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Abstract- The quality of a semantic annotation is typically measured with its aver-

aged class-accuracy value, whose computation requires scarce ground-truth annota-

tions. We observe that humans accumulate knowledge through their vision and believe

that the quality of a semantic annotation is proportionally related to its compatibility

with the vision-based knowledge. We propose a knowledge-compatibility benchmarker,

whose backbone is a regression machine. It takes as input a semantic annotation and

the vision-based knowledge, then outputs an estimate of the corresponding averaged

class-accuracy value. The knowledge encodes three kinds of information, namely: co-

occurrence statistics, scene properties and relative positions. We introduce three types

of feature vectors for regression. Each specifies the characteristics of a probability vec-

tor that captures the compatibility between an annotation and each kind of the knowl-

edge. Experiment results show that the Gradient Boosting regression outperforms the

ν-Support Vector regression. It achieves best performance at an R2-score of 0.737 and

an MSE of 0.034. This indicates not only that the vision-based knowledge resembles

humans’ common sense but also that the feature vector for regression is justifiable.

Index-terms: vision-based knowledge, knowledge-compatibility benchmarker, semantic seg-

mentation, averaged class accuracy, regression
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I. Introduction

Semantic segmentation has become a major challenge in computer vision. The goal is to la-

bel every pixel in an image with a semantic object-class annotation from some pre-defined

set. Some works in this area include [1], [2], [3], [4], and [5]. Semantic segmentation is

also suited for practical applications, e.g. airport security [6] and embryo segmentation in

biomedical imaging [7]. As suggested by [8], the performance of semantic segmentation is

typically measured with a performance metric called the class accuracy (CA). It is computed

as: “true positives” / (“true positives”+“false positives”+“false negatives”). In particular, the

performance of semantic segmentation on one or more images is calculated by averaging the

CA over classes to obtain the averaged class-accuracy: averaged-CA. Hence, the computation

of averaged-CA requires ground-truth pixel-wise annotations. However, it is so expensive to

manually label images that there are relatively a few ground-truth annotation available. For

example, two main resources, i.e. MSRC-21 and VOC-2010 datasets, have only 591 and 1928

standard ground-truth annotations, respectively. This obviously becomes a serious impediment

to the development of accurate semantic segmentators.

On the other hand, we observe that humans accumulate knowledge through their vision.

This happens since there exist patterns (structures) of real-world sceneries. For instance, from

a set of 2D images, we can conclude that a keyboard mostly appears along with a mouse, a

building is commonly seen above a road and an aeroplane is usually photographed at an airport.

As a result, we aim to mimic the construction of such vision-based knowledge from ground-

truth semantic annotations. The knowledge encodes three types of information, namely: co-

occurrence statistics, relative locations and scene properties.

We believe that the quality of a semantic annotation is proportionally related to its compati-

bility with the vision-based knowledge. This key observation leads us to formulate a supervised

regression problem. Concretely, we propose a knowledge-compatibility benchmarker, whose

backbone is a regression machine. It takes as input a semantic annotation and the vision-based

knowledge, then outputs a knowledge-compatibility score, which is essentially an estimate of

the averaged class-accuracy value.

In addition to minimizing the need of ground-truth semantic annotations in computing the

performance metric, a knowledge-compatibility score can be employed during a semantic seg-

mentation process. In MRF-based semantic segmentation, one possible way is to calculate

a knowledge-compatibility score of a temporary annotation for each inference iteration. The
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Figure 1: The block-diagram of our proposed knowledge-compatibility benchmarker.

score (after some scaling and normalization) is then taken into account as feedback in the next

energy potential calculation. This technique is in synergy with the fact that humans enhance

their vision performance using the knowledge they acquired by seeing at all times.

We construct the vision-based knowledge from ground-truth semantic annotations of the Pas-

cal VOC-2010 dataset [8]. Experiment results show that the constructed knowledge has a rela-

tively high agreement on a set of human-centric queries about some extreme cases of the knowl-

edge. This suggests that it generally resembles the humans’ common-sense. Furthermore, we

introduce three kinds of feature vectors for regression so as to capture the compatibility be-

tween a semantic annotation and each type of the knowledge. Each kind substantially specifies

the characteristics of a probability vector that is derived from the given annotation and the

knowledge. We found that as the core of our proposed knowledge-compatibility benchmarker,

the Gradient Boosting regression outperforms the ν-Support Vector regression. The former

achieves best performance at an R2-score of 0.737 and an MSE of 0.034, while the latter’s is at

an R2-score of 0.697 and an MSE of 0.038. This indicates not only that the vision-based knowl-

edge is well constructed but also that the feature vector for regression is justifiable. Figure 1

shows the block diagram of our proposed knowledge-compatibility benchmarker. Our imple-

mentation code is publicly available at https://github.com/tttor/lab1231-sun-prj.

II. Related Work

We review several works that attempt to construct knowledge from images. In particular, we

are insterested in certain aspects, such as: the kinds of knowledge, the construction methods,

as well as the knowledge evaluation. We also emphasize on the utilization of the constructed
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knowledge, specifically, for MRF-based semantic segmentation.

Regarding co-occurrence statistics, the work in [9] argues that a co-occurrence relationship

between classes can give a more semantic information. For instance, a cow is not likely to

appear with dining table, resulting a more accurate labelling due to richer information. This

work contributes an MRF-based semantic segmentation model that incorporates co-occurrence

statistics as global information in order to impose semantic constraints among object categories.

Moreover, the work in [10] establishes semantic context information that takes into account the

co-occurrence frequency among object labels in the training set of the database. It uses a fully

connected MRF over segments, in which the co-occurrence value is used as pairwise potential

in the energy formula.

For spatial layout information, the work in [11] presents a region based model about scene

geometry, where a scene is decomposed into vertical and horizontal categories. Its main con-

tributions include an inference technique that utilize appearance and scene geometry jointly

for optimizing energy function. A three dimensional spatial layout representation in [12] also

utilizes geometrical information to enhance the accuracy in contrast of only labelling objects.

