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Abstract- Every individual has some unique speaking style and this variation influences their 

speech characteristics. Speakers’ native dialect is one of the major factors influencing their speech 

characteristics that influence the performance of automatic speech recognition system (ASR). In 

this paper, we describe a method to identify Hindi dialects and examine the contribution of different 

acoustic-phonetic features for the purpose.  Mel frequency cepstral coefficients (MFCC), 

Perceptual linear prediction coefficients (PLP) and PLP derived from Mel-scale filter bank (MF-

PLP) have been extracted as spectral features from the spoken utterances. They are further used to 

measure the capability of Auto-associative neural networks (AANN) for capturing non-linear 

relation specific to information from spectral features. Prosodic features are for capturing long -

range features. Based on these features efficiency of AANN is measured to model intrinsic 

characteristics of speech features due to dialects.  

 

Index terms: Dialect Identification, Auto-associative neural network, Feature compression, Hindi dialects, 

Spectral and Prosodic features.  
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I. INTRODUCTION 

 

Speech is the most common and natural means of communication among human. 

Advancements in technology and need for access to massive online resources have made 

human-machine communication essential in everyday life. Considering speech as one of the 

medium for communication between man and machine will always be a welcome step by the 

society. It will help extend the use of information technology to the population who are not 

well acquainted with the peripheral devices of computers. For an automatic speech 

recognition system of any language, with varieties of dialects the performance is highly 

dependent upon the variability captured during training of the system. Next to gender 

dialect/accent of speakers is the most influencing factor for any ASR [1]. This has motivated 

the researchers in the area of speech to concentrate on acoustic variation naturally present in 

speech. Accent is a pattern of pronunciation that can identify speaker’s linguistic, cultural or 

social background. Apart from socio-economic background, speaker’s native tongue 

influenced by the dialect spoken by them and in their surrounding is the major factor 

influencing accent of speakers. Dialect of a given language is a pattern of pronunciation or 

vocabulary of words used by the community of native speakers belonging to the same 

geographical area. The aim of dialect identification system is to identify the dialect of the 

speaker from the spoken utterances based on their speech characteristics. Once the dialect is 

identified system performance can be improved by adapting to the appropriate language and 

acoustic model [1].  

Human speech consists of a wide range of information regarding speech features that may be 

guided by speaker’s speaking style, their speed of speech production, age and emotional state. 

These characteristics are somehow controlled by speaker’s spoken dialect of the language.   

Phonotactic, spectral and prosodic features contained within the speech sample can give 

sufficient information regarding the native tongue of the speaker [2].  

Modeling techniques in identifying dialects of a language take advantage of different 

linguistic hierarchy layers. These approaches include phonotactic and acoustic models. 

Phonotactic models are based on phone sequence distribution, where vowel inventory, tense 

marking, diphthong formation, etc. are the base for the study [3,4]. Dialect recognition is 

analogous to language identification (LID) task. Most of the work done is motivated by LID 

systems. In [5] LID system is applied for recognition of 14 regional accents of British 

English. This system scores 96.5% recognition rate with the features used in LID task. Most 

of the task based on acoustic models for dialect identification uses spectral features with 
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Gaussian mixture models [6,7]. In [2] it has been emphasized that accent variations stretch out 

in both phonetic as well as prosodic characteristics of speakers. Evidence of better 

performance of the system based on a combination of phonetic and prosodic features is 

provided in [8]. In [9] MFCC, energy, and prosodic features have been used to classify 

regional Hindi dialects. Pitch and formant contours are promising candidate as prosodic 

features. They have been used with stochastic trajectory nodes to distinguish between 

Americans, Chinese and Turkish accents [10].  

Hindi is a language spoken by huge population of the world. It has around 50 prominent 

dialects. Number of speakers in these dialects varies from thousands in one to millions in 

other. Influence of native tongue on speaker’s speaking style is prominent even when standard 

Hindi is spoken by them. This influence makes a huge impact on the ASR performance. 

