Presentation Open Access

Using deep learning to explore movement of people in a large corpus of biographies

Schlögl, Matthias; Lejtovicz, Katalin; Bernád, Ágoston Zénó; Kaiser, Maximilian; Rumpolt, Peter


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>In this presentation we showcase our first experiences with deep learning models for relation extraction in german biographies. These models are trained on human annotations of relations between the biographed person and entities found in the full-text (e.g. person A &gt;&gt; travelled to &gt;&gt; Wien).</p>\n\n<p>An interactive version of this presentation that allows also to test the trained model can be found <a href=\"https://apis.acdh.oeaw.ac.at/presentation_innsbruck17/\">here</a>.</p>", 
  "license": "http://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Austrian Academy of Sciences", 
      "@id": "https://orcid.org/0000-0003-1451-0987", 
      "@type": "Person", 
      "name": "Schl\u00f6gl, Matthias"
    }, 
    {
      "affiliation": "Austrian Academy of Sciences", 
      "@type": "Person", 
      "name": "Lejtovicz, Katalin"
    }, 
    {
      "affiliation": "Austrian Academy of Sciences", 
      "@type": "Person", 
      "name": "Bern\u00e1d, \u00c1goston Z\u00e9n\u00f3"
    }, 
    {
      "affiliation": "Austrian Academy of Sciences", 
      "@type": "Person", 
      "name": "Kaiser, Maximilian"
    }, 
    {
      "affiliation": "Austrian Academy of Sciences", 
      "@type": "Person", 
      "name": "Rumpolt, Peter"
    }
  ], 
  "url": "https://zenodo.org/record/1149023", 
  "datePublished": "2018-01-16", 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.5281/zenodo.1149023", 
  "@id": "https://doi.org/10.5281/zenodo.1149023", 
  "@type": "PresentationDigitalDocument", 
  "name": "Using deep learning to explore movement of people in a large corpus of  biographies"
}
85
45
views
downloads
All versions This version
Views 8584
Downloads 4545
Data volume 43.9 MB43.9 MB
Unique views 7978
Unique downloads 4242

Share

Cite as