It represents a subclass of geometric information in three dimensional sense.

Meanwhile, for the work related with relative position, the work in [13] uses a relation such

as car on street on top of binary relation of co-occurrence between car and street. Besides,

the work in [14] proposes a method for capturing global information from inter-class spatial

relationships and encoding it as a local feature. It tries to identify the fact that, for example,

relative to “tree” pixels, pixels above and to the sides are more likely to be “sky” whereas

pixels below are more likely to be “grass”. Pertaining to the scene-property knowledge, the

work in [15] presents an empirical analysis of the role of context by estimating the likelihood

of observing an object given a scene image. It analyzes the role of context by estimating the

likelihood of observing an object given a scene image on a standardized dataset.

Furthermore, the work in [16] employs two kinds of knowledge, i.e. object co-occurrences

and spatial relationships. It proposes an efficient model that captures the contextual informa-

tion among more than a hundred of object categories. The work in [17] proposes a visual

concept ontology composed of several types of concepts (spatial concepts and relations, color

concepts and texture concepts). The ontology knowledge is used to perform complex object

categorization. Moreover, work in [18] incorporates constraints including co-occurrence and

spatial layout into an MRF inference framework for solving label set classification. The work

1287



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 2, JUNE 2015

in [19] introduces Hierarchy and Exclusion (HEX) graphs to overcome limitations from per-

pixel classifier. It formalizes acquisition of semantic relations between any two labels applied

to the same object: mutual exclusion, overlap and subsumption.

III. The vision-based knowledge construction

We aim to mimic how humans obtain some knowledge through their vision. In particular,

the vision-based knowledge encodes three kinds of information of 2D images, namely: 1) co-

occurrence statistics, 2) scene properties and 3) relative locations. We argue that those three

kinds of knowledge are the most essential. They are summarized from the literature, including

[10], [9], [15], [16] and [14]. We have tried to include another type, such as the spatial-layout

knowledge. It encodes the fact that, for example, the sky usually presents in the top of an

image, while roads are normally at the bottom. However, we found that it generally does not

yield meaningful and significant clues.

1. Co-occurrence statistics

The co-occurrence statistics encodes the likelihood of two objects appear together in a 2D

image. Take for example, based on their experience, humans can reason that a table is likely

occur together with a chair. Likewise, given a car in an image having several objects, we are

more sure that the others include a person than a horse. This means that the co-occurrence

statistics knowledge discourages strange object combinations. Moreover, if one or more pairs

of objects are already known to be together with high confidence, then the appearance of some

object may be suppresses as they are unexpected.

This knowledge is represented by an n-by-n symmetrical matrix C, where n is the number

of the pre-specified object classes in a dataset. Let i and j, where i 6= j, denote two different

object classes. Then, the element C[i, j] = C[ j, i], where i 6= j, indicates the number of co-

occurrence of i and j in the dataset. We do not take into account whether an occurrence of

an object class comes from one or more separate objects. This implies that an element C[i, i]

indicates the number of occurrence of i in the dataset, not the co-occurrence between an object

class with itself. In other words, there is no information about the co-occurrence of two or more

objects with the same class. For instance, we do not know how likely an object Person appears

together with another object Person in an image. Our co-occurrence knowledge constructor
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takes as input ground-truth pixel-wise semantic annotation and a list of pre-specified object

clasess. Listing 1 shows our implementation in Python, where the matrix C is built using a

dictionary data structure.

Listing 1: Our implementation of cooccurrence knowledge constructor in Python.
1 def construct(ann ids, obj names, ann dir):

cooccurrence = dict.fromkeys(obj names, None)
for key in cooccurrence.iterkeys():
cooccurrence[key] = dict.fromkeys(obj names, 0)

5
for i,ann id in enumerate(ann ids):
print ’Processing’,i+1,’of’,len(ann ids),’ann id=’,ann id

ann filepath = ann dir+’/’+ann id+’.csv’
10 ann = np.genfromtxt(ann filepath, delimiter=’,’)

obj ids = list(set( ann.flatten().tolist() ))
objs = voc.translate(obj ids)
objs = [i for i in objs if i not in voc.ignored class name list]

15
for i in objs:
cooccurrence[i][i] = cooccurrence[i][i] + 1
for j in objs:
if i is not j:

20 cooccurrence[i][j] = cooccurrence[i][j] + 1

return cooccurrence

2. Scene properties

This kind of knowledge defines a has-a property of a scene class of a 2D image. For instance, an

image of highways typically contains (has-a) roads, cars and road signs. Meanwhile, an image

of public parks contains people, benches, trees, etc. The scene-property knowledge essentially

encodes the context of a scene in an image.

In this work, all scene classes are place-centric, such as airports, bedrooms and forests. We

do not consider scenes like playing badminton, jogging, sunset, etc. Furthermore, we assume

that an image is already tagged with its scene class. The work of Oliva et al in [20] demonstrates

a scene-class classification, where GIST global features are extracted out of an image then fed

to an SVM classifier.

Let S denote an m-by-n matrix that encodes the scene-property knowledge, where m and

n are the number of valid scene-classes and the number of pre-specified object classes of a

dataset, respectively. Then, an element S[i, j] indicates the frequency of a scene class i contains

an object class j. Listing 2 shows our implementation in Python, where the matrix S is built

using a dictionary data structure.