Identification of dialect becomes evident for better performance of ASR. Available literature 

highlights that energy; formants and information related to the fundamental frequency are 

found to be the most discriminative features for identifying possible accents. Considering 

these in mind, few dialect based studies have been initiated using suprasegmental features of 

speech samples. Supervised learning approach has been widely used in recognition task with 

small or medium size databases [11]. This approach has been used for dialect classification 

problems recently. Spectral and prosodic features have been used for classification of accents 

on a small database collected from people who are non-native speakers of Hindi [12]. Impact 

of Hindi due to their mother tongue (regional language) is studied in this paper. Research in 

[13] discusses dialect classification of isolated utterances using multilayer feedforward neural 

network as a classifier. Findings of this work highlight that prosodic features carry substantial 

information about the spoken dialect. Duration of syllable can be used to model spoken 

rhythm. Keeping this in view, the impact of several spectral and prosodic features on the 

performance for identification of Hindi dialects in continuous speech is explored in this work. 

Work in the area of Hindi speech recognition highlights the importance of MFCC and PLP as 

significant spectral features [14]. Integration of these features has been explored in [15], and 

possible improvement has been obtained by the integration. Due to their significance in 

speech recognition, performance of dialect recognition system has been explored for these 

spectral features and their combination. This work further explores their combination with 

prosodic features. Speech samples used here are read speech, recorded in standard Hindi, by 

speakers of different Hindi dialects. 

 Digital processing of speech requires extracting features that characterize the spoken 

utterances that can be used further processing. Feature extraction is the process that identifies 
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the salient properties of data to facilitate its use. It is often observed that superficial 

dimensionality of data is much greater than the intrinsic dimensionality of the extracted 

feature set. In speech recognition system, large numbers of spectral features are computed 

from several speech frames. Due to the high dimensionality, several millions of parameters 

are determined from the training data, and this increases the demand for storage while 

decreasing the speed for processing. To overcome these shortcomings, it is required to reduce 

the dimensionality of data while preserving discrimination between different phonetic sounds.  

The purpose of dimensionality reduction is feature transformation for improved speech 

recognition along with a reduction in data size. Several algorithms exist for this purpose. Most 

of them are linear in nature, so can discover only those data that have linear or near linear 

structure in high dimensional input space. Research in the area of speech have shown that 

speech sounds lie on low-dimensional curved subspaces embedded in high dimensional 

acoustic feature space [16]. Due to this non-linearity linear methods can not discover the exact 

embedded structure of the data. Comparative analysis of linear and non-linear dimensionality 

reduction methods applied to speech processing shows that non-linear methods outperform 

linear methods [17]. Principal component analysis (PCA) [18] and linear discriminant analysis 

(LDA) [19] are few of linear dimensionality reduction methods while non-linear PCA 

(NLPCA) is used as non-linear methods. Neural network has been widely used with high 

success rate for not only speech based task but also for several other artificial intelligence 

tasks [20]. This non-linearity for data reduction can be achieved by auto-associative neural 

network (AANN) [21]. The non-linear features are generated using artificial neural 

network(ANN) training procedure and the mapping between original and reduced data set is 

done by AANN.AANN has served as good classifier in many of language and emotion 

recognition work[12]. They have been successfully deployed for segmentation and indexing 

of audio signals [22]. Its capability of being a good classifier along with a good compressor 

motivated us to use it for dialect identification task.   

Hereafter, the paper is arranged as follows: Section 2 presents the mathematical formulation 

of the problem in hand. Section 3 describes speech corpus creation for this work. Acoustic 

phonetic feature extraction and its reduction process are explained in section 4. Proposed 

model for dialect identification is presented in section 5. Section 6 evaluates system 

performance based on several spectral and prosodic features, and the work is concluded in 

section7. 
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II. DIALECT IDENTIFICATION PROBLEM 

 

Let, A={a1,a2,a3….an} where aj , 1<=j<=n represents acoustic features (Spectral and prosodic) 

corresponding to any of the dialects in the set D = {D1,D2….Dm} of m dialects. The aim is to 

obtain most likely dialect D* corresponding to the input speech consisting of n acoustic 

features under consideration. This can be mathematically expressed as:  











