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Abstract- Compressive sensing uses simultaneous sensing and compression to provide an efficient 

image acquisition technique and it has been demonstrated in optical and electrical image sensors. To 

guarantee exact recovery from sparse measurements, specific sensing matrix, which satisfies the 

Restricted Isometry Property (RIP), should be well chosen. Toeplitz-structured chaotic sensing matrix 

constructed by Logistic map has been proved to satisfy RIP with high probability. In this paper, we 

propose that chaotic sequence sampled from Colpitts oscillator can also be used to generate Toeplitz-

structured chaotic sensing matrix. Simulation results show that the proposed Colpitts chaotic sensing 

matrix has similar performance to random matrix or other chaotic matrix for exact reconstructing 

compressible signals and images from fewer measurements. 

 

Index terms: Compressive sensing, image sensors, chaos, Colpitts oscillator. 
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I. INTRODUCTION 

 

Image sensors are of increasing importance in applications such as biomedical imaging, sensor 

networks [1, 2], hand-held digital cameras [3] and so on. Nowadays image sensors are under 

increasing pressure to accommodate ever lager and higher dimensional set; ever faster capture, 

sampling and processing rates; ever lower power consumption; communication over ever more 

difficult channels; and radically new sensing modalities. Fortunately, a new sampling theory, 

compressive sensing (CS)[4-6] is proposed and demonstrated in optical and electrical image 

sensors[7-11], which can reduce the number of the sensors and faster the image acquisition time. 

The basic idea of CS theory is that when the signal is very sparse or highly compressible in some 

basis (i.e., most basis coefficients are small or zero-valued), far fewer measurements suffice to 

exactly reconstruct the signal than needed by Nyquist-Shannon theory. In CS, instead of sensing 

the entire image and then subsequently removing redundant information during the compression 

step, sensing and compression are combined as one process and only the required or non-

redundant information is sensed, that is, a number of random projections of the image are being 

sensed as the compressed version of the image. This principle of ―sample less, compute later‖ 

shifts the technological burden from the sensor to the processing.  

The two fundamental questions in compressed sensing are: how to construct suitable sensing 

matrices, and how to recover the signal from a small number of linear measurements efficiently. 

Here we lay emphasis on the first problem. According to the CS theory, measurements of the 

image are taken using the measurement matrix (or the sensing matrix), which should satisfies the 

so-called Restricted Isometry Property (RIP), that is, the measurement matrix is supposed to be 

incoherent with the matrix describing the sparse basis. Recent Studies show that feasible, 

judicious selection of the type of the measurement matrix may dramatically improve the ability to 

extract high-quality images from a limited number of measurements and may reduce the 

hardware complexity in design
 
[12]. In theory, the optimal incoherence is achieved by completely 

random measurement matrices, such as Gaussian, uniform, Bernoulli and so on [13-15]. However, 

such matrices are often difficult and costly to implement in hardware realizations. Since chaotic 

signals exhibit similar properties to random signals, and easily implemented on hardware, some 

authors have attempted using chaotic signals to construct measurement matrices [16-21]. N. L. 

Trung, et al. [16] continue on the work in [14] on random filter in CS, and examine the use of 
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chaos filters in CS with filter taps calculated from the Logistic map. Numerical simulations 

indicate that chaos filter generated by Logistic map outperform random filters. L. Yu, et al.
 
[18] 

construct the measurement matrix with chaotic sequence from Logistic map, and prove that 

chaotic matrix satisfies RIP with overwhelming probability and  has similar performance to the 

Gaussian random matrix and sparse random matrix. In the subsequent work [19], they 

demonstrate that Toeplitz-structured chaotic sensing matrix is sufficient to satisfy RIP with high 

probability. This sensing matrix can be easily built as a filter with a small number of taps. M. 