1289



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 2, JUNE 2015

Listing 2: Our implementation of scene-property knowledge constructor in Python.
1 def construct(img ids, scepe prop ann dir):

ann filepaths = [scepe prop ann dir+’/’+img id+’.xml’ for img id in img ids]

scene prop = {}
5 for i, img id in enumerate(img ids):

print ’Processing’,i+1,’of’,len(img ids),’id=’,img id

ann filepath = scepe prop ann dir+’/’+img id+’.xml’
root = etree.parse(ann filepath).getroot()

10 for place sub in root.findall(’place’):
place = place sub.get(’name’).lower()
objs = [obj sub.get(’name’).lower() for obj sub \

in place sub.findall(’object’)]

15 if place in scene prop.keys():
obj count dict = scene prop[place]
for obj in objs:
if obj in obj count dict.keys():
obj count dict[obj] = obj count dict[obj] + 1

20 else:
obj count dict[obj] = 1

else:
obj count dict = dict.fromkeys(objs, 1)
scene prop[place] = obj count dict

25
return scene prop

3. Relative locations

The relative-location knowledge encodes the likelihood of relativeness relationships between

two objects in a 2D image. For example, the sky and road are is likely above and below

buildings, respectively. Likewise, as a cow is commonly surrounded by grass, the knowledge

should suggest that grass is around a cow.

To this end, we follow the work of Gould et al in [14]. Let Rst denote an n-by-n matrix

that encodes the relative location probability of object s with respect to object t, where n is the

number of pixels used to quantize an image. For a pixel p′ whose label is t, an element Rst [i, j]

contains the probability that a pixel p at offset (i, j) from p′ has class label s. In order to have

a proper conditional probability distribution over labels s, we impose that ∑
K
s=1 Rst(i, j) = 1,

where K is the number of pre-specified object classes O. Eventually, we have K×K number of

Rst matrices, i.e. K matrices for each t ∈ O. Listing 3 shows our implementation in Python for

constructing one Rst matrix.

Listing 3: Our implementation of relative-location knowledge constructor in Python.
1 def construct(chosen cprime, img list filepath, gt csv dir, img dir):

#
relative location matrix shape = (200,200) # following [Gould, 2008]
variance factor = 0.10 # following [Gould, 2008]

5 dirichlet noise = False
dirichlet noise alpha = (5.0,5.0) # following [Gould, 2008]
#
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c labels = [{’id’:key, ’name’:val} for key,val \
10 in dataset.class id2name map.iteritems() \

if val not in dataset.ignored class name list]
cprime labels = c labels
if chosen cprime is not ’all’:
cprime labels = [{’id’:key, ’name’:val} for key,val \

15 in dataset.class id2name map.iteritems() \
if val==chosen cprime]

prob map = init prob map([i[’name’] for i in cprime labels], [i[’name’] \
for i in c labels], relative location matrix shape)

20 with open(img list filepath) as f:
img ids = f.readlines()

img ids = [x.strip(’\n’) for x in img ids]
for i, img id in enumerate(img ids):

25 img filepath = img dir + ’/’ + img id + dataset.ori img format
img = img as float(io.imread(img filepath))
img height, img width = img.shape

segmentation = get segmentation(img)
30 segment list = get segment list(segmentation)

gt ann filepath = gt csv dir + ’/’ + img id + ’.csv’
gt annotation = np.genfromtxt(gt ann filepath, delimiter=’,’)

35 for j, segment in enumerate(segment list):
centroid = get centroid(segment)
centroid label = get label(centroid, gt annotation)
centroid weight = get weight(segment)

40 if centroid label[’name’] in dataset.ignored class name list:
continue

if centroid label[’name’] not in prob map.keys():
continue

45
for label in c labels:
pixels = get pixel of label(label, gt annotation)
for pixel in pixels:
offset = get offset(centroid,pixel)

50 if dirichlet noise==’True’:
offset = add dirichlet noise(offset,dirichlet noise alpha,\

relative location matrix shape)
norm offset = normalize offset(offset, \

relative location matrix shape,\
55 gt annotation.shape)

idx=get prob map idx(norm offset,relative location matrix shape)
count = prob map[centroid label[’name’]][label[’name’]] [idx]
count = count + centroid weight

60
prob map[centroid label[’name’]][label[’name’]] [idx] = count

norm prob map = normalize prob map(prob map, relative location matrix shape)
sigma = (np.sqrt(variance factor∗img height),\

65 np.sqrt(variance factor∗img width))
filtered norm prob map = apply gaussian filter(sigma, norm prob map, \

relative location matrix shape)
return filtered norm prob map

IV. The knowledge-compatibility benchmarker

We aim to predict the quality of a (predicted) semantic annotation, which is equivalent to the

performance of semantic segmentation. We observe that such quality is proportionally re-
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lated to the compatibility between an annotation and the vision-based knowledge: the higher

the compatibility, the better the quality. As suggested by [8], for a single object class, the

quality of a semantic annotation is typically measured with a quality metric called the class

accuracy (CA). It is computed as: “true positives” / (“true positives”+“false positives”+“false

negatives”). In particular, for a semantic annotation with several object classes, its quality is

calculated by averaging the CA over classes to obtain the averaged-CA.

The aforementioned observation leads us to formulate a supervised regression problem.

Specifically, given a semantic annotation and the vision-based knowledge, a regression machine

is utilized to predict the averaged-CA value, refer to section III for the knowledge construc-

tion. The benchmarker’s backbone is a regression function f that maps a semantic annotation

and the vision-based knowledge to the corresponding averaged-CA value. That is f : x 7→ y,

where x = φ(annotation,knowledge) is a feature vector extracted from a semantic annotation

and knowledge, while y ∈ R is the averaged-CA value. In testing phase, the estimate of an

averaged-CA value is considered as a knowledge-compatibility score.

There are, at least, two obvious benefits of a knowledge-compatibility benchmarker. First,

it can be employed to approximately measure the quality of a semantic annotation (therefore,

semantic segmentation) whenever its ground-truth annotation is not available. Secondly, a

knowledge-compatibility score can be utilized during a semantic segmentation process. In

CRF-based semantic segmentation, one possible way is to calculate a knowledge-compatibility

score of an annotation for each inference iteration. The score (after some scaling and normal-

ization) is then taken into account as feedback in the energy potential for the next iteration.