=

A
PD D i

i

maxarg*                                   (1) 

Where P(Di/A) is the posterior probability of the dialect Di. If  the input vector belongs to any 

one of M classes Di, 1<=i<=m, then the main objective of this classification problem is to 

decide the class to which the given vector A belongs to. According to Baye’s rule; the 

problem turns out as one of the joint probability maximization problem and can be given as:  

P(A,Di)=P(A|Di) P(Di)                                                (2) 

 From Eq (1), the objective is to choose the class D* for which the posterior probability 

P(Di|A) is maximum for given A and can be implemented as: 
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Where, P(A|Di) represents the likelihood probability of A corresponding to Di and P(Di) 

denotes a piori probability of dialect that is assumed to be uniform for all dialect and so this 

can be ignored. Eq (3) simplifies to: 







=

ii D
APD maxarg

*      (4) 

Thus, the dialect identification task becomes estimation of the posterior probability based on 

(1) and likelihood estimation based on (4). 

 

III. HINDI DIALECT SPEECH CORPUS 

 

No standard speech database for Hindi dialect exists for speech processing research. Hindi 

language is spoken by majority of the population in India. Most of the speaker’s of this 

language are from North and Central India. Due to varied geographical and lingual 

background of speakers huge dialectal diversity exists among Hindi-speaking regions. From 

around 50 dialects of Hindi four prominent dialects (spoken by considerably large 

population); Khariboli (KB)(spoken in Delhi and boundary area of neighbouring states), 

Haryanvi (HR) (Haryana and border area of Delhi), Bhojpuri (BP) (parts of Uttar Pradesh, 
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Bihar, and Jharkhand) and Bagheli (BG) (Madhya Pradesh and bordering area of 

Chhattisgarh) have been identified for this research. For initial experimental purpose, a small 

database is constituted based on all phonemes of the language (11 vowels and 36 consonants). 

The sentences are based on words from travel domain. The subjects selected for recording 

belongs to any of the four dialects under consideration. The recording is done as read 

continuous speech. 

The text prompt consists of 300 continuous sentences. These sentences are based on Khariboli 

dialect and are written in Devanagri script. The length of sentences is not uniform. Minimum 

number of words in a sentence is six, and the maximum is fourteen. Maximum number of 

syllable in any sentence is 28. It has been observed during recording that variations exist 

within the dialect also. Due to this, speakers were selected from close geographical locations. 

Each speaker was asked to speak ten sentences themselves in their native dialect to capture the 

effect of dialect on the spoken utterances, before the start of actual recording of samples. This 

helped to acclimatize the speaker’s who were not involved in deep and frequent conversation 

in their dialect.  

 

Table 1: Statistical description of the Hindi dialect corpus 

Database Description 

Tool used for Recording GoldWave 

Sampling Frequency 16kHz 

Number of Sentences 300 sentences 

Number of Speakers 20 Male, 10 Female 

Age of Speakers Between 21 years to 50 years 

Number of Dialects 4 Hindi Dialects 

Utterances/dialect 9000 utterances 

 

IV. FEATURE EXTRACTION AND DIMENSIONALITY REDUCTION FOR 

DIALECT IDENTIFICATION 

 

Abundance of information is embedded in any speech signal. All these acoustic and linguistic 

information stored within makes the signal unique. A suitable parametric representation is 

required for extracting statistically relevant information and in turn, reducing them in number. 

These parametric representations, which are further used for digital processing is termed as 
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speech features. Several research studies have investigated accent/dialect sensitive acoustic 

speech characteristics. Many features have been investigated to be used as dialect sensitive 

traits at both high and low levels of acoustic knowledge. 

The acoustic information stored within the signal can be categorized as spectral and prosodic 

features. Different spectral and prosodic features used for this dialect identification task have 

been defined in this section. 

