Towards a Methodology to form Microservices
from Monolithic Ones*

Gabor Kecskemeti3, Attila Kertesz!':2, and Attila Csaba Marosi®

! Institute for Computer Science and Control, Hungarian Academy of Sciences
{kertesz.attila, marosi.attila}@sztaki.mta.hu
2 University of Szeged keratt@inf .u-szeged.hu
3 Liverpool John Moores University g.kecskemeti@ljmu.ac.uk

Abstract. Cloud computing is the cornerstone for elastic and on-demand
service provisioning to achieve more efficient resource utilisation and
quicker responses to varying application loads. Virtual machines, one
of the building blocks of clouds, can be created using provider specific
templates stored in proprietary repositories, which may lead to provider
lock-in and decreased portability. Despite these enabling technologies,
large scale service oriented applications are still mostly inelastic. Such
applications often use monolithic services that limit the elasticity (e.g.,
by obstructing the replicability of parts of a monolithic service). De-
composing these services to smaller, more targeted and more modular
services would open towards elasticity, but the decomposition process
is mostly manual. This paper introduces a methodology for decompos-
ing monolithic services to several so called microservices. The proposed
methodology applies several achievements of the ENTICE project: its
image synthesis and optimisation tools. Finally, the paper provides in-
sights on how these achievements help revitalise past monolithic services,
and what techniques are applied to aid future microservice developers.

1 Introduction

Cloud computing enables elastic and on-demand service provisioning by building
on the achievements of virtualisation technologies. Virtual machines, or in short
VMs, are software constructs that mimic real-life hardware with the help of
hypervisors, also known as virtual machine monitors. VMs open up possibilities
like improving resource utilisation (e.g., by server consolidation) and adapting
applications to varying application loads by scaling them up or down. VMs can
be created using provider specific templates and virtual hard disk files (so called
virtual machine images) stored in proprietary repositories. The creation process
of VMs depends on the applied cloud and virtualisation technique in particular,
but as well as on the application to be hosted in the VM.

These virtualised environments host a wide range of services, but are mostly
delivered as a monolithic block composed of multitude of sometimes vaguely

* This research work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644179 (ENTICE).

related functionalities. Unfortunately, because of the monolithic nature of these
services, creating VMs hosting them costs significant amounts of time. Also, the
user needs to instantiate a VM that host a complete monolithic service regardless
of whether he/she needs only a subset or one of the offered functionalities. This
results in large portions of the VM left unused, since the rest of the functionalities
are not needed by users. The concept of microservices were proposed [13] to avoid
these problems. This concept ensures that there is only a single, well defined
functionality offered by a particular VM and its image is optimised just to host
this functionality.

Namiot et al. [8] defined microservices as lightweight and independent ser-
vices that perform single functions collaborating with other similar services
through a well-defined interface. On the contrary, in monolithic architecture,
services are deployed as united solution called a monolith. Its main drawback is
the large code base and complexity, which erodes modularity and hinders pro-
ductivity. The authors also argued that splitting up monoliths to microservices
can result in a more manageable and scalable application.

Creating virtual machine images for such microservices is mostly done manu-
ally by skilled developers and it is a tedious task. Generally, the building process
is done through the following distinct approaches: (i) developing a new system
just for the necessary functionality, (#4) manually selecting parts of a previously
created and widely used monolithic service (that is often integral part of a com-
pany’s business process) until it mostly contains the desired functionality. In the
first case, the past legacy service functionality is replaced with a new one, which
might not fit well into the current business processes. In the second case, the man-
ual code clean-up procedure often overlooks significant parts of the monolithic
service thus the procedure does not necessary lead to the level of microservices
(i.e., the resulting VM image might retain some unrelated features).

The goal of this research is to propose a methodology that can be used to
split up a monolithic service to small microservices. These later can be used to
increase the elasticity of large scale applications, or to allow more flexible com-
positions with other services. To achieve this, we incorporate several techniques
to the microservice creation process: (i) we present a recipe based generic image
creation service that is capable to create VM and container images crafted for
particular cloud systems, (i) we reveal how a dynamic, live-evaluation based
image size optimisation technique could be utilised to create a family of im-
ages based on the previous monolithic service, and (iii) we show how this image
family can be turned to a set of microservices within the ENTICE environment.

The remainder of this paper is as follows: Section 2 presents related work,
then Section 3 introduces the ENTICE project. Section 4 introduces the pro-
posed methodology, detailing the recipe-based image synthesis and image size
optimizations. Finally, the contributions are summarised in Section 5.

