Presentation Open Access

Using deep learning to explore movement of people in a large corpus of biographies

Schlögl, Matthias; Lejtovicz, Katalin; Bernád, Ágoston Zénó; Kaiser, Maximilian; Rumpolt, Peter


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Schlögl, Matthias</dc:creator>
  <dc:creator>Lejtovicz, Katalin</dc:creator>
  <dc:creator>Bernád, Ágoston Zénó</dc:creator>
  <dc:creator>Kaiser, Maximilian</dc:creator>
  <dc:creator>Rumpolt, Peter</dc:creator>
  <dc:date>2018-01-16</dc:date>
  <dc:description>In this presentation we showcase our first experiences with deep learning models for relation extraction in german biographies. These models are trained on human annotations of relations between the biographed person and entities found in the full-text (e.g. person A &gt;&gt; travelled to &gt;&gt; Wien).

An interactive version of this presentation that allows also to test the trained model can be found here.</dc:description>
  <dc:identifier>https://zenodo.org/record/1149023</dc:identifier>
  <dc:identifier>10.5281/zenodo.1149023</dc:identifier>
  <dc:identifier>oai:zenodo.org:1149023</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>doi:10.5281/zenodo.1149022</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>Using deep learning to explore movement of people in a large corpus of  biographies</dc:title>
  <dc:type>info:eu-repo/semantics/lecture</dc:type>
  <dc:type>presentation</dc:type>
</oai_dc:dc>
33
23
views
downloads
All versions This version
Views 3333
Downloads 2323
Data volume 22.4 MB22.4 MB
Unique views 2828
Unique downloads 2121

Share

Cite as