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Abstract- This paper proposes an advanced nonlinear signal model to handle the intrinsic nonlinearity 

of the pulsation of photoplethysmogram (PPG) signals and so permit their assessment. This model 

consists of three-different sinusoidal source signals and it successfully reproduces the primary 

harmonic, the second harmonic, the respiratory and the other spectra stemming from the interaction of 

the three source signals.  We demonstrate the potential of the model in various experiments on PPG 

signals.  It is discovered that the model has a great performance in that it characterizes PPG signals 

captured under various measurement conditions if nonlinearity is small.  It is also demonstrated that 

the model successfully characterizes the post-alcohol-intake state and the post-physical-exercise state 

using the behavior of the nonlinear factors, which should be very useful for alcohol-intake detection.  

The remaining issues of the model are also addressed. 

 

Index terms: PPG, photoplethysmogram, Fourier transformation, nonlinear signal, harmonic spectral 

intensity, specific spectral intensity ratio zone. 
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I. INTRODUCTION 

 

Japan is becoming an aging society; the percentage of people over 65 years old already exceeds 

23 %. This is driving demands for the reliable processing of biomedical and sensor data gathered 

by non-invasive monitoring; various sensors will be used to monitor health status.  

Although the non-invasive monitoring of bio-medical information is, generally speaking, inferior 

to invasive monitoring in terms of sensitivity, resolution, and reproducibility, non-invasive 

monitoring is definitely useful in the analysis of bio-medical signals from the viewpoint of bio-

informatics [1-3].  Of particular note, many researchers have focused on photoplethysmography 

(PPG) for monitoring (non-invasively) the pulsation rate and the oxygen partial pressure of 

arterial vessels [4].  In PPG signal analysis, fast Fourier transformation is frequently used to 

analyze the pulsation spectrum because of its ease [4].  As is well known, Fourier transformation 

is a powerful approach to signal analysis but the source signal must contain only linear waves. 

It is already known that pulsation-generated PPG signals are nonlinear [5-8].  The pulsation is 

created by a deterministic dynamic system, not a random signal source.  Thus we can anticipate 

that being able to treat this nonlinearity will yield key advances in PPG signal analysis [4].  For 

example, a recent non-invasive study of pulsation signal behavior addressed the diagnosis of 

atherosclerosis [9].  The results confirm that the nonlinear analysis of PPG pulsation offers new 

ideas for advancing informatics. 

Many mathematical methods have already been applied to the analysis of the nonlinear PPG 

signals [10]. Hilbert transformation is one of the more powerful mathematical methods.  As 

Hilbert transformation allows nonlinear and non-stationary sources to be analyzed, it is expected 

to be useful in analyzing the pulsation-generated PPG signals.  By slightly modifying the concept 

of Hilbert transformation, we show how the impact of the instantaneous frequency and non-

stationary behavior of source signals on the resulting spectra can be handled in modeling PPG 

signals. 

Starting with the knowledge that PPG pulsation is intrinsically nonlinear, we propose a nonlinear 

signal model based on Hamilton’s principle [11].  The final target of the analysis method 

proposed here is the detection of alcohol intake [8, 12-17].  At first, we focus on how well the 

model can reproduce the entire PPG signal spectra including the sub-Hertz low-frequency range.  

Although nonlinear signals should not be analyzed by Fourier transformation, it is utilized here 
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for the purpose of spectra comparison.  We also address some remaining issues of the model 

from the point of view of application to alcohol-intake detection. 

 

II. NONLINEAR SIGNAL MODEL 

 

Shimizu and Omura proposed an advanced PPG-based analysis technique for alcohol-intake 

detection [8, 12].  Though they fundamentally characterized the alterations in the PPG signal that 

could be expected with alcohol intake, they could not address the drawback of subject variability.  