2 Related work

To foster a more efficient and scalable cloud application management, the ap-
proach of composing microservices can be used [13]. Microservice building can
be done by different tools, such as Puppet [10], Chef [2], and Docker [3]. These
tools can cover the development and operation aspects of system administration
tasks, such as delivery, testing and maintenance to improve reliability, security
and so on. For example, Tihfon et al. [12] used Docker to deploy applications
based on microservices. Gabbrielli et al. [5] proposed an automatic and optimised
deployment of microservices written in the Jolie language. Their tool can auto-
matically generate a fully detailed Service-Oriented Architecture configuration
starting from an abstract description of the target application. In this paper,
we focus on microservice image synthesis and optimisations during the creation
process instead of optimisations applied during the deployment of the services.

Existing methods for VM image creation do not provide size and functional
optimisation features other than dependency management, which is based on
predefined dependency trees produced by third-party software maintainers. If
a complex software is not annotated with dependency information, it requires
manual dependency analysis upon VM image creation based on worst case as-
sumptions and consequently. The resulting VM images are far from optimal size
in most cases. On the other hand, optimising the size of existing images by
aiming at providing only particular functionalities can be addressed with two
approaches:

1. The pre-optimising approach requires the VM image developer to provide
the application and its known dependencies prepared as reusable VM image
components. The image developers select from these components so that
they can form the base of the user application. These approaches then form
the VM image with the selected reusable components and the service itself.
For example, the company SAS [11] applied this algorithm with an extension
that supports creating custom VM images by building from the source code.
Other pre-optimising approaches determine dependencies within the VM im-
age by using its source code using Software clone and dependency detection
techniques [1]. Once the dependencies are detected, these approaches leave
only those components that are required for serving the key functionality of
the VM image. Optimising a VM image with these techniques requires the
source code of all the software encapsulated within the image and to analyse
the underlying systems.

2. The post-optimising approach uses existing but unoptimised VM images or,
in the extreme case, optimised VM images with known software. To support
this approach, several OS and application vendors offer the minimalist ver-
sions of their products packaged together with their Just-enough Operating
System [6] using the Virtual Appliance approach. However, this approach
requires the image developer to manually install its application to a suitable
optimised VM image. The advantage of these approaches is the fast creation
of the images but at the price that the developer has to trust the optimisation

attempt of the used VM image’s vendor. If the image is not well optimised,
or the vendor offers a generic image for all uses then the descendant VM
images cannot be optimal without further efforts.

Existing research mostly focuses on pre-optimising approaches, which are not
applicable to already available VM images. In ENTICE we use an VM synthesiser
to extend pre-optimising approaches so that image dependency descriptions are
mostly automatically generated.

3 The ENTICE project

The ENTICE project [4] is a multidisciplinary team of computer scientists, appli-
cation developers, cloud providers and operators with the aim to research a ubig-
uitous repository-based technology for VM and container image management
called ENTICE environment. This environment proves a universal backbone for
IaaS VM/ container image management operations, which accommodate the
needs for different use cases with dynamic resource (e.g., requiring resources for
minutes or just for a few seconds) and other QoS requirements. As the discussed
concepts are not dependent on the applied virtualisation technology, the rest of
the paper uses the terms VM image and container image interchangeably.

The ENTICE technology is completely decoupled from the applications and
their specific runtime environments, but continuously supports them through
optimised VM image creation, assembly, migration and storage. It is designed
to receive unmodified and functionally complete VM images from users, and
transparently tailor and optimise them for specific Cloud infrastructures with
respect to their size, configuration, and geographical distribution, such that they
are loaded, delivered (across Cloud boundaries), and executed faster and with
improved QoS compared to their current behaviour. ENTICE will gradually
store information about the VMI and fragments in a knowledge base that will
be used for interoperability, integration, reasoning and optimisation purposes
(e.g. repositories should decide at which other repositories one needs replicas of
a heavily requested image and at which time such an image is replicated).

ENTICE has the following relevant goals:

1. The distribution of Virtual Machine Images and Container Images (VMIs)
in the ENTICE repository;

2. The VMI analysis and synthesis;

3. The VMI images portal and its associated knowledge base, acting as glue for
the distributed, highly optimised repository.

There are various individuals and organisations that may be considered as
stakeholders in the cloud computing domain, and may be highly interested in
in a distributed image repository built ENTICE. The following stakeholders are
participants of the ENTICE environment:

— End-customers, such as the users of the satellite image service of Deimos*

will not notice the presence of the ENTICE repository environment, but

4 http://www.deimos-space.com/

will experience a better Quality of Service (QoS) in the runtime of their
applications due to the optimisations applied by ENTICE in the background.