 

a. Spectral Features and Prosodic Features: 

 

 Mel Frequency Cepstral Coefficients (MFCC): Mel Frequency Cepstral Coefficient 

(MFCC) is used in state of the art speech processing systems [17-20] and is proven to be one 

of the most successful spectral feature representatives in speech related tasks. Speech analysis 

assumes that signal properties change slowly with time [23]. This motivates short time 

window based processing of the speech signal to extract its parameters. Every 10 ms, a 

Hamming window is applied to pre-emphasized 20 ms long speech segment. Fast Fourier 

Transform (FFT) is used to compute short-term spectrum. 20 overlapping Mel scale triangular 

filters are applied to this short-term spectrum. The output of each filter is the sum of the 

weighted spectral magnitude. Discrete Cosine Transform is obtained from the logarithm of the 

filter output to obtain cepstrum coefficients. Figure 1 represents steps in MFCC computation 

process. 

 

 

 

Figure 1. Block diagram of Mel frequency cepstral coefficients 

 

Perceptual linear prediction coefficients (PLP): Motivation behind PLP feature extraction 

is similar to that of MFCC method. As in MFCC, every 10 ms Hamming window is applied to 

the 20 ms speech segments. FFT is applied to obtain the short-term spectrum. Further, 20 

Input 

Speech 

     A/D    

Conversion 

Frame 

Blocking 
Windowing 

Magnitude 

Spectrum 

Mel Filter                          

Bank 
Logarithm Cepstral 

Decorrelation 
Base Feature 

∆-Feature 

Temporal 

Derivatives 



Shweta Sinha, Aruna Jain and S. S. Agrawal, ACOUSTIC-PHONETIC FEATURE BASED DIALECT IDENTIFICATION IN HINDI SPEECH 

242 

 

equally spaced overlapping Bark scale trapezoid filter is applied to the power spectrum. Equal 

loudness pre-emphasis is then applied to the filter bank output. It is followed by the  

application of intensity loudness law. To obtain the cepstrum coefficients, Inverse Discrete 

Fourier Transform (IDFT) is applied to calculate the autocorrelation coefficients. Levinson-

Durbin recursion is used to obtain the LP coefficients from these autocorrelation coefficients 

that are converted to Cepstral coefficients. Figure 2 represents PLP coefficient extraction 

process. 

 

Figure 2. Block diagram of Perceptual linear prediction coefficients (PLP) 

PLP derived from Mel-scale filter bank (MF-PLP): Research [24] shows that MFCC and 

PLP features are complementary in nature. To exploit their combined capability, MF-PLP 

features are extracted by merging MFCC and PLP techniques into one algorithm. In the first 

step, output of filters is computed using Mel scale triangular filter bank based on MFCC 

algorithm. These filters here are applied on the power spectrum in MFCC. For generating 

cepstrum coefficients, steps of PLP algorithms are followed. The intensity loudness law 

modifies Filter bank outputs are modified by, and cepstrum coefficients are calculated from 

this output using all-poles approximation. 

Prosody deals with auditory qualities of sound. These features have been proven to be the key 

feature in human perception of speech. In [9] it is shown that combination of spectral and 

prosodic features can improve the system performance. Few prosodic features have been 

investigated here in combination with spectral features for their capability to give dialect 

specific information. The prosodic features are also referred as supra-segmental features as 

they are extracted from units bigger than phonemes. These features give information about 

utterance as well as the speaker. Pitch, energy, duration are well-proven prosodic features. 

Fundamental Frequency: Fundamental frequency (F0) represents perceived pitch in human 

speech and is inherent in any periodic signal. The temporal dynamics of pitch across a signal 

of speech conveys intonation related information. Cues for perception of rhythmic 
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characteristics of speech are assumed to lie in regular recurrence of salient speech interval. 

Different types of speech intervals have been considered to be acoustic correlates of speech 

rhythm, fundamental frequency related envelop are one of them [25]. Several studies exist to 

show the importance of prosodic features such as word accent and the phrase intonation in 

human speech processing, but very few use F0 in combination with other acoustic features 

[27]. F0 has been mostly found suitable for tonal languages, but the presence of prosodic tone 

due to accent influenced by native dialect of speakers [26, 29,30] motivated us to investigate 

it for Hindi dialect recognition. 