Izawa and Omura proposed an algorithm of specific ‘spectral intensity ratio zone (SIRZ)’ to 

eliminate this shortcoming in the analysis of PPG signals [11-15, 18].  However, their algorithm 

is not a complete solution as it fails to counter the variability of the source signal.  Our idea is to 

characterize the aspects raised by the intrinsic nonlinearity of PPG signals.  Based on Hamilton’s 

principle and the idea of the Hilbert spectrum [10], we propose and validate the following 

nonlinear signal model for PPG signal analysis: 

 

               tftftftftftftftf
PPG 1021210

   

         tftftftftf
21020

 ,         (1) 

 

where f0(t) denotes the signal source yielding the primary spectrum of pulsation, f1(t) and f2(t) are 

the source signals producing the second harmonic spectrum, the third harmonic spectrum, and the 

other spectra; a total of 27 spectra.  Mathematical details of the nonlinear signal model are found 

in the Appendix.  Given eq. (1), the spectra targeted for analysis are schematically shown in Fig. 

1; the primary spectra group consists of f0(t), f1(t) and f2(t), the second spectra group consists of 

f0(t)f1(t), f0(t)f2(t), and f1(t)f2(t), and the third spectra group consists of f0(t)f1(t)f2(t).  In addition, 

the sub-Hertz low-frequency spectra (< 0.5 Hz) consist of f0(t)f1(t), f0(t)f2(t), f1(t)f2(t), and 

f0(t)f1(t)f2(t).  Although it is expected that these low-frequency spectra are related to the 

parasympathetic nervous system (related to the respiratory spectrum) [19] and sympathetic 

nervous system [20], the analysis of such spectra is not so easy because they depend on the 

emotional state of the subject [21]. 
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Figure 1. Schematic spectra generated by the nonlinear signal model. 

 

III. EXPERIMENTAL SETUP 

 

This study focuses on the sub-Hertz low-frequency spectra (0.3 ~ 0.5 Hz) of PPG signals in 

addition to the conventional spectra (the primary pulsation spectrum, its second harmonic and its 

third harmonic) in order to examine the potential of the nonlinear signal model proposed here.  

Accordingly, we reformed the amplification circuit so as to reliably extract all spectra from the 

source signal.  The actual circuit diagram used here is shown in Fig. 2(a). 

The procedure used in the following experiments is as follows [12].  The PPG signal is converted 

into the frequency domain by FFT processing after the source signal is linearly amplified by an 

operational amplifier (see Fig. 2(a)).  The light-source LEDs are used in the continuously dc-

biased state.  The subject's finger is held about 7 mm from the combined light source and photo-

detector (photo-transistor) (see Fig. 2(b)).  The lights emitted from the source are partially 

absorbed, reflected around the bone, and captured by the photo-transistor [12].  The 

measurements are performed in a dark room to avoid the noise generated by room lights and/or 

natural light.  FFT processing is performed at the sampling frequency of 1000 Hz.  Since the 

magnitude of the original spectral component is so large, its square-root value is used in the 

analysis associated with Figs. 3 to 9.  We believe that such a scale change is very useful in 

visualizing aspects of this experiment as is demonstrated later. 
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Figure 2. Signal pick-up and amplifier with specific high-pass filter.  (a) Circuit diagram,  (b) 

Signal pick-up system image. 

 

In this paper, respiratory spectrum was extracted from the FFT result by manually measuring 

breath frequency.  Experimental conditions for alcohol intake, smoking, and physical exercise are 

the same as those described in [12]. 

PPG signals were measured using various LEDs as the optical source; the primary wavelength is 

in the range of ~ 935 nm for “infrared”, ~ 660 nm for “red”, ~ 470 nm for “blue”, and ~ 525 nm 

for “green”.  However, we will stress the advantages of infra-red-LED-based 

photoplethysmography in the following discussion.  A total of eight volunteers (22-23-year-old 

males) participated in the experiments; five are habitual smokers and the remainder are non-

smokers. 
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IV. COMPARISON WITH MEASURED RESULTS 

 

a. Parameter extraction method 

 