Frunzete, et al. [20] generate the measurement matrix by using the Tent map and show that for 

any initial condition or parameter the performances of the matrix are similar. The matrices 

constructed by other chaotic dynamical systems [17,21], such as Chua, Lorenz, Chen, Liu, Lu, 

and so on, also have been shown to have similar performance to random Gaussian, Bernoulli and 

uniformly distributed sequences. But all these chaotic sequences in CS mentioned in the 

literatures are produced by computer simulation, not by the real hardware.   

In this paper, we proposed that a new chaotic sequence generated by Colpitts oscillator can also 

be effectively used to construct the measurement matrix in CS for super-resolution image 

reconstruction of image sensors and the Colpitts chaotic signal is taken from the actual circuit.   

The paper is organized as below. A brief of overview of compressive sensing is given in section 

II. The descriptions of Colpitts oscillator and Colpitts chaotic sensing matrix are presented in 

Section III. Numerical simulations of one dimensional time-sparse signal and two dimensional 

Wavelet-sparse image in CS with Colpitts chaotic sensing matrix are presented and the 

performance comparison between chaos-based sensing matrix and random matrix is given in 

Section IV. In Section V we draw some conclusions from the results of our simulation study. 

 

II. COMPRESSIVE SENSING THEORY 

 

Consider an N-pixel grayscale image as the vector 
N

x ¡ ( N n n  ) which is made by column 

concatenation of the image and assume that x is very sparse or highly compressible in some basis 

Ψ (i.e. Fourier, Wavelet, Discrete-Cosine, Hadamard and contourlet basis), then the signal can be 

represented as x=Ψs (s is K-sparse, meaning it has K significant components, K N= ). In CS 

framework, the image is encoded into a relatively small number of incoherent linear 

measurements by the measurement (sensing) matrix
M N

 ¡ . The obtained measurement vector 
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( )
M

M N y ¡ can be expressed as a linear projection 

y = Φ x = Φ Ψ s = Θ s                           (1) 

Given y, Φ and Ψ, the objective is then to faithfully recover s (and hence x) from y with as small 

M as possible. In order to successfully reconstruct an image with incomplete measurements, the 

sensing matrix must satisfy the RIP property, which is expressed as follows: 

   
2 2 2

2 2 2
1 1

K K
    v v v                   (2) 

where  0 ,1
K

  for all K-sparse vectors v. When this property holds, all K-subsets of the 

columns of   are nearly orthogonal, or else, a K-sparse signal may be in the null space of   and 

thus impossible to reconstruct these vectors. It has been shown that Φ and Ψ which are 

incoherent will satisfy RIP.   

From (2), we can see that K
 is determined by  and K. Apparently, K depends on the signal and 

its sparse representation matrix Ψ. Thus, what we can design is only the sensing matrix Φ. The 

goal of the design or optimization is making K
  as minimal as possible. In fact, RIP is a 

sufficient but not necessary condition. Meanwhile, there is no fast algorithm to verify whether a 

given matrix meets the RIP. A more practical criterion to choose the sensing matrix is to 

minimize the coherence, which measures the largest correlation between any two elements of  Φ 

and Ψ.  If Φ and Ψ contain correlated elements, the coherence is large. Otherwise, it is small. 

Mathematically, coherence is defined as: 

1 ,

, m a x ,
T

i j
i j N

N
 

                        (3) 

where Φi are rows of Φ and Ψj are columns of Ψ, respectively. The value of coherence is 

between 1 and N .  

If Φ is incoherent with Ψ, s can be recovered from y by solving the following l1-optimization 

problem: 

1
     su b jec t tom in s y = Φ Ψ s                       (4) 

There are various sparse approximation algorithms, such as l1-optimization based Basic Pursuit 

(BP), Orthogonal Matching Pursuit (OMP), Gradient Projection for Sparse Reconstruction 

(GPRS) and so on. Since this paper does not focus on the reconstruction algorithms, we just 

briefly use the OMP algorithm to reconstruct the original signal. OMP is widely adopted in CS 

for its high speed and its ease of implementation.   
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III. CHAOTIC SENSING MATRIX 

 

Finding a proper sensing matrix satisfying RIP is one of the most important problems in CS. 