F0 requires a prior decision to be made regarding voiced/unvoiced status of each frame. Due 

to its differing nature in voiced and unvoiced speech it is difficult to estimate them 

correctly[28]. Several algorithm for F0 estimation has been proposed in literature and can be 

broadly categorized based on their feature’s domain i.e. time domain, frequency domain, 

hybrid time and frequency domain and event detection methods [29-31]. In this work, 

YAAPT (“Yet Another Algorithm for Pitch Tracking”)[30], a noise robust and fast algorithm 

has been used. This algorithm works in combination of time domain and frequency domain 

processing and produces F0 value for each frame. The algorithm is adapted for the problem in 

hand based on characteristics of speech database. Table 2 represents the mean and  the 

standard deviation of  the fundamental frequency of male and female speakers of each dialect 

in the corpus. 

 

Table 2: Mean and standard deviation (STD) of the fundamental frequency for recorded male 

and female speakers of Hindi dialects 

                        

             Dialects 

Statistical  

Variations 

Khariboli   

(KB) 

Haryanvi 

(HR) 

Bhojpuri     

(BP) 

Bagheli 

(BG) 

Male Female Male Female Male Female Male Female 

Mean 122.76 241.75 140.63 221.32 132.63 203.16 164.39 233.37 

Standard 

Deviation 

12.22 30.12 11.64 16.09 20.02 26.71 9.59 18.62 

 

Frame Energy: Level of energy helps in identifying the voiced/unvoiced portion of speech. 

Together with pitch and duration it represents stress pattern of speakers. Energy of each 

overlapping frames of segmented speech is obtained by summing the squared amplitude of 

each sample.  
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Duration:  Due to the dialectal influence on one’s speaking style length of spoken segment 

vary, which is mainly concerned with the vowel duration used in the segment. Also, duration 

represents the rhythm that is guided by speaker’s native dialect. Hindi is a syllable-timed 

language. Syllables are assumed to be better representative than the phonemes in Hindi. Due 

to its durational stability the variations observed are more systematic at this level. Figure 3 

shows that mean vowel duration for 10 Hindi vowels significantly varies in each dialect. This 

can be used as an important cue to the classifier decision-making. The segmentation of speech 

into syllables is done using Donlabel tool [32]. This tool uses a combination of group delay 

function, envelope of the LP residual and energy of prominent spectral peaks to reach  a final 

decision regarding syllable boundary. Naming convention used for syllables is such as to 

represent its position in the utterance. 

 

Figure 3. Comparative chart of average duration of Hindi vowels in four dialects 

 

b. Non-Linear Feature Compression 

 

 In this work, AANN model is explored for feature compression as well as the classification of 

dialect by capturing acoustic-phonetic features specific to the dialects. The detail of AANN 

model based on its capability for the above-mentioned tasks is briefly provided here. 

Auto-associative neural network is feed-forward network (FFNN) with identical input and 

output vectors. This network tries to map the input vector onto itself and hence is named 

Auto-associative [34,35]. AANN consists of an input layer, an output layer, and one or more 

hidden layers. The ability of neural network to fit arbitrary non-linear functions depends on 

the presence of non-linear hidden layer [21].  Available literature shows that 5-layer AANN 

with 3-hidden layers has been successfully used in many speech based tasks [12,22]. The 

network structure is represented by XL-YN-ZN-YN-XL, where X, Y and Z refer to the 

number of processing units at each layer, L represents linear units, and N is for non-linear 
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units. The number of nodes in input and output layer is equal to the dimension of features 

used in the problem in hand. In general, number of neurons in first and last hidden layers, also 

known as mapping and de-mapping layer [33] are greater than that at input and output layer. 

These layers are responsible for capturing local information contained in the feature vectors. 