As described in the Appendix, the model has several parameters that should be extracted self-

consistently from measured PPG signals.  We tried to extract them so that the model reproduced 

the measured results; i.e., in practice, basically assuming small nonlinearity factor () values, we 

tried to reproduce the primary spectrum and side-band spectra at the beginning.  After that, 

parameters of other spectra are reviewed by adjusting the nonlinear exponents and nonlinearity 

factors.  We assume that the nonlinearity is not so salient, and thus that Fourier transformation 

can still be used to analyze the spectra of the PPG signal.  However, this point is discussed again 

later.  We tentatively assume that both nonlinearity exponent (n and m) values are 3 to simplify 

the consideration.  As a result, we could determine them almost uniquely. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Spectral intensity of PPG signal (measured result) and simulation result (nonlinear 

signal model). The subject (smoker) took alcohol prior to the measurement, but without smoking. 
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b. Aspects of spectra of PPG signals and Behaviors of extracted parameters 

 

Figure 3 shows fundamental aspects of the spectra of measured PPG signals and the simulation 

results obtained by Eq. (1), where the various spectra are categorized by labels; subject, smoker, 

consumed alcohol prior to measurements [8].  In Fig. 3, we indicate various specific spectra 

groups; the primary harmonic spectral group with side bands stemming from the pulsation, the 

2
nd

 spectral group with side bands stemming from the pulsation, the spectral group controlled by 

the parasympathetic nervous system (related to the respiratory spectra), and the spectral group 

related to the sympathetic nervous system.  The nonlinear signal model successfully reproduced 

the spectra of the PPG signal in Fig. 3.  These spectra aspects, reproduced by the model, are used 

to characterize the PPG signal in this paper.  Figure 4 shows the spectra of the same subject 

(smoker) of Fig. 3, where the subject didn’t take alcohol and didn’t smoke before measurement 

(sober condition).  The model roughly reproduced the PPG signal, but the aspects of the low-

frequency spectra were not always well reproduced.  This suggests that the PPG signals don’t 

have strong nonlinearity independently of alcohol intake, or that the signal model has still some 

shortcomings in the sub-Hertz low-frequency range. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Spectral intensity of PPG signal (measured result) and simulation result (nonlinear 

signal model).  The subject (smoker) didn’t take alcohol or smoke prior to the measurement. 
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Figure 5 shows the spectra of measured PPG and simulation results, where the same subject 

smoked prior to measurements [13].  The model doesn’t well reproduce features of the sub-Hertz 

low-frequency spectra.  The model roughly characterizes some aspects of the measured result 

with regard to the primary spectral group and the 2
nd

 harmonic group except the sub-Hertz 

spectra.  However, the details seen in the measured results are not reproduced because smoking is 

apt to generate many noisy spectra as described in Ref. [13].  Figure 5 strongly suggests that the 

behavior of the sub-Hertz low-frequency spectra must be carefully investigated, or that an 

additional signal component is needed to improve the reproducibility of the measured PPG signal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Spectral intensity of PPG signal (measured result) and simulation result (nonlinear 

signal model).  The subject smoked prior to the measurement, but without alcohol intake. 
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Table I. Parameters extracted from experimental results (sober condition). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II. Parameters extracted from experimental results (smoking condition). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Tables I and II, it is seen that most of the nonlinearity factor () values are smaller than 0.1 for 

both conditions. However, smoking condition tends to yield large values within 30min after 

experiment initiation.  This suggests that the nonlinearity of the PPG signal for the smoking 

condition is more significant than that for the sober condition within the first 30minutes of the 

experiment.  In contrast, nonlinearity factor () is under 0.1 for the sober condition, which 

suggests that the vascular motion is calm. The Lagrangean equation (A-2) suggests that the side-

Time        0         1         2          1           2          A1        A2 

[min]     [rad]     [rad]    [rad] 

  0           8.80       8.97      8.67     0.066     0.086    0.80    0.65 

 15          8.17       8.48      7.98     0.177     0.171    0.50    0.45 

 30          8.17       8.36      8.01     0.088     0.099    0.60    0.65 

 45          7.54       7.67      7.41     0.052     0.079    0.62    0.60 

 60          7.54       7.67      7.32     0.059     0.082    0.55    0.70 

 75          7.54       7.63      7.48     0.048     0.043    0.50    0.55 

 90          8.17       8.45      8.11     0.099     0.043    0.80    0.60 

105         6.91       6.95      6.82     0.011     0.050    0.80    0.65 

120         6.91       6.95      6.77     0.011     0.060    0.80    0.60 

Time        0         1          2        1           2         A1       A2 

[min]     [rad]    [rad]     [rad] 