This technique is in synergy with the fact that humans enhance their vision performance by the

knowledge they acquire and accumulate by seeing the world at all times.

1. Feature extraction

The feature extractor function φ takes as input a semantic annotation and the vision-based

knowledge. In order to capture the compatibility between a semantic annotation and each

type of the knowledge, we introduce three kinds of feature vectors. Each of those specifies

the characteristics of a probability vector that is derived from the given annotation and the

knowledge. Hence, we have φc, φs, and φr that output co-occurrence statistics features xc ∈R4,

scene-property features xs ∈ R4 and relative location features xr ∈ R4, respectively. The final

feature vector is a concatenation of those row feature vectors, i.e. x = [xc xs xr]
T ,x ∈ R4×3.
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1.1. Co-occurrence statistics features: xc

Let Cn denote a normalized co-occurrence statistics matrix. It is calculated as Cn[i, j]i6= j =

C[i, j]i6= j/n j, where n j is the number of occurrence of object j in a dataset, so that we have

Cn[i, j]i6= j ∈ [0,1]. Given a semantic annotation and the vision-based knowledge, the co-occurrence

feature extractor φc first constructs a co-occurrence probability vector pc = [pc
1 pc

2 . . . pc
m],

where m = 2Cn is the number of combinations of 2 from n objects contained in the given se-

mantic annotation. A scalar member of pc, i.e. pc
k = Cn[i, j] is a probability that two objects i

and j appear together in a semantic annotation according to the knowledge.

Afterward, the extractor does extract four characteristics of the probability vector pc, namely

1) the mean µc, 2) the first quartile qc
1, 3) the second quartile qc

2 and 4) the third quartile qc
3,

refer to listing 4 for this. Finally, xc = [µc qc
1 qc

2 qc
3], as shown in listing 5.

Listing 4: Our implementation for obtaining the characteristics of a probability vector p
1 def get prob list representation(prob list):

assert len(prob list)>0, ’len(prob list)==0’

prob series = np.asarray(prob list)
5 rep = []

# mean
rep.append( np.mean(prob series) )

10 # quartile
for i in [25,50,75]:
rep.append( np.percentile(prob series,i) )

return rep

Listing 5: Our implementation of co-occurrence feature extractor in Python.
1 def extract cooccurrence fea(ann, knowledge):

numeric classes = list( set(ann[’ann’].flatten()) )
classes = [i for i in voc.translate(numeric classes) \

if i not in voc.ignored class name list]
5

prob list = [0.0]
if len(classes) > 1:
prob list = [knowledge[i][j] for i,j \

in itertools.combinations(classes,2)]
10

fea = fxu.get prob list representation(prob list)
return fea

1.2. Scene-property features: xs

Given a semantic annotation and the vision-based knowledge, a scene-property feature extrac-

tor φs begins with classifying the scene class of the given annotation. A scene-class classifier,

typically, takes as input an original image, of which some global features can be extracted. For

work on scene-class classification, we refer the reader to [20].
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Having the estimated scene class, the extractor φs proceeds to form a scene-property prob-

ability vector ps = [ps
1 ps

2 . . . ps
n], where n is the number of pre-specified object classes in a

dataset. Afterward, similiar to φc, it obtains four characteristics of ps, see also listing 4. Thus,

xs = [µs qs
1 qs

2 qs
3], as shown in listing 6.

Listing 6: Our implementation of scene-property feature extractor in Python.
1 def extract sceneprop fea(ann, knowledge):

scene class = fxu.get scene class(ann[’filename’]).lower()

numeric classes = list( set(ann[’ann’].flatten()) )
5 classes = [i for i in voc.translate(numeric classes) \

if i not in voc.ignored class name list]

prob list = [0.0]
if len(classes) > 1:

10 prob list = [knowledge[scene class][obj] \
if (obj in knowledge[scene class].keys()) \
else 0.0 for obj in classes]

fea = fxu.get prob list representation(prob list)
15 return fea

1.3. Relative-location features: xr

Similiar to φc and φs, the extractor of relative-location features φr takes as input an semantic

annotation and the vision-based knowledge. First, it performs standard (non-semantic) segmen-

tation on the original image in order to obtain a set segments or superpixels S = {Si}N
i=1. The

second step essentially follows [14]. For each superpixel Si, it creates two types of votes for

each class of pre-defined object classes in a dataset. Based on the relative-location knowledge,

each superpixel casts a vote for where it would expect to find pixels of every class (includ-

ing its own class) given its location (superpixel centroid) and predicted label. This means that

each superpixel Si receives N−1 votes from all the other superpixels S j. The two votes of Si,

namely: “self” votes vsel f (Si) and “other” votes vother(Si), are used to aggregate the votes from

class c j = ci and c j 6= ci separately. Here, ci is the semantic segmentation at the centroid pixel

of a superpixel Si.

In the third step, this feature extractor φr builds a pseudo probability vector pr = [pr
1 pr

2 . . . pr
n],

where pr
i = log vother

c j
(S j)+ log vsel f

c j (S j), following [14], and n = N×K with K is the number

of pre-defined object classes. It is a pseudo probability vector in that its element pr
i does not

need to be in the range of [0,1]. Finally, a representation of pr is extracted so that we have

xr = [µr qr
1 qr

2 qr
3]. Listing 7 shows our implementation of φr in Python.
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Listing 7: Our implementation of relative-location feature extractor in Python.
1 def extract relloc fea(ann, knowledge):

# do (standard) segmentation
ori img filepath = ann[’ori img dir’]+’/’+ann[’filename’]+ann[’ori img ext’]
img = img as float(io.imread(ori img filepath))

5
segmentation = rlk.get segmentation(img)
segment list = rlk.get segment list(segmentation)
class list = knowledge.keys()

10 # compute relative location votes
init vote = dict.fromkeys(range(len(segment list)), None)
for key in init vote.iterkeys():
init vote[key] = dict.fromkeys(class list, 0.0)