Chaotic sequence has been proposed to construct the sensing matrix in [18]. Since pseudo-

random numbers can be obtained by computing a chaotic system, we can use a chaotic system to 

generate a pseudo-random matrix in deterministic approach and hence satisfies RIP similar to 

Gaussian or Bernoulli matrix. Moreover, chaotic system is easy to be implemented in physical 

electric circuit and only one initial state is necessary to memorized. In this paper, we just use 

chaotic sequence sampled from Colpitts oscillator circuit, to construct Toeplitz-structured sensing 

matrix, which has been proved to be sufficient to retain RIP property with overwhelming 

probability [19]. The use of Toeplitz matrix in CS application has the following advantages: the 

required independent chaotic variables are small, only O (n); and the multiplication can be 

efficiently implemented using FFT.  

Colpitts oscillator is one of the well-known electronic oscillators for generating chaotic signal 

under some special sets of its parameters. The classical configuration of the Colpitts oscillator 

contains a bipolar junction transistor (BJT) as the gain element and a resonant tank consisting of 

an inductor L and a pair of capacitors C1 and C2, as illustrated in figure 1. Note that the bias is 

provided by the current source I0. 

 

Figure 1. Schematic of the Colpitts oscillator 

The current flowing through the inductor L and the voltage across capacitor Ci (i=1,2) are denoted 

by IL and VCi, respectively. According to the Kirchhoff’s electric circuit laws, the state equations 
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for the schematic in figure 1 are the following: 

 1
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1 2

1

2 0

C
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L
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
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    




        (5) 

where f(·) is the driving-point characteristic of the nonlinear resistor.  By introducing a set of 

dimensionless state variables (x1, x2, x3), the normalized state equations of the Colpitts oscillator 

can be written in the form: 

 
 

 
 

1

1 1

g
x n y z

Q k

g
y z

Q k

Q k k
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
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&

                 (6) 

where    ex p 1n y y   ,  2 1 2
/k C C C  ,  0

/Q L R  represents the quality factor of the 

unloaded tank circuit ,    0 1 2 1 2
/C C L C C   is the resonant frequency of the unloaded L-C 

tank circuit, and g is loop gain of the oscillator.  

The hardware implementation of Colpitts oscillator and the corresponding prototype board is 

shown in figure 2, respectively. In the circuit, C3 = 2 pF，C4 = C0 = 100 nF，R1 = 5.1 kΩ，R2 = 

3 kΩ，R3 = 200 Ω，L0 = 10 μH and two BFG520XR transistors (Q1 and Q2) are adopted. The 

parameters of tank elements are L = 15 nH, C1 = C2 = 10 pF, Re = 100 Ω, R = 10 Ω. The supply 

voltages V1 and V2, are adjusted to obtain chaotic performance. When V1=1.8 V, V2=10.1 V, 

Colpitts circuit exhibits chaotic behavior. The chaotic signal output is detected and saved by a 

digital oscilloscope (LeCroy SDA806Zi-A). Figure 3 shows time series of the signal collected by 

the oscilloscope and the corresponding phase diagram.  
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Figure 2. Circuit Diagram (left) and prototype board (right) of Colpitts oscillator   

 

 

Figure 3. Time series (left) and phase diagram (right) of Colpitts chaotic signal collected by the 

oscilloscope 

Figure 4 presents the normalized autocorrelation of the Colpitts chaotic signal, which is 

thumbtack-like, and it reveals rapid decorrelation between close samples, thus making this 

sequence akin to a random trajectory. Figure 5 shows its probability density function.  

 

Figure 4.  Autocorrelation of the chaotic signal sampled from Colpitts oscillator 
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Figure 5. Probability density function of the chaotic signal sampled from Colpitts oscillator 

 

Then, the process of construction of the measurement matrix is as follows:  

1) Generate a chaotic sequence  0 1 1
, , ,

N
c c c


c L of length 1×N. The chaotic sequences are 

sampled from the output signal of Colpitts oscillator circuit and the sample interval can be 

selected arbitrarily because its autocorrelation is thumbtack-like. Here, we select unit sample 

interval.  