  0           6.91      6.97       6.72       0.027    0.067   0.54   0.65 

 15          6.91      6.92       6.79       0.007    0.073   0.40   0.60 

 30          6.91      7.16       6.85       0.063    0.039   0.95   0.50 

 45          7.54      7.57       7.45       0.020    0.060   0.40   0.60 

 60          7.54      7.67       7.48       0.042    0.040   0.77   0.60 

 75          7.54      7.56       7.48       0.016    0.040   0.40   0.60 

 90          6.91      6.94       6.85       0.010    0.037   0.70   0.60 

105         6.91      6.92       6.84       0.004    0.037   0.75   0.65 

120         6.91      6.97       6.84       0.029    0.044   0.50   0.55 
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band functions f1(t) and f2(t) rule the primary configuration of the PPG source signal.  This means 

that a large value of 1 yields a triangle-like wave shape, and that a large value of 2 yields a 

convex-like shape.  In other words, we can guess that enhancement of the systolic process results 

in an increase in the value of 1 and that enhancement of the diastolic process results in an 

increase in the value of 2.  Therefore, it is considered that the negative impact of smoking 

appears in the systolic and diastolic processes [18].  These characteristics (of parameters) were 

also observed in other subjects (not shown here). 

 

Table III. Parameters extracted from experimental results (alcohol-intake condition). 

 

 

 

 

 

 

 

 

 

 

 

In Table III, it is seen that most nonlinearity factor 1 values are larger than 0.1 for the alcohol-

intake condition.  This suggests, as expected, that alcohol intake makes the nonlinearity of the 

PPG signal more significant than the sober condition.  However, it should be noted that 1 takes a 

value larger than 0.1 much more frequently than 2 takes such a value which strongly suggests 

that the cardiovascular response contributing to the systolic process is unusually stimulated by 

alcohol intake. 

In Table IV, physical exercise condition, it is seen that 2 values exceed 0.1 soon after experiment 

initiation, while 1 remains under 0.1.  For the physical exercise condition, other subjects yielded 

similar results.  This means that the cardiac response for the physical exercise condition is quite 

different from that for the alcohol intake condition.  As is mentioned in the previous paragraph, 

the data of Table III reveals that alcohol intake leads to dysfunction in the systolic process, which 

Time        0         1          2        1           2           A1       A2 

[min]     [rad]    [rad]     [rad] 

  0           7.54      7.85      7.48       0.136     0.060    0.60   0.40 

 15          8.17      8.48      8.11       0.126     0.043    0.70   0.60 

 30          7.54      7.85      7.48       0.148     0.060    0.55   0.40 

 45          7.54      7.67      6.79       0.054     0.547    0.60   0.50 

 60          6.91      7.41      6.85       0.187     0.044    0.65   0.50 

 75          6.91      7.29      6.85       0.129     0.073    0.70   0.30 

 90          6.91      7.41      6.85       0.174     0.049    0.70   0.45 

105         6.91      7.48      6.88       0.211     0.024    0.65   0.45 

120         8.17      8.20      8.11       0.022     0.037    0.40   0.70 
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is an important result.  In a similar manner, the data of Table IV reveals that physical exercise 

enhances the dysfunction of the diastolic process at an early stage.  Such consideration is also 

examined in the following sections.  As a result, the PPG signal may not be easily reproduced by 

means of a set of simple nonlinear signal functions [22] for the physical exercise condition. 

 

Table IV. Parameters extracted from experimental results (physical exercise condition). 

 

 

 

 

 

 

 

 

 

 

 

c. Time evolution of specific spectrum 

It has been demonstrated that the nonlinear signal model basically reproduces important aspects 

of the PPG signal, and that it successfully produces parameters important in considering the 

nonlinearity of the PPG signal.  Here, in order to advance the consideration, we define two 

spectral intensity ratios in order to elucidate another potential of the signal model.  R12 is defined 

as the square root of the ratio of the primary spectral intensity to the 2
nd

 harmonic spectral 

intensity.  This ratio is also used later in order to suppress subject variability [8, 12-15, 23]. 