15 vote other = vote self = init vote
for i, si in enumerate(segment list):
xi, yi = rlk.get centroid(si)
ci hat = voc.class id2name map[ ann[’ann’][xi,yi] ]
if ci hat in voc.ignored class name list:

20 continue

for c in class list:
if c in voc.ignored class name list:
continue

25
vote other[i][c] = vote self[i][c] = 0.0
for j in range(len(segment list)):
if j == i:
continue

30 sj = segment list[j]
P cjhat sj = 1.0 # the probability of a superpixel sj has a class label cjhat
alpha j = P cjhat sj ∗ len(sj)
xj, yj = rlk.get centroid(sj)

35 cj hat = voc.class id2name map[ ann[’ann’][xj,yj] ]
if cj hat in voc.ignored class name list:
continue

offset = rlk.get offset((xi,yi),(xj,yj))
40 norm offset = rlk.normalize offset(offset, (200,200), \

ann[’ann’].shape)

prob map = knowledge[c][cj hat]
idx x, idx y = rlk.get prob map idx(norm offset, prob map.shape)

45
if ci hat==cj hat:
vote self[i][c] = vote self[i][c] \

+ (alpha j∗prob map[idx x][idx y])
else:

50 vote other[i][c] = vote other[i][c] \
+ (alpha j∗prob map[idx x][idx y])

# Compute the relloc features
w other = 1.0; w self = 1.0; epsilon = 0.00001

55
prob list = []
for s in range(len(segment list)):
for c in class list:
f relloc = (w other∗math.log(vote other[s][c]+epsilon)) \

60 + (w self∗math.log(vote self[s][c]+epsilon))
prob list.append(f relloc)

# Get the representation of pseudo prob map
fea = fxu.get prob list representation(prob list)

65 return fea

1295



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 2, JUNE 2015

2. Regression methods

Given a training set Dtr = {(xi,yi)}ntr
i=1 with inputs xi ∈ R12 and outputs yi ∈ R of ntr inde-

pendent samples from some underlying joint distribution, the goal of regression is to find a

function f ∗(x) that maps x to y, such that the expected value of a loss function Ex,y[Ψ(y, f (x))]

is minimized. Since the expected loss is commonly approximated by its empirical estimate,

the regression problem becomes: f ∗(x) = argmin f (x)∑
ntr
i=1 Ψ(yi, f (xi)). To this end, we apply

two regression methods for the knowledge-compatibility benchmarker, namely: the ν-SVR

(Support Vector Regression) [21] and the Gradient Boosting Regression (GBR) [22].

2.1. ν-Support Vector Regression

The nu-SVR [21] is an extension of Support Vector Machines (SVMs). It attempts to minimize

the generalization error bound so as to achieve generalized performance. The idea of SVR is

based on the computation of a linear regression function in a high dimensional feature space

where the input data are mapped via a nonlinear function. In general, the superiority of SVMs

includes 1) effectiveness in high dimensional feature vectors, even when the number of feature

dimensions is greater than the number of samples, 2) the quadratic optimisation problem is

convex, therefore it gives the globally optimal value, while Neural Networks yield multiple

solutions associated with local minima, 3) being memory-efficient since it uses a subset of

training points in the decision function (called support vectors), 4) robustness against training

samples that have some bias, due to a good out-of-sample generalization by choosing the right

parameters C in the case of a Gaussian kernel and 5) versatility in the sense that different kernel

functions can be specified for the decision function.

Specifically, several advantages of SVR over artificial neural networks (ANNs) and Partial

Least Squares (PLS) according to [23] are as follows:

• ε-insensitive loss function: In order to prevent the noise of the training set from influ-

encing the mathematical model, any residue of regression less than some small value ε

is considered to be meaningless. This means that SVR can suppress the overfitting due

to noisy training samples.

• the principle of flatness: the norm of weight vector is minimized in order to prevent the

magnification of the error of the training sample.

• application of kernel functions: this makes nonlinear data sets can be treated by linear
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algorithms.

• the principle of data dependent structure risk minimization: hence, the relation between

the target function and the data set is utilized. Moreover, this principle makes SVRs

do not depend on the dimension of data set. For comparison, ANNs merely apply the

principle of empirical risk minimization. Consequently, they are much dependent to the

dimension of data sets and tend to overfit whenever the dimension is high.

2.2. Gradient Boosting Regression

In addition to SVR, we also utilize the Gradient Boosting Regression (GBR) [22, 24]. It is based

on the idea of creating a highly accurate prediction rule by combining many relatively weak

and inaccurate rules. As stated in [25], it has shown excellent accuracy and generalization in

various real-world practical practical applications. Its benefits include: 1) highly customizable

to the particular needs of the application, i.e. supports different loss functions, 2) automatically

detects (non-linear) feature interactions, 3) accomodate features measured on different scale,

and 4) able to effectively capture complex non-linear function dependencies. As a result, we

believe that the GBR is competitive in comparison with ν-SVR.

V. Experiment Results

There are two main experiments, namely: the vision-based knowledge construction and the

knowledge-compatibility benchmarker. For both, we use the Pascal VOC 2010 object-class

segmentation dataset [8]. It has 1928 ground-truth semantic annotations of 20 pre-specified

object classes, whose ground-truth color-map is depicted in figure 2. Some original images and

ground-truth semantic annotations are shown in figure 9, 10 and 11.

1. The vision-based knowledge construction

This experiment aims to construct vision-based knowledge by encoding information of ground-

truth 2D semantic annotations. We run our knowledge constructor using all 1928 ground-truth

annotations from the Pascal VOC 2010 dataset. We remark that for building scene-property

knowledge, we manually label each original image with its common-sense scene class. In

total, there are 27 place-centric scene-classes.

