicating that our

approach performs as well or be�er than the default for at

least 75% of our benchmarks, at all degrees of parallelism.
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Figure 8: Performance charts for the Strassen benchmark.

• Starting from 8 worker threads and at all higher degrees of

parallelism, all benchmarks obtain at least some improve-

ment in performance. �e geometric mean factor across

all benchmarks and thread counts is 1.39.

• �e largest performance increase is obtained at 32 worker

threads, where our optimized versions perform more than

twice as fast as the defaults for most benchmarks.

• Overall, the lowest value encountered is 0.91, indicating a

9% performance loss. �is occurs for the QAP2 benchmark

with four hardware threads.

�e trend of increasing performance gains with higher worker

thread counts can be a�ributed to two reasons. For one, with higher

degrees of parallelism the e�ectiveness of the runtime system in

facilitating task creation, scheduling and synchronization gains

more prominence as a factor in overall program performance, and

these operations can be optimized by good parameter choices. For

another, the default runtime parameter se�ings also appear to be

more tuned for smaller shared-memory systems.

In order to illustrate that the comparative basis chosen for this

performance evaluation is meaningful, we revisit our motivational

Strassen example in Figure 8, while also adding measurements

for the standard GCC OpenMP implementation as well as Cilk+.

As shown, performance using the default parameter se�ings is

competitive with – and in fact, at 4 or more threads, superior to
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– these industry-standard solutions, and our statically optimized

parameter set further improves on this result, coming close to parity

with the exhaustively determined optimum in Figure 1.

Regarding the small performance losses incurred for a few bench-

marks with two and four worker threads, investigating the causes

for these in more detail reveals that the a�ected benchmarks are

those which bene�t greatly from data cache locality across parent

and child tasks. For larger thread counts and particularly once more

than a single socket is used, other concerns dominate performance.

Figure 9 illustrates how this di�erence in optimal parameter se-

lection between single- and multi-socket execution manifests in

diverging pa�erns in practice. Currently, we do not perform any

analysis which tries to determine the impact of stack memory ac-

cess locality for a benchmark. �ere is an opportunity for future

work in this area to eliminate the cases of performance degradation,

however, as it is relatively minor and limited to a small number of

speci�c benchmarks and thread counts, the signi�cant complexity

of such analysis might not be justi�able.

4.4.2 Memory Consumption. Since one of the parameters we

optimize primarily a�ects memory consumption, we also evaluated

this aspect of runtime system performance. Figure 10 provides this

overview, using the same methodology as employed for Figure 7.

We observe the following:

• For all thread counts, no benchmarks su�er from an in-

crease in memory consumption. However, a few bench-

marks also show no improvement at all.

• �ere is an increase in the impact of our optimizations

with increasing thread counts, but the correlation is not as

high as it is for execution times.

• �e maximum improvement is very high, at a factor of

more than 100.

All of these observations can be explained by considering a few

factors. First of all, some programs feature heavy heap memory use

for their own data, or require a large stack size, which explains why

no improvement can be achieved for some benchmarks regardless

of the level of parallelism.

�e fact that improvements scale with the degree of parallelism

initially but �a�en out soon is due to the behavior of lazy task

generation: initially, more parallelism will lead to signi�cantly

more tasks being generated, and thus more stacks allocated, but this
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Figure 10: Overall memory consumption comparison.

e�ects becomes less pronounced a�er a certain point. Finally, the

reason for the extremely high factors achieved in some benchmarks

is due to the default behavior of the runtime system: without any

static knowledge, it provides each task with an initial stack frame of

8 MB to ensure correct execution. For benchmarks with extremely

small stack and heap data sizes such as Fib, reducing that per-task

allocation down to e.g. 16 kB will massively decrease overall relative
memory consumption. Systems such as Cilk which implement a

cactus stack layout [6] would not bene�t as dramatically from this

optimization.

5 RELATEDWORK
�ere is a very large body of work dealing with the optimization of

task-parallel programs at runtime, o�en at the library level. A small

subset of these works was referred to in Section 1. As noted there,

these types of optimizations are orthogonal to and can be combined

with our method. In this section, we will focus on research which

performs runtime parameter tuning with a parallelism-speci�c

compiler analysis component.

Tick and Zhong [16] propose a combined compile-time and run-

time method to improve performance and reduce execution over-

heads caused by too small-grained parallel tasks. A compiler analy-

sis produces estimator functions for parallel tasks, which can then

be evaluated at execution time to improve task scheduling. �is

matches a single component of our analysis approach, which esti-

mates granularity, however we also provide analyses for the parallel

structure and memory footprint of individual tasks, and take these

into account at compile time rather than during execution. In a

similar work [13], we leveraged a compiler component to control

task granularity, but rather than providing estimates, granularity

was actively adjusted by multiversioning of task functions.

Vuduc et al. [17] forward compiler analysis results to the runtime

in the form of a decision function, in order to select among several

versions of the same algorithm depending on input features. How-

ever, their optimization a�ects program- and algorithm-speci�c

decision making during execution time, while we focus on general

runtime system decisions made at compile time.

In the context of so�ware distributed shared memory systems,

Dwarkadas et al. [5] implement a combined compile-time and run-

time method. �e compiler component analyses programs to reason



about data access pa�erns and forwards this information to the 
runtime part of the system. �is additional information enables the 
runtime system to aggregate communication and synchronization 
operations, and thus reduce runtime overheads. Another approach 
combining a custom compiler component with a runtime library 
is described by Nikolopoulos et al. [10]. �eir compiler analyzes 
OpenMP programs and evaluates the thread memory reference 
semantics. �e gathered information enables the runtime system to 
accurately perform page migrations to improve program through-

put independently of the operating system’s memory page place-

ment strategy. Both of these papers focus on data access pa�erns 
and data parallelism, which is not currently part of our analyses 
but could be treated in our general framework.

One of our previous works [14] leverages static analysis of pro-

grams for improved runtime behavior in relation to program char-

acteristics. However, it focuses entirely on loop parallelism and 
one speci�c optimization. Conversely, all analysis and optimization 
in this work applies primarily to task-parallel programs. Recently, 
we investigated semantics-aware compilation of the C++11 stan-

dard library for task-based parallelism [15]. While an ad-hoc task 
classi�cation scheme was employed, this work lacks sophisticated 
compiler analysis, features a very limited set of parameters, and 
only supports a single task type per program.

6 CONCLUSION
We have presented a method for optimizing parameters of task-

parallel runtime systems by performing a set of compiler analyses 
– speci�cally designed to classify and characterize tasks – on their 
input programs. As our approach is entirely static, it improves 
upon common purely dynamic task optimization by being able to 
manipulate parameters which need to be set at compile time, as well 
as having the ability to leverage information which is expensive or 
infeasible to obtain during program execution.

Evaluation of our prototype implementation on a set of 12 bench-

marks representing a variety of parallel algorithm structures and 
granularities demonstrates increasingly signi�cant performance im-

provements with an increasing degree of parallelism. At 32 threads, 
a geometric mean improvement in execution time across all bench-

marks by more than a factor of 2 is achieved. At the same time, 
peak memory usage is reduced by over an order of magnitude for 
�ne-grained benchmarks with only very small stack requirements 
which can be determined statically.

�e general method presented here can be extended in several 
areas which present opportunities for future research. More task 
context analyses, such as data reuse across parent and child tasks, 
can be integrated in order to make even more accurate parameter 
selections. Additionally, the set of runtime parameters being op-

timized might be extended to increase the potential performance 
gains. Finally, our current prototype mapping from analysis results 
to parameter se�ings can be replaced by a more sophisticated and 
automated approach.
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