Measured and simulation results of the time evolution of R12 are shown in Fig. 6, where the 

subject (smoker) took alcohol prior to the measurement.  The data is from the same subject 

yielding Figs. 3 to 5.  As Izawa et al. revealed that R12 is a possible measure of the impact of 

smoking [13], it is used here, too.  The nonlinear signal model well reproduces the measured 

results in Fig. 6.  Figure 7 shows the time evolution of R12 for the subject that smoked.  The 

nonlinear signal model also reproduced the measured results.  These results basically suggest that 

the proposed model has high potential when the analyses employ the specific ratio of spectral 

intensities.  In other words, the model catches important and substantial aspects of the PPG signal 

Time        0         1          2        1          2            A1       A2 

[min]     [rad]    [rad]     [rad] 

  0          11.31    11.34     10.93      0.020     0.283    0.60   0.75  

 15           9.42      9.49       9.17      0.033     0.197    0.60   0.60 

 30          8.80       8.86       8.48      0.037     0.196    0.50   0.70 

 45          8.17       8.20       7.95      0.014     0.138    0.60   0.65 

 60          7.54       7.57       7.32      0.015     0.127    0.55   0.65 

 75          8.17       8.26       8.16      0.044     0.010    0.60   0.50 

 90          7.54       7.57       7.45      0.020     0.051    0.40   0.70 

105         7.54       7.57       7.41      0.023     0.079    0.35   0.60 

120         7.54       7.57       7.48      0.020     0.060    0.40   0.40 
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even though the raw spectral data output by the model have some shortcomings as seen in Figs. 4 

and 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Time evolution of spectral intensity ratio (R1b) for the subject (smoker) after taking 

alcohol without smoking. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Time evolution of spectral intensity ratio (R12) for the subject (smoker) after having 

smoked without alcohol intake. 
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Figure 8. Spectral intensity of PPG signal (measured result) and simulation result (nonlinear 

signal model).  The subject performed physical exercise before the measurement. 
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system (related to the respiratory spectrum) and the sympathetic nervous system modulate the 

side-band spectra of the primary spectrum and the 2
nd

 harmonic spectrum [20].  It is anticipated 

that these findings, extracted from the measured results, can be utilized in analyzing PPG signals 

from the viewpoint of the monitoring of the cardiovascular system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Time evolution of spectral intensity ratio (R1b) for the subject after physical exercise. 
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condition, which suggests that physical exercise has a specific impact on the cardiovascular 

motion.  
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Figure 10. Average values of nonlinearity factor 1 for five subjects under all conditions. 

 

V. ADDITIONAL CONSIDERATION OF THE PROPOSED NONLINEAR SIGNAL 

MODEL 

 

The above results demonstrate that the proposed nonlinear signal model is basically valid for the 

cases examined (smoking, alcohol intake and physical exercise).  However, the PPG signals 

recorded showed that physical exercise yield signal nonlinearity with aspects different from the 

case of alcohol intake as discussed in 4.3 and 4.4.  One approach to characterize such features of 

the PPG signals in detail is to numerically solve Eq. (A-2) of the Appendix assuming a large 

value of ||.  Though numerical calculations do make it possible to extract parameters from 

experimental results, this approach is not realistic for practical use. 

Another solution is to obtain an analytical solution of Eq. (A-2).  One possible way is to start 

from the simplified Sine-Gordon equation or to solve the Korteweg-de-Vries equation.  It is 

expected that the nonlinearity of the PPG signal should, due to its nature, partially resemble the 

behavior of the Toda lattice [24].  When the value of |is large, the behavior of the solution of 
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Eq. (A-2) may replicate the behavior of the Toda lattice.  Accordingly, we will reconsider the 

mathematical formulation to better reproduce the nonlinearity of the PPG signal in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Average values of nonlinearity factor 2 for five subjects under all conditions. 