— Cloud Application Providers and/or Software as a Service providers, such as
the company Wellness Telecom?®, which offers SaaS applications deployed in
the Cloud to many customers;

— Application Developers, such as the company Deimos, which is operating a
satellite and is in great need to develop and deploy a highly efficient cloud
application for Earth observation for its customers (i.e. end-customers);

— Cloud Operators, such as the well-known company Flexiant® that pioneered
its solutions for the management of Cloud applications across multiple Clouds;

— Cloud Providers, such as Amazon EC27 will benefit by integrating ENTICE
as their VMI storage and management solution, or if their customers are
willing to use ENTICE.

4 The proposed methodology

The goal of this research is to propose a methodology that can be used to split
up a monolithic application to small microservices that later can be composed
to other services. This monolithic application can then act as an ancestor of the
family of those small microservices that are derived from it. To achieve this, we
use image synthesis and image analysis techniques that play a central role in the
ENTICE architecture.

The VMI synthesis tool allows the creation of new virtual machine images
with several approaches. First, it allows the use of generic user provided images
or software recipes to act as the foundation of specialisation. Next, the synthesis
tool collaborates with the ENTICE image portal (the graphical user interface for
the image creation and distribution process) to identify the functional require-
ments a newly created image must meet. Then the synthesis technique alters
the user provided images either directly or indirectly (through recipes). These
alterations target partial content removal from the original images allowing them
offering only their single purpose, namely the functions identified in the image
portal. Once the initial optimised image is ready, the VMI Synthesis will offer
image maintenance operations (like managing software updates on the image).

Next to synthesis, ENTICE uses a VMI analysis functionality to allow dis-
covery of identical portions in apparently unrelated VM images coming from
even different stakeholders and communities, regardless of the cloud provider
where they are physically stored. This information is automatically stored in the
ENTICE knowledge base for later use. The environment also allows splitting of
VM images into fragments for storing the frequently shared image components
only once (e.g. a particular flavour of Linux used by two different images). This
operation allows the VM image distribution component to optimize the overall
storage space throughout the distributed repository.

® http://www.wtelecom.es/
5 https://www.flexiant.com/
" http://aws.amazon.com/

Decide the inclusion of an update

Service Provider

1 .
; <<include>>
Describe generic image with recipes

|
\
\<<include>>

<<include>>

Introduce new VM image

I

I
Update unoptimized image :
—_—
If recipes were
used for the image

. 1
<<include>>; definition

I
I

Application Developer
Optimize Image size

Identify optimization potential

Add new functional requirement

VM Image distribution

Fig. 1. Detailed use cases of image synthesis

To enable the use of the fragmented VM images, the ENTICE environment
distributes virtual machine management templates (so called VMMTSs) to the
various repositories of the connected cloud systems. These VMMTs allow VMs to
be assembled at runtime from the previously identified fragments. The templates
are stand-alone VM images containing the necessary components to access the
project’s distributed repository. After a VM is instantiated from a VMMT, it will
customise the contents of the instantiated VM with the VM fragments required
to match the user’s functional requirements (even allowing new files/directories
be placed in particular VMs to meet the demands of the various stakeholders).

These methods are supported by user-defined functional and non-functional
descriptions about the application in the ENTICE knowledge base and the imple-
mented reasoning mechanisms that feed in necessary information for the decision
making process.

Figure 1 presents a use case diagram for image synthesis. The nodes (use
cases) in this diagram were distilled from overall requirements (both pilot cases
and architectural ones) and overall principles of the project objectives. In other

API

En:dpoint 5 Synthesis Service (backend)

m build/bootstrap | | QEMU/QcOW2 | | Ubuntu |
: | Docker | | CentOS |
, | AWS (Amazon) |

‘4'_‘_6‘_‘?_ | OpenStack |
status

"4‘:'_‘_‘_"_>_ . v
- build/provision | | SI’\LeII |

“band | Chet-solo < Berkshelf |
: A
‘reg’T-l test/test | Shell < ..]

Fig. 2. Process of recipe based image synthesis

words, these use cases must cover the requirements and the project objectives
where applicable, with the focus strictly set to image synthesis and analysis
aspects. We envision the Application Developer as the central actor that interacts
with most of the use cases and can initiate most of the activities. Apart from the
developer, we expect that Service Providers could also utilise the image synthesis
solution of ENTICE by deciding when to adopt a particular service and image
version. We also expect ENTICE’s image distribution component to interact
with the optimiser functionality when it recognises the chances of more optimal
delivery by automatically continuing not completely optimised images. In the
following, we list the descriptions of the most prominent use cases by paying
particular attention to their requirements (or some of their specific aspects),
and how we plan to achieve them.