The evaluation of the vision-based knowledge is carried out with respect to two aspects.
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Figure 2: The color-map of 20 pre-specified object classes of Pascal VOC-2010 [8].

First, we investigate the agreement between the vision-based knowledge and the typical human

knowledge on some extreme points. For example, “what is the most/least frequent object class

that occurs together with bicycles?”, “what is the most/least probable object class on top of

a chair?” and “what is the most/least probable object class that appears in the scene-class

of airports?”. This, however, requires an assumption that the given ground-truth annotations

represent, to some extent, what humans perceive daily. Secondly, the vision-based knowledge

utility can be measured by the performance of the knowledge-compatibility benchmarker. The

benchmarker heavily relies on the knowledge for extracting input features for regression, see

section IV. As a result, if the benchmarker can produce knowledge-compatibility scores that

accurately estimate averaged-CA values, then we can conclude that the vision-based knowledge

is also of high quality. We postpone the evaluation based on the second aspect until subsection 2

of section V.

1.1. Co-occurrence statistics knowledge

Figure 3 visualizes the co-occurrence statistics knowledge, i.e. the symmetrical matrix C. No-

tice that C[i][ j] indicates the co-occurrence frequency of two objects i and j if i 6= j and the

occurrence of object i in the dataset if i = j. As can be seen, the object-class Person appears

most frequently in the dataset; in 526 out of 1928 images. Its highest co-occurrence is with

object-class Bicycle, while its lowest co-occurrence is with object-class Bird. Meanwhile, the
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Figure 3: The co-occurrence statistics knowledge, constructed from 1928 ground-truth seman-
tic annotations. This is the visualization of a matrix C, where the number in each
box is the value of C[i][ j]. LEGEND: A=aeroplane, B=bicycle, C=bird, D=boat,
E=bottle, F=bus, G=car, H=cat, I=chair, J=cow, K=diningtable, L=dog, M=horse,
N=motorbike, O=person, P=pottedplant, Q=sheep, R=sofa, S=train, T=tv/monitor

object-class Chair mostly co-locates with object-class Diningtable. In general, observation on

the resulted co-occurrance matrix suggests that it largely agrees with humans’ common sense.

1.2. Scene-property knowledge

Figure 4 visualizes the scene-property knowledge, where edge costs are taken from a normal-

ized scene-property matrix Sn. For example, in the scene-class of airports, the knowledge

obviously advises that Aeroplane is more likely to present than Person. Meanwhile, Person

dominates in the scene-class of parks, restaurants, even roads. Another interesting finding is

that Boat has the highest probability in the scene of lakes, while Diningtable and Chair are two

most likely objects in the scene-class of dining-room. Intuitively, the likelihood of Car, Bus
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Figure 4: The scene-property knowledge based on 1928 ground-truth semantic annotations. An
edge costs, c = Sn[i][ j], indicates the probability that an object-class j (gray nodes)
belongs to a scene-class i (red nodes). Only object-class nodes whose edge cost is at
least 0.10 are drawn. Due to space issues, we show merely 8 out of 27 scene-classes.

and Bottle is low in the scene class of lake, beach, as well as park.

1.3. Relative-location knowledge

For the construction of relative-location knowledge, all images are quantized to 200× 200

pixels. A relative-location matrix for an object s with respect to an object t, i.e. matrix Rst , is
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Figure 5: The relative-location knowledge based on 1928 ground-truth semantic annotations.
Each square cell is a 200-by-200 Rst matrix that encodes the probability that, for a
pixel p′ whose label is t, a pixel p at offset (i, j) from p′ has class label s. Darker areas
indicate lower probability. Red solid horizontal and vertical lines help determining
the center area of a cell. For example, from the first row and the second column,
we get s = person and t = aeroplane. Then it reads that a person is likely below an
aeroplane since a lighter area is below the horizontal line. Due to space issues, we
show merely 7×7 out of 20×20 object-classes.

calculated by counting the offset of pixels for each class from the centroid of each superpixel

of a given class. In order to reduce the bias from small pixel shifts in ground-truth semantic

annotations, as suggested in [14], values of Rst are by a Gaussian filter with variance equal to

10% of the width and height of the image.

Figure 5 visualizes the relative-location knowledge. It can be inferred that the probability

that aeroplanes are above Person and Car is high. While, Diningtable likely presents below

Person. The Car is suggested to be surrounded by another Car.
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Figure 6: The histograms of true averaged-CA and global-accuracy values of 1928 samples in
Pascal VOC-2010 dataset.

2. The knowledge-compatibility benchmarker

The knowledge-compatibility benchmarker is essentially a supervised regression machine. It

maps an input feature vector x ∈ R12 to an averaged-CA value y ∈ R. In particular, x =

[xc xs xr]
T is extracted from a semantic annotation and the vision-based knowledge. The re-

gressor’s estimate of averaged-CA is considered as the knowledge-compatibility score of a

semantic annotation, from which x is extracted, see section III.

2.1. Setups

For developing the regression machine, we prepared a set of samples D = {(xi,yi)}n
i=1, with

n = 1928 is the number of images in Pascal VOC 2010 dataset that have ground-truth semantic

annotations. Therefore, the true averaged-CA, i.e. yi ∈D. of each (predicted) semantic annota-

tion can be calculated. To obtain (predicted) semantic annotations, we employ an MRF-based

semantic segmentation method of [1] with unary and pairwise energy functions; our imple-

mentation is based on the OpenGM2 library [26]. Figure 6:left shows the histogram of true

averaged-CA values. It indicates that those values are well distributed across the entire range:

[0,1]. In contrast, another performance metric, i.e global accuracy, has values that do not cover

its range. This is the primary rationale of selecting true averaged-CA as the target value y for

the regression.

We split the sample set D randomly into training data Dtr and testing data Dte with the

ratio of 7 : 3, respectively. In order to obtain solid results so as to minimize the bias due

to random splits, we performed 100 splits of D yielding {(Di
tr,D

i
te)}100

i=1. Consequently, we
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perform 100 independent end-to-end regressions (tuning, training and testing), one for each

(Di
tr,D

i
te), then report some statistics of regression performance over all splits.