 

VI. CONCLUSION 

 

This paper proposed an advanced nonlinear signal model to analyze pulsation-derived 

photoplethysmogram (PPG) signals because the pulsation is intrinsically nonlinear.  This model 

consists of three-different sinusoidal source signals and basically reproduces the primary 

harmonic, the second harmonic, the respiratory and the other spectra stemming from the 

interaction of the three source signals.  The model was developed by solving the nonlinear 

differential equations.  It was demonstrated that the model well reproduces important aspects of 

the nonlinear PPG signal for various conditions except a sub-Hertz range.   The results strongly 

suggest that alcohol intake yields a large impact on the systolic process of cardiovascular motion, 

and that physical exercise strongly impacts the diastolic process of cardiovascular motion. 

We also examined whether the model reproduces the specific spectral intensity ratio defined for 

the purpose of alcohol-intake detection.  It has been demonstrated that the model basically 
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reproduces the time evolution of the specific spectral intensity ratio assuming a large nonlinearity 

factor.   As a result, the results shown in this study will be very useful for alcohol-intake 

detection by categorizing the difference between alcohol intake and physical exercise. 
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Appendix: Mathematical Model for PPG Signal Based on Nonlinear Signal Analysis 

 

a. Solution of nonlinear equation 

 

The purpose of modeling is to obtain the intrinsic mode function that can reproduce the spectra of 

the signal.  However, generally speaking, there is no best way to do that.  With regard to this 

point, the following Hilbert spectra representation gives us a better idea [10]. 

 

 


 dttitAtX j

N

j

j )(exp)()(
1

 ,        (A-1) 

 

where X(t) is an arbitrary time series, Aj(t) is non-stationary amplitude, and j(t) is instantaneous 

angular frequency.  If we successfully propose appropriate functions for Aj(t) and j(t), Eq. (A-1) 

will be a trial function for signal analysis. 

When the nonlinear oscillation term is small, we can use a well-known approximate solution of 

the differential equation describing oscillation for signal analysis [10, 24, 25].  We start from the 

following differential equation for small . 
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02

0  nxxx  ,          (A-2) 

 

where n is an integer [ ),3,2( n ] and 0 is the angular frequency of the primary linear wave. 

We solve Eq. (A-2) for the following conditions. 

 

(i) n is an even number ( mn 2  1m ): 

 

The Lagrangean equation yielding Eq. (A-2) is expressed as 
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It is well known that Eq. (A-3) doesn’t contain any important information on the nonlinearity of 

the oscillation other than the level of oscillation distortion.  Accordingly, we don’t assume this 

condition. 

 

(ii) n is an odd number (  112  mmn ): 

 

The Lagrangean equation yielding Eq. (A-2) is also expressed by Eq. (A-3).  In this case, 

however, we have the following result of the line integral. 
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where A is the signal amplitude and  is the angular frequency of the signal.  The derivative of I 

yields  
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Thus, the solutions are specific frequencies that characterize the oscillation and the intrinsic mode 

function. 
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Eq. (A-6) yields side bands of the primary linear wave.  As is well known, signal amplitude (A) is 

a function of the phase of the wave and, as a result, the frequency alters instantaneously.  As 

these solutions have nonlinear properties, we apply them to analysis of the nonlinear PPG signals. 

 

b. Nonlinear signal model 

 

Based on the analysis given in the previous section, we introduce the following two side-band 

components as nonlinear signal functions. 
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In the above solutions, we assume that the parameter used in the two functions should be 

determined independently.  Given a trial function with a certain frequency, we take the following 

set of approximate solutions for Eq. (A-2). 
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where the amplitudes (A0, A1, and A2) and exponents (n and m) of Eq. (A-10) are different from 

those of the others as suggested previously; nonlinearity factors (1 and 2) are excepted.  They 

are self-consistently determined so that they reproduce the entire signal (here, the PPG signal). 

In this paper, based on Eq. (A-1), we assume the following signal form, f(t), in analyzing the PPG 

signal. 
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This expression consists of the primary signal and others with non-stationary amplitude and 

instantaneous angular frequency. 
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