There is no definitive method for deciding in advance the number of nodes in this layer and 

are derived experimentally. The number of nodes in the middle layer consists of the lesser 

number of neurons than that at the input/output and other hidden layers [21]. This layer 

compresses the input vector producing reduced dimensional feature [31,34]. For a large 

number of training data samples, this reduced feature output can be suitably used as input that 

will reduce the cost while achieving classification accuracy. This compression layer is 

responsible for capturing global information from the input feature. 

The activation function at the bottleneck layer can be either linear or non-linear, but the 

activation function at the mapping and de-mapping layer has to be essentially non-linear. This 

non-linearity provides the capability for modeling arbitrary vector function. 

 

V. MODEL DEVELOPMENT FOR DIALECT IDENTIFICATION 

 

a. Frame Blocking and Feature Compression 

 

To capture the spectral features, energy, and pitch of the spoken utterances the recorded 

speech signal is divided into overlapping frames of 20ms with an overlap rate of 10ms. Since 

the FFNN requires fixed size of input vector in all the iterations and speech utterances are not 

of equal duration; the system is trained using feature set obtained from each frame and the 

final decision is based on the cumulative sum of output from each frame. From all the 

obtained frames, the silence frames are removed based on amplitude threshold obtained from 

the available samples. For spectral features, 13 MFCC coefficients along with 13 velocity and 

13 acceleration coefficients, 13 PLP, their corresponding higher order coefficients and 13 MF-

PLP along with their high-order delta and delta-delta coefficients are extracted from each 

frame. All the coefficients are normalized in the range [-1 +1] before feeding as input to the 

network. The velocity and acceleration coefficients are used to capture spectral trajectories 

over the spoken duration. Since, the overall classification is based on spectral feature along 

with prosodic feature from each frame; number of input turns out to be very large and may 

increase computation time. Some reduction technique is required. AANN’s bottleneck aspect 
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helps in reducing the input feature set and hence the characteristic of AANN is exploited 

further.  

The architecture of AANN model used for compression is 39L-65N-16N-65N-39L. The 

reduced number of 16-dimensional feature vectors from each frame is used with other 

prosodic features to train the classifier. Number of nodes at the mapping, de-mapping and 

compression layer has been experimentally derived. The activation function used in this work 

is tangent hyperbolic function given as tanh(k); where k is net input value for that unit. The 

network is trained using conjugate gradient backpropagation learning algorithm for its better 

speed and convergence property. In order to minimize the mean square error for each feature 

vector, the weights of the network were adjusted.   

 

b. Classification Model 

 

Figure 4 represents the flow of the input speech processing for classification of dialect. Two 

separate dialect classifiers one for frame-based feature and other based on sub-word unit have 

been used in the identification process. Each classifier consists of 4 AANN model 

representing one dialect each and is trained with spectral and prosodic features of the 

corresponding dialect. For the prosodic feature F0, ∆F0, frame energy, and syllable duration 

have been used in this work. First three, as well as the spectral features, are obtained from 

frame-based analysis of speech sample; whereas, duration computation is done after 

segmentation of speech into syllables. Different spectral features are combined one at a time 

with the prosodic features. The first classifier is trained with spectral and prosodic features 

extracted from the analysis of speech frames. F0 for unvoiced frames are set to zero and ∆F0 

from each frame is obtained as the difference between the maximum and minimum F0 value 

of each frame. Thus, the input size in each cycle remains same. The three prosodic features 

obtained from each frame are combined with the uncompressed/compressed set of spectral 

features to form the input to the first classifier. 42(using uncompressed)/19 features from each 

frame is given as input and output to the dialect-specific AANN. This helps the network to 

capture the distribution of feature vectors. With uncompressed spectral features structure of 

AANN in the first classifier, is 42L-65N-24N-65N-42L and with compressed feature set it is 

19L-30N-8N-30N-19L for all four dialects. tanh(k) is used as non-linear activation function 

and gradient descent Back-propagation is used as learning algorithm by all AANN models.   