We use two regression performance metrics, i.e. the mean squared error (MSE) and the R2-

score. The MSE is a risk metric corresponding to the expected value of the squared (quadratic)

error loss. Whereas, the R2-score is the coefficient of determination that provides a measure

of how well future samples are likely to be predicted by the model. Let yi and ŷi denote

the true output value and the corresponding predicted value of the i-th sample, respectively.

Then, the MSE and R2-score over n samples are defined as MSE(y, ŷ) = 1
n ∑

n−1
i=0 (yi− ŷi)

2 and

R2(y, ŷ) = 1− ∑
n−1
i=0 (yi−ŷi)

2

∑
n−1
i=0 (yi−ȳ)2 , where ȳ = 1

n ∑
n−1
i=0 . For MSE, the best value is 0.0, higher values are

worse. While, for R2-score, the best possible score is 1.0, lower values are worse.

Furthermore, since Support Vector Machine algorithms are not scale-invariant, we standard-

ize the data of Di
tr to have a zero mean and a unit variance. The resulted standardization

parameter then is also applied to the testing data Di
te. We tune both the Support Vector Re-

gressor and the Gradient Boosting Regressor using grid search with 10-fold cross-validation.

For the Gradient Boosting Regression, we obtained the following hyperparameters: huber loss,

300 estimators, learning rate of 0.1 and maximum depth of 3. For the ν-SVR, we obtained:

C = 1.7, ν = 0.4, γ = 0.0 and RBF (Gaussian) kernel with the degree of 1. We also ensure that

the two regression models do not suffer from either overfitting and/or high-bias by observing

the learning curves. We remark that our regression implementation is based on the scikit-learn

library [27].

2.2. Results

Table 1 shows the testing performance of both regression methods over 100 data-set splits. In

addition, figure 7 plots the best Gradient Boosting regression (GBR) performance over 100 sets

of testing data, i.e. {Di
te}100

i=1, in terms of estimated ŷ vs the true averaged-CA y values. Whereas,

figure 8 plots the one of ν-SVR. Notice that a predicted averaged-CA value is equivalent to

a knowledge-compatibility score. In testing phase, the GBR achieves an averaged R2-score

of 0.671 and an averaged MSE of 0.030. It outperforms the ν-SVR that attains an averaged

R2-score of 0.639 and an averaged MSE of 0.033. We also observe that both regression ma-

chines tend to “underestimate” true averaged-CA values. This is beneficial whenever predicted

averaged-CA values as the knowledge-compatibility scores are used as feedback during a seg-

mentation process.
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Table 1: The regression testing performance of both GBR and ν-SVR over all 100 sets of testing
data. For MSE, the best value is 0.0, higher values are worse. While, for R2-score, the
best possible score is 1.0, lower values are worse.

R2-score MSE
mean± std (min,max) mean± std (min,max)

GBR 0.671±0.026 (0.604,0.737) 0.030±0.002 (0.024,0.034)

ν-SVR 0.639±0.025 (0.560,0.697) 0.033±0.002 (0.028,0.038)

Figure 7: The best Gradient Boosting regression (GBR) performance over 100 sets of testing
data: {Di

te}100
i=1, in terms of estimated ŷ vs the true averaged-CA y values. Here, the

GBR achieves an R2-score of 0.737 and an MSE of 0.034. The red solid line indicates
where ŷ = y lies.

Furthermore, figure 9, 10 and 11 depict several qualitative results of semantic segmentation

along with the corresponding true averaged-CA values as well as the knowledge-compatibility

score. Using those 3 figures, we deliberately separate the presentation of images that have one,

two, and three or more object classes in their ground-truth annotations. Recall that the co-

occurrence and relative-location knowledge work merely with annotations with two or more

different object classes. Besides, the scene-property knowledge provides best clues when the
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Figure 8: The best ν-Support Vector regression (SVR) performance over 100 sets of testing
data: {Di

te}100
i=1, in terms of estimated ŷ vs the true averaged-CA y values. Here, the ν-

SVR achieves an R2-score of 0.697 and an MSE of 0.038. The red solid line indicates
where ŷ = y lies.

scene class of an image is definitive and apparent.

Largely, semantic annotations that contain two or more object classes obtain relatively good

knowledge-compatibility scores in the sense that they are close to the true averaged-CA values.

This can be seen, for instance, in subfigure 10(a) to 10(k) and subfigure 11(a) to 11(f). The

absolute difference between their scores and true averaged-CA is less than 0.100.

In addition, most scores are pessimistic predictions of true averaged-CA values. For instance,

in subfigure 10(l) and 10(n), the benchmarker outputs lower scores than true average-CA values

partly because the scene-class of those images are not obvious. Contrarily, in subfigure 9(j), we

obtained a score of 0.256 that is of 0.066 bigger than the true average-CA, which is of 0.190.

This happens because based on scene-property knowledge, the wrong object-class Cat share

the same probability to exist with the true object-class DOG in the scene-class of living-room.

Another optimistic score appears in subfigure 11(l), where the score is of 0.221 higher. It

turns out the that original image is of the Diningroom scene-class. Unfortunately, the semantic

annotation has all three object-classes, namely: Person, Table and Chair. Those object classes
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have high values in all three kinds of knowledge: they are likely to co-occur, their probabilities

to present in the scene-class of Diningroom are almost equal and their relative location in the

semantic annotation agrees with the relative-location knowledge.