2) Construct a Toeplitz-structured matrix of size M N  as follows: 

1 2 0

0 1 1

2 3 1

             

                 8

                          

            

N N

N

M M M

c c c

c c c

M

c c c

 



  

 

 

 
 

 

 

Φ

L

L

M M M M

L

                  (7)

 

where 8 / M  is for normalization. L. Yu, et al [19] proved that for Toeplitz-structured chaotic 

sensing matrix, if  
3

1
ln /M c K N K , the RIP of order K with constant 

K
 is verified with 

probability at least  
2

2
1 ex p /c t M  .  

 

IV. NUMERICAL SIMULATION 

 

We provide some numerical examples to verify that Colpitts chaotic sequence is a powerful 

approach to compressive signal acquisition and reconstruction, and the performance of it can be 

comparable to that of random Gaussian distributed sequence and other existing chaotic sequences. 
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Consider a discrete time-sparse signal x with N=512 samples and K=10 spikes, as shown in figure 

8(a), is being reconstruction from M=80 measurements vectors. This is, of course, a highly under-

determined problem. Here, we compare the reconstruction performance of Colpitts chaotic 

sensing matrix with that of other random or chaotic sensing matrix, such as Gaussian, partial 

Hadamard, Logistic, and Tent. Figure 6 shows the corresponding random or chaotic sequences, 

all normalized to have zero mean and unity variance. The obtained measurements, generated 

from random or chaotic sensing matrix, are shown in figure 7. It can be seen that the original 

signal N
x ¡  has been randomly projected on the measurements M

y ¡ . The reconstructed 

signals using OMP are shown in figure 8. Clearly, when N=512, M=80, K=10, we can obtain 

exact reconstruction using chaotic sequences or Gaussian sequence. For fixed N and K, when M 

decreases, the signal may be impossible to exact recovery. Figure 9 illustrates an example of 

unsuccessful reconstruction for M=55. Note that it is obtained from one simulation run, so we 

cannot conclude that the performance of Gaussian matrix is better, and we will compare those 

matrices later.  

To further verify the performance of Colpitts chaotic sequence, we use the error rate, that is, the 

probability of incorrect reconstruction as a criterion, which is expressed as follows: 

 0 0 1e x x x    ˆP r / .                    (8) 

where x̂  is the reconstructed vector and  is the l2 norm.  

Figure 10 depicts the error rate curve as a function of the measurement number M for different 

sparsity K. It can be found that there is a minimum measurement number for perfect 

reconstruction and the value increases as the sparsity K increases. Meanwhile, the error rate rises 

with the increase of K for fixed measurement number and the error rate maintains one value 

firstly, drops rapidly in the middle section, and then holds zero with increasing M for fixed 

sparsity.   From figure 10, we can also see that for K=10, M=80, the error rate is nearly zero, and 

when M=55, the error rate is approximately 0.3, which is consistent with the result of the above 

example. 
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Figure 6. Random and chaotic sequences 

 

 

      Figure 7. The measurements of the signal  
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Figure 8. Illustrative example showing successful reconstruction using Gaussian and chaotic 

sensing matrix, N=512,M=80,K=10 
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Figure 9. Illustrative example showing unsuccessful reconstruction, N=512,M=55,K=10 

 

Figure 11 shows the error rate curves of different random or chaotic sensing matrix for fixed 

N=512 and M=80, and for various K, obtained from 100 simulation runs. Apparently, the 

performance of Gaussian random sensing matrix and Logic chaotic sensing matrix is similar, 

which is in accord with the result in [18]; while the error rate of Colpitts chaotic sensing matrix is 

slightly smaller than that of other sensing matrices, that is to say, our proposed Colpitts chaotic 

sensing matrix has better performance in CS.  
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Figure 10. Error rate as a function of the measurement number M for different signal sparsity, 

N=512 

 

 

Figure 11. Error rate as a function of the signal sparsity K for N=512, M=80 

 

Since correct recovery of x does not depend on the measurement matrix, and is solely determined 

by N and M, we give the dependence of the maximum sparisity Kmax on the ratio N/M for 

0 .0 1   and fixed signal size N=512, as shown in figure 12. Kmax is determined as the maximum 

sparsity for which error rate is smaller than 0.1. It can be found that the maximum sparsity in the 
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case of chaotic matrix is similar to that in the case of Gaussian random matrix, that is, the 

maximum sparsity decreases as N/M increases, in more detail,  Kmax decreases roughly by factor 2 

if  N/M (below 4) is doubled, while decline slowly for N/M more than 4. 