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 1, MARCH 2015 

247 

 

  

Figure 4.  Flow graph of AANN based dialect identification system 

 

Syllable lengthening gives the knowledge about the rhythm in the spoken utterance. Duration 

of syllables has been used as another prosodic feature and training of 4 AANN models of the 

second classifier is done by these values. Analysis of the text corpus used in this work shows 

that the minimum number of syllable in any sentence is 10, and maximum number is 28. 

Thus, 28 inputs and output layer neurons are used in each AANN of this classifier. The 

structure of all four AANN is 28L-48N-13N-48N-28L. For sentences with a number of 

syllables, less than 28 the tailed portion of the input is appended with zeros to make it 28 in 

number. Since, the differences in syllable duration for different dialects are significant the 

output of the second classifier is reinforced by the decision logic for the final decision 

regarding the utterance class. 

 

VI. EVALUATION OF DIALECT IDENTIFICATION MODEL 

 

System performance is evaluated using both uncompressed and compressed feature set. 

System is trained with 12 male and six female data from each dialect, and the rest are used for 

testing purpose. Features under consideration are extracted from the test utterances. In the 

baseline system 39 spectral features obtained as each of MFCC, PLP and MF-PLP can be 

directly used one by one in combination with 3 prosodic features or their reduced set of 16 

dimensional features can be used with 3 prosodic features. These 42/19 features from each 

frame are given as input to every AANN models of the first classifier. 133 epochs were 
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required to train the system properly using uncompressed feature set, and 91 epochs were 

required with the compressed feature set.  

 To make the classification decision confidence score of the input utterance is obtained from 

all four AANN models. To do this, firstly, the squared error (eik) for each feature k in each 

frame i is obtained as eik=|| Yik-Oik||
2
, where Yik is the kth feature vector input value given to 

the ith frame and Oik is the observed output from the model for kth feature vector of ith frame. 

Mean frame error is computed as,  , where T is the total number of feature 

from each frame, for this work it is 42/19. This error Ei is used to obtain frame confidence 

score using, Ci = exp(-Ei ). The total confidence value for the test utterance is computed 

as, , where N is the total number of frames. This is obtained from all AANN 

models, representing one dialect each. Based on the confidence scores from four dialects and 

considering the predefined threshold logic is applied to decide the class of input. Performance 

of the system based on first classifier only is given in Table 3(uncompressed spectral feature) 

and Table 4(compressed spectral feature). The average performance of the system is 71% 

using MFCC, 68% with PLP and 72% with MF-PLP as uncompressed spectral feature 

combined with prosodic features. When compressed set of spectral features is used the 

performance in each case slightly increased. The recognition score was 73%, 70%, and 73% 

respectively with MFCC, PLP, and MF-PLP spectral features.  

 

 

Table 3: System performance based on uncompressed spectral features along with F0, ∆F0 

and Energy as a prosodic feature 

Hindi 

Dialects 

Recognition Performance (%) 

KB HR BP BG 

MFCC PLP 
MF-

PLP 
MFCC PLP 

MF-

PLP 
MFCC PLP 

MF-

PLP 
MFCC PLP 

MF-

PLP 

KB 72 68 74 15 16 13 2 6 4 11 10 9 

HR 14 12 11 69 72 74 7 12 14 10 4 1 

BP 5 13 10 11 9 10 74 62 65 10 16 15 

BG 9 7 5 5 3 3 17 20 17 69 70 75 
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Table 4: System performance based on compressed spectral features along with F0, ∆F0 and 

Energy as a prosodic feature 

Hindi 

Dialects 

Recognition Performance (%) 

KB HR BP BG 

MFCC PLP 
MF-

PLP 
MFCC PLP 

MF-

PLP 
MFCC PLP 

MF-

PLP 
MFCC PLP 

MF-

PLP 

KB 75 68 71 13 12 15 2 8 2 10 12 12 

HR 13 8 12 71 76 70 7 11 9 9 5 9 

BP 5 16 9 10 9 9 75 64 77 10 11 5 

BG 7 8 8 6 3 6 16 17 12 71 72 74 

 

In the modified system, performance is further evaluated by combining the confidence score 

obtained from AANN models of the second classifier trained on syllable duration of input 

utterances with that of the output of the first classifier. Figure 5 represents the block diagram 

for AANN models.  