4.1 Recipe based image synthesis

This section mainly focuses on the use cases of “Describe generic image with
recipes” and “Introduce new VM image” (see Figure 1). In these use cases the
application developer creates a set of VM images specific to the aimed cloud
providers. The images are created through developer provided recipes which use
devops concepts to define the creation of the monolithic service on a generic way.

The recipe based image synthesis process of ENTICE can be seen in Figure 2.
It depicts 7 steps starting by creating an image, and ending with an optional
cancel request. ENTICE provides APIs in a REST interface to use the services
covered by these steps. There is also a backend part of this Synthesis service that
uses other subcomponents to create the requested images. The images that can
be managed in these processes may be of normal virtual machines (e.g. VMIs)
or containers. The contents can also vary from microservices to complex ones.
As they suggests, microservices in containers have smaller footprints, therefore
they are easier to optimize. As shown in Figure 2 the API enables the following
processes:

1: submission of build requests;

— b: retrieve build results;

6: query the status of the builds (optional);
and 7: cancel ongoing builds (optional).

The image creation process at the backend consists of two parts. The first
one is the building phase, while the second is the testing phase. First let’s detail
the building phase. It can be initiated with the create API call (step no. 1 in
Figure 2) by specifying the build target with its parameters, and the service
description for the provisioning step, and the test cases for the testing phase.

The first part of the building phase is the bootstrapping step (no. 2). It is
responsible to make a base image (in case of VMI’s) or a container available for
the provision step. It is possible to create them in the following ways:

— from scratch (with tools QEMU/QCOW?2);

— targeting a container build (e.g., Docker);

— or using an existing one from a cloud image repository (e.g., Amazon Web-
Services or OpenStack).

In case of QEMU/QCOWZ2, the build target Debian and Red Hat derived
distributions are supported.

The first part of the building phase is the provisioning phase, which respon-
sible for installing the requested microservice by the specified description. It
can be done in two ways. First, a custom shell script can be provided contain-
ing sequential steps to be executed. Another option is to use Chef-solo, where
Chef cookbooks must be provided (e.g. retrieved via Berkshelf) or a custom one.
These targets can also be used together when needed, e.g., performing basic
maintenance via Shell and deploying the requested microservice components to
the image via Chef.

In the testing phase, the image is duplicated, and the supplied test script is
executed in the copied image. The testing methods can be of any type, only the
exit status is what matters: zero means everything went fine, non-zero denotes an
error. The script can deploy any packages from the Linux distribution repository
and beside the shell script a custom zip file can be supplied containing additional
testing tools, but no other external access is allowed for security reasons. The

Minimal cloud Optimiser cloud

Optimiser 6.
VM M Img

ENTICE Environment

user

Fig. 3. Steps to transfrom an image to host only the intended microservice

methods to be used in the testing phase are very flexible, since different ser-
vices require different methods or tools to be tested. The copied test image is
discarded after the tests, and the original one will be available for download.
Currently there is no option to link the image to another location or repository,
this feature will be considered for future work. Our current implementation relies
on ImageFactory [7] and Packer [9].

4.2 Targeted Size Optimisation

In this subsection we detail and exemplify the “Optimize Image size” case of Fig-
ure 1. This optimization process can be executed once the recipe based synthesis
is finished resulting in several VMIs or container images composing a monolithic
service. We refer to these composing images as original images of an applica-
tion. Usually one of these images implements the functionality of a microservice,
therefore the user can use the ENTICE environment to transform such original
image to an optimized one that holds only the intended microservice functional-
ity. The steps needed for this transformation are depicted in Figure 3.Before the
microservice can be extracted from the original image the user, who knows the
application behavior, need to prepare a functionality test for the required mi-
croservice (in the form of self-contained shell scripts without any dependencies),
as shown in in Figure 1 with the “Add new functional requirement” case. Such

tests should utilise all features of the required microservice, and generally they
can be constructed from unit tests of the original, composing application. Hence
these scripts test the intended functionalities of a microservice, they needs man-
ual preparation, but they are sufficient to be used in proof of concept scenarios.
In our future works we will develop techniques to describe the functionality of
an intended microservice, in order to enable automatic test script generation.

Once the functionality test is made available in the ENTICE Image portal,
the pre-evaluation phase can be started, where the original image is instantiated
in a minimal cloud infrastructure (which is part of the ENTICE environment), as
depicted in step 1 of Figure 3. To this end a virtualised environment (VE) is set
up by instantiating a new VM or container with its filesystem instrumented for
read operations (called Instr. FS in the figure). Once the ENTICE environment
starts, it collects the VE’s read access operations to its disks (step 2 in Figure 3).