 

 

Figure 12. Dependence of maximum sparsity on N/M for fixed signal size N=512 

 

We also give an example of two-dimensional image reconstruction by Colpitts chaotic sensing 

matrix (CCM). Consider a monochrome ―Lena‖ image with size 256×256 (shown in figure 13), 

we measure this image with sample rate at 0.3,0.5, 0.7 and 0.9 respectively, then use OMP 

algorithm to reconstruct the original images. We use Haar wavelet for our compression basis. The 

Peak Signal to Noise Ratio (PSNR) is used as a criterion for the reconstruction performance.    

 
2

2

2 1

1 0

n
M N

P S N R

x x

  





lg

ˆ

                   (9)
 

where M×N is the image size and n means the bit value per sample of the pixel (usually, n=8). 

The higher value of  PSNR, the better accuracy rate of reconstruction. 

The results are listed in figure 14 and the corresponding PSNR values are given. Clearly, the 

more the samples or measurements are used, the better the performance of reconstruction is 

obtained. But even if the samples are fewer, the outline of the image can be get due to CS theory.  

To further prove the efficiency of CCM, we compare the reconstruction performance of CCM 

with that of Gaussian random matrix, partial Hadamard matrix, Logistic chaotic matrix, Tent 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 2, JUNE 2015 

1239 
 

chaotic matrix. Figure 15 presents the reconstructed images using different sensing matrices with 

sample rate at 0.5 and the corresponding PSNR values are also listed. From visual observations 

and the values of PSNR, it can be concluded that the performance of those random or chaotic 

sensing matrices are similar, and the proposed CCM  has slightly better result than others, from 

observing the nose and the lip of the woman. We also perform extensive simulations with those 

sensing matrices under other sample rate. Figure 16 illustrates the PSNR curve as a function of 

sample rate for different sensing matrices. It can be seen that the performance of CCM is 

comparable to that of other sensing matrices, which is consistent with the results in the first 

example. Therefore, compressive sensing with Colpitts chaotic circuit can be applied for super-

resolution image reconstruction of image sensors.     

 

Figure 13. The original image with size 256×256   
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Figure 14. Reconstruction of CS using CCM under different sample rate: 0.3,0.5,0.7,0.9 and 

the corresponding PSNR values are 20.148,25.369,29.579 and 33.021 

 

         

(a) Gaussian, PSNR=25.257    (b) Hadamard, PSNR=25.221   (c) Logistic, PSNR=25.161 

     

(d) Tent, PSNR=25.276          (e) Colpitts, PSNR=25.369 

Figure 15. Reconstruction of CS using different sensing matrices with 0.5 sample rate 
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Figure 16.  The PSNR curves as a function of sample rate for different sensing matrices 

 

VI. CONCLUSIONS 

 

In this paper, we demonstrate the use of Colpitts chaotic signal to construct measurement matrix 

in compressive sensing. From numerical simulations, it shows that Colpitts chaotic matrix has 

similar performance to existing random matrix and other chaotic matrices. Rather than using the 

simulated random or chaotic sequences, here we use the real sampled data from Colpitts chaotic 

oscillator circuit to generate the sensing matrix, so the result is more beneficial to designing 

practical CS-based imaging sensors. Meanwhile, Toeplitz-structured Colpitts sensing matrix can 

be implemented theoretically in an low cost integrated circuit board containing a CMOS dynamic 

shift register and Colpitts chaotic circuit, which is our next work. 
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