VI. Conclusions

We believe that the quality of a semantic annotation is proportionally related to its compatibility

with the vision-based knowledge. As a result, we formulate a supervised regression problem

that maps a feature vector extracted from semantic annotations and the vision-based knowledge

to averaged class-accuracy values. Concretely, we propose a knowledge-compatibility bench-

marker, whose backbone is a regression machine. It outputs knowledge compatibility scores,

which are essentially the estimates of true averaged class-accuracy values. The vision-based

knowledge is constructed from ground-truth semantic annotations of 2D images. It encodes

three kinds of information, namely: a) co-occurrence statistics, b) scene properties and c) rel-

ative positions. In order to capture the compatibility between a semantic annotation and each

type of the knowledge, we introduce three kinds of feature vectors for regression. Each speci-

fies the characteristics of a probability vector that is derived from the given annotation and the

vision-based knowledge.

Experiment results show that the constructed vision-based knowledge has a relatively high

agreement with a set of human-centric queries about some extreme cases of the knowledge.

This suggests that it generally resembles the humans’ common-sense. Furthermore, we found

that as the core of our proposed knowledge-compatibility benchmarker, the Gradient Boosting

regression outperforms the ν-Support Vector regression. The former achieves best performance

at an R2-score of 0.737 and an MSE of 0.034, while the latter’s is at an R2-score of 0.697 and

an MSE of 0.038. This indicates not only that the vision-based knowledge is well constructed

but also that the feature vector is justifiable. Future work includes the utilization of knowledge-

compatibility scores on-the-fly during a semantic segmentation process.
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(a) score = 0.832, averaged-CA = 0.837, ∆ = 0.005 (b) score = 0.862, averaged-CA = 0.87, ∆ = 0.007

(c) score = 0.866, averaged-CA = 0.872, ∆ = 0.006 (d) score = 0.885, averaged-CA = 0.882, ∆ = 0.002

(e) score = 0.876, averaged-CA = 0.922, ∆ = 0.046 (f) score = 0.88, averaged-CA = 0.792, ∆ = 0.088

(g) score = 0.894, averaged-CA = 0.912, ∆ = 0.018 (h) score = 0.79, averaged-CA = 0.888, ∆ = 0.098

(i) score = 0.878, averaged-CA = 0.92, ∆ = 0.042 (j) score = 0.256, averaged-CA = 0.19, ∆ = 0.066

(k) score = 0.279, averaged-CA = 0.199, ∆ = 0.079 (l) score = 0.878, averaged-CA = 0.892, ∆ = 0.014

(m) score = 0.129, averaged-CA = 0.21, ∆ = 0.081 (n) score = 0.247, averaged-CA = 0.383, ∆ = 0.135

Figure 9: Qualitative results of semantic segmentation with one true object-classes. The ∆ indi-
cates an absolute difference between the knowledge-compatibility score and the true
averaged-CA. In each subfigure, the left, middle, right images are original, ground-
truth annotation, and (estimated) annotation, respectively.
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(a) score = 0.388, averaged-CA = 0.388, ∆ = 0.0 (b) score = 0.853, averaged-CA = 0.851, ∆ = 0.003

(c) score = 0.173, averaged-CA = 0.19, ∆ = 0.017 (d) score = 0.168, averaged-CA = 0.264, ∆ = 0.096

(e) score = 0.574, averaged-CA = 0.556, ∆ = 0.018 (f) score = 0.872, averaged-CA = 0.777, ∆ = 0.094

(g) score = 0.818, averaged-CA = 0.908, ∆ = 0.091 (h) score = 0.14, averaged-CA = 0.227, ∆ = 0.087

(i) score = 0.109, averaged-CA = 0.156, ∆ = 0.047 (j) score = 0.077, averaged-CA = 0.166, ∆ = 0.09

(k) score = 0.504, averaged-CA = 0.423, ∆ = 0.081 (l) score = 0.399, averaged-CA = 0.664, ∆ = 0.265

(m) score = 0.683, averaged-CA = 0.855, ∆ = 0.172 (n) score = 0.602, averaged-CA = 0.847, ∆ = 0.245

Figure 10: Qualitative results of semantic segmentation with two true object-classes. The ∆

indicates an absolute difference between the knowledge-compatibility score and the
true averaged-CA. In each subfigure, the left, middle, right images are original,
ground-truth annotation, and (estimated) annotation, respectively.
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(a) score = 0.338, averaged-CA = 0.294, ∆ = 0.045 (b) score = 0.214, averaged-CA = 0.236, ∆ = 0.022

(c) score = 0.214, averaged-CA = 0.236, ∆ = 0.022 (d) score = 0.119, averaged-CA = 0.096, ∆ = 0.023

(e) score = 0.132, averaged-CA = 0.122, ∆ = 0.01 (f) score = 0.184, averaged-CA = 0.237, ∆ = 0.054

(g) score = 0.252, averaged-CA = 0.543, ∆ = 0.291 (h) score = 0.55, averaged-CA = 0.675, ∆ = 0.125

(i) score = 0.269, averaged-CA = 0.608, ∆ = 0.339 (j) score = 0.48, averaged-CA = 0.772, ∆ = 0.292

(k) score = 0.524, averaged-CA = 0.739, ∆ = 0.215 (l) score = 0.434, averaged-CA = 0.213, ∆ = 0.221

(m) score = 0.52, averaged-CA = 0.712, ∆ = 0.192 (n) score = 0.456, averaged-CA = 0.859, ∆ = 0.403

Figure 11: Qualitative results of semantic segmentation with three or more true object-classes.
The ∆ indicates an absolute difference between the knowledge-compatibility score
and the true averaged-CA. In each subfigure, the left, middle, right images are orig-
inal, ground-truth annotation, and (estimated) annotation, respectively.

1309



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 2, JUNE 2015

References

[1] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for image understanding: Multi-

class object recognition and segmentation by jointly modeling texture, layout, and context,” Int. J.

Comput. Vision, vol. 81, no. 1, pp. 2–23, Jan. 2009.

[2] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Associative hierarchical crfs for object class

image segmentation,” in Computer Vision, 2009 IEEE 12th International Conference on, Sept

2009, pp. 739–746.
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