Besides this data collection process, the microservice’s functionality test is
also executed by pointing its shell script to the VE’s host. If the test fails after
the execution, the collected data is discarded and the user is notified about
the incorrect test result for the original image. If the test is successful, the
collected data (representing the list of read blocks in the VE) is transformed to
reflect individual files in the original image. The list of files acquired during this
transformation is the so called restricted list.

The next step is the image optimisation phase. From now on, we assume that
files that are not referenced by the restricted list are not relevant for the actual
microservice. This means that in step 3 of Figure 3 the system uploads a par-
tially optimised image (PO image) that contains only the registered files (thus
all unreferenced files are deleted from it). In step 4, an Optimizer VM is deployed
and contectualized to use this image, and to perform the optimisation procedure
by executing a test script in step 5. Here it analyses the remaining contents of
the PO image and selects parts of the image that can still be removed. These
newly selected parts should also be not relevant for the microservice’s intended
functionality, instead they are believed to be used by background activities of
the original image (e.g., startup procedures and periodic activities unrelated to
the core functionality). Since in this paper we present and describe the method-
ology (inner workings) of the ENTICE environment, we do not introduce specific
selection techniques to applied on the PO image for further optimisations.

Once the PO image is modified and additional files are removed, the Opti-
miser VM uploads the new image to the cloud in step 6, and tests the image
by instantiating it and evaluating its VE via the user-provided shell script. In
case the evaluation is successful, the newly uploaded image will be taken as a
new PO image instead of the previous one. It the evaluation fails, the selection
technique is restarted with the previously examined PO image. These optimiza-
tion processes are repeated until the user-defined cost limits are not achieved,
or till no more selectable image parts are found. By the end of this step the
final PO image will be ready (containing only the intended functionality of the
microservice), which is given back to the ENTICE environment in step 7.

It may happen that the user wants to alter the interface of this optimized
image after the optimization process. Generally the microservice offers a min-
imised feature set compared to the original image, so it is reasonable to reduce
the interface, too. In this case the optimisation phase should be rerun with the
altered interfaces on the original image, but the process will be much faster,
since past selection errors are saved and reused by the system.

5 Conclusion

Virtual machine and container images are generally created by provider-specific
templates stored in proprietary repositories, which may lead to provider lock-
in and decreased portability. Despite these enabling technologies, large-scale
service-oriented applications are still mostly inelastic due to the robust services
they create. In this paper we introduced image repository management of multi-
ple federated clouds in the frame of the ENTICE project, which tries to address
this issue by transfroming monolithic services to microservices. Hence, we pro-
vided a methodology for microservice creation with an image synthesis approach,
which can be used to create optimized images in a distributed repository.

In the future we will work on generalizing monolithic service fragmentation
to support such monolithic services that cannot be decomposed without in-
troducing alternative protocols in the communication between the fragmented
microservices. We also envision further optimisations of microservice delivery by
identifying common parts of microservice in the form of custom virtual machine
management templates. Such templates would allow better image part selection
and faster optimisations.

References

1. Belguidoum, M., Dagnat, F.: Dependency management in software component

deployment. Electr. Notes Theor. Comput. Sci. 182, 17-32 (2007)

Chef: http://www.getchef.com (May 2016)

Docker: https://www.docker.io (May 2016)

4. ENTICE consortium: Entice project website. http://www.entice-project.eu/ (May
2016)

5. Gabbrielli, M., Giallorenzo, S., Guidi, C., Mauro, J., Montesi, F.: Self-reconfiguring

microservices. In: Theory and Practice of Formal Methods, pp. 194-210. Springer

(2016)

Geer, D.: The os faces a brave new world. Computer 42, 15-17 (October 2009)

Image Factory: http://imgfac.org/ (May 2016)

8. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. International Jour-
nal of Open Information Technologies 2(9) (2014)

9. Packer: https://www.packer.io/ (May 2016)

10. Puppet: http://puppetlabs.com (May 2016)

11. SAS: rBuilder. http://www.sas.com/en_us/software/sas9.html (May 2016)

12. Tihfon, G.M., Kim, J., Kim, K.J.: A new virtualized environment for application
deployment based on docker and aws. In: Information Science and Applications
(ICISA) 2016, pp. 1339-1349. Springer (2016)

W

o

13. Toffetti, G., Brunner, S., Bléchlinger, M., Dudouet, F., Edmonds, A.: An archi-
tecture for self-managing microservices. In: Proceedings of the 1st International
Workshop on Automated Incident Management in Cloud. pp. 19-24. ACM (2015)