 

Figure 5. Block diagram of dialect identification system based on evidences from each dialect 

 

During testing, the input utterance is segmented into syllable units, and the network is trained 

using their duration. Normalized mean square error (Eu) is computed for the complete 

utterance using;   where S is the total number of syllable in an 

utterance and xs is the input syllable duration of sth syllable, whereas, os is the observed output 

for the same syllable. With this error, the confidence score corresponding to each dialect is 

computed. Table 5 represents the influence of duration information on the performance of the 

AANN for 

Khariboli 

AANN for 

Haryanvi 

(HR) 
AANN for 

Bhojpuri (BP) 

AANN for 

Bagheli (BG) 
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system, using compressed feature set. The performance of the combined system is drastically 

improved, and average recognition score is reached  81% for MFCC,78% for PLP and 82% 

with MF-PLP as spectral features. This significant improvement highlights the importance of 

speaker’s tonal characteristic due to native dialect. 

 

Table 5: System performance based on compressed spectral features along with F0, ∆F0, 

Energy and Syllable Duration 

Hindi 

Dialects 

Recognition Performance (%) 

KB HR BP BG 

MFCC PLP 
MF-

PLP 
MFCC PLP 

MF-

PLP 
MFCC PLP 

MF-

PLP 
MFCC PLP 

MF-

PLP 

KB 84 81 82 10 8 8 0 3 3 6 8 7 

HR 10 9 7 77 72 81 6 9 7 7 10 5 

BP 0 2 4 10 14 11 83 81 81 7 3 4 

BG 6 8 7 3 6 0 11 7 9 80 79 84 

 

VII. SUMMARY AND CONCLUSION 

 

In this paper, spectral and prosodic features are explored for dialect identification of spoken 

utterances. We have outlined the capability of auto-associative neural network for its use for 

dimension compression of speech features as well as for capturing dialect specific information 

from underlying distribution of feature vectors. Four Hindi dialects (Khariboli, Haryanvi, 

Bhojpuri, and Bagheli) have been considered in this work. To evaluate this model we have 

used speech samples collected from male and female speakers from these dialects. Two 

separate classifiers, each consisting of 4 AANN model, one for each dialect have been used in 

the identification process. In the baseline system, only one classifier is used. This classifier is 

trained with spectral features (MFCC, PLP, MF-PLP) along with F0, ∆F0 and Energy 

obtained from each speech frame. Decision regarding the class of the input utterance is based 

on the confidence score obtained from each frame. Model is evaluated for both the 

uncompressed and compressed set of spectral features. MF-PLP based spectral features give 

the best result in combination with prosodic features. But the improvement using this feature 

is negligible as compared to its complexity. MFCC features outperform PLP features 

significantly. Recognition performance of the system improved with the compressed feature 
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set. Also, the number of iterations in training drastically decreased. Syllable duration is 

included as an additional prosodic feature in the modified model and is used in the training of 

the second classifier. AANN model for all four dialects is trained using duration of all 

syllables in the input utterance. In the next level of execution, the confidence score obtained 

from the second classifier is reinforced by the decision logic based on results of the first 

classifier. The system performance increased in all cases. This increase in recognition 

performance shows that tonal characteristic influenced by native dialect of speakers is an 

important prosodic feature and syllable duration captures it properly. It also highlights that 

AANN is capable of capturing intrinsic feature characteristics specific to dialects. 

The results obtained in this work are promising and demonstrates the potential of AANN as a 

candidate for dialect classification using spectral and prosodic features. Also, even if MF-PLP 

gives the better result than other spectral features; due to the simplicity of MFCC and its 

potentials it can be a promising candidate as spectral feature for further tasks. With this result, 

we are encouraged to increase our database and work for more dialects of Hindi. Identification 

of more spectral feature to capture details significant to Hindi dialects is also one of our future 

goals. 
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