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Abstract: This paper addresses the problem of performance assessment for MIMO PID controllers. 

An efficient comparative analysis is established using two Iterative Linear Matrix Inequality (ILMI) 

approaches. To evaluate the robustness and the performances of each ILMI approach, four tests 

are carried out on the closed-loop system including White Gaussian noise, set point changes, 

parametric perturbation, and multiple time-delays influence. Different performance criterion such 

as IAE, ISE, ITAE and ITSE are also presented to evaluate the closed-loop system performances. 

The quadruple-tank process as a benchmark of minimum/non-minimum phase systems is applied to 

show the effectiveness and utility of the proposed analysis. The comparative analysis between the 

two PID controllers leads to nearly similar performance results in parametric perturbation and 

noise attenuation but different results in terms of set point changes, multiple time-delays influence 

and performance indices.  

 

Index terms: PID control, Multivariable feedback control, ILMI, Non-minimum phase systems 

(NMPS), Performance assessment. 
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I. INTRODUCTION 

 

Proportional-integral-derivative (PID) controllers have found popularity in the industrial 

world since Ziegler and Nichols proposed their first PID tuning method. This is mainly due to 

their simplicity in controller structure, robustness to uncertainties and disturbances and 

availability of numerous tuning methods. Several approaches have been proposed to address 

tuning PID parameters [1]. However, tuning methods for MIMO PID controllers remain less 

understood than SISO ones. Numerous research works and books have been reported in this 

framework [2], [3], [4]. Recently, several emerging controller’s design of industrial processes 

have been developed [5], [6], [7] and a large volume of published studies describing the 

implementation of PID controllers such as in water level regulation [8], temperature 

regulation [9], impressed current cathodic protection (ICCP) system [10], and conveyor belt 

system [11]. The PID controller tuning approaches are mainly used to ensure the stability of 

the closed-loop systems and meet objectives such as set-point changes, disturbance rejection, 

robustness against plant modelling uncertainty, noise attenuation ... Performances assessment 

of these approaches can be established by using different performance indices and robustness 

criteria [12]. Since major plants have time varying properties and changing operating regimes, 

it is difficult to find a suitable set of PID parameters that will provide optimal process 

performance under all conditions. Furthermore, for the case of non-minimum phase systems 

(NMPS), some performance limitations such as overshoot or undershoot are imposed by the 

characteristics of the system [13]. An overview of new results, particularly for NMPS , have 

been discussed through the literature [14], [15], [16], [17], [18].   

On the other hand, Linear Matrix Inequalities (LMIs) are one of the most efficient tools to 

solve complex optimization problems in controller design [19]. A great deal of LMI-based 

design methods have been proposed for systems stabilization [20] and synchronization [21]. 

To tackle the problem of computing MIMO PID gain matrices, an Iterative Linear Matrix 

Inequality (ILMI) algorithm was proposed by [22] and later used to solve several MIMO PID 

controller design problems [23], [24], [25], [26], [27]. The basic idea is to transform a PID 

controller into an equivalent static output feedback (SOF) controller. Transformation of PID 

controllers to SOF controllers is a good alternative to solve such complex control problem. 

This can be realized by augmenting, using some new state variables, the dimension of the PID 

controller system. Established results in SOF field can be then used to design a multivariable 

PID controller for various specifications such as asymptotic stabilization, robustness, 
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performances… Several ILMI algorithms were developed and lead to different approaches 

and methodologies. Very often, the different conditions derived are not readily implementable 

as numerical algorithms. Another major difficulty is due to the non-convexity of the static 

output feedback solution which gives an important computational task. These motivate the 

present work to study ILMI approaches, to detail resolution procedures and to deepen 

performance assessment studies for MIMO PID control of non-minimum phase systems using 

ILMI approaches. The main merit of our work is to propose a performance assessment for 

MIMO PID controllers using two ILMI approaches. The comparative analysis is based on 

four tests carried out on the system including Gaussian white noise perturbation, set-point 

changes, parametric perturbation, multiple delays influence. Four index performances (IAE, 

ISE, ITAE, ITSE) are also used to deal with closed-loop system performances. A quadruple-

tank process, as a NMPS benchmark, is used to illustrate practicality and efficiency of the 

proposed analysis.  

The paper is organized as follows. Section II presents the quadruple tank process and the 

minimum/non-minimum phase models. Section III details the MIMO PID tuning via two 

ILMI approaches. Finally, performance assessment of the two PID controllers using four tests 

and different performance indices is exposed in Section IV. 

 

II. THE QUADRUPLE-TANK PROCESS 

 

The quadruple-tank process [28], [29], is a multivariable process which consists of four 

interconnected water tanks and two pumps. The schematic diagram of the process is shown in 

Figure 1. The output of each pump is split into two using a three-way valve. The inlet flow of 

each tank is measured by an electro-magnetic flow-meter and regulated by a pneumatic valve. 

The level of each tank is measured by means of a pressure sensor. The regulation problem 

aims to control the water levels in the lower two tanks with two pumps. The two pumps 

convey water from a basin into the four tanks. The tanks at the top (tanks 3 and 4) discharge 

into the corresponding tank at the bottom (tanks 1 and 2, respectively). The positions of the 

valves determine the location of a zero for the linearized model. If  
1γ  is the ratio of the valve 

for the first tank, then (1-
1γ ) will be the valve ratio for the four tank. The voltage applied to 

pump is 
i  and the corresponding flow is 

iik  . The parameters 
1γ , 

2γ   [0,1] are determined 

from how the valves are  set prior to an experiment. The flow to tank 1 is 
111kγ   and the flow 
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to tank 4 is 
111)kγ-(1   and similarly for tank 2 and tank 3. The acceleration due to gravity is 

denoted by g. The measured level signals are 1c1 hky   and 2c2 hky   .   

For each tank i=1,...,4 , consideration of mass balances and Bernoulli's law yields :   

iiout 2ghaq
i
                        (1) 

ii outin
i

i qq
dt

dh
A   

  (2) 

where 
iinq is the in-flow of the tank and 

ioutq is the out-flow of the tank. 

 

Figure 1. The quadruple tank process 

Considering the flow in and out of all tanks simultaneously, the non-linear dynamics of the 

quadruple tank process is given by:  
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Nomenclature 

ih  : Level of water in tank i 

ia  : Area of the pipe flowing out from tank i 

     
iA  : Area of tank i 

1γ  : Ratio of water diverting to tank 1 and tank 4 

2γ  : Ratio of water diverting to tank 2 and tank 3 

1k  : Gain of pump 1 

2k  : Gain of pump 2 

ck  : Level sensor 

g : Gravitational constant  

pump,1q  

 

 

: Pump 1 flow 

 pump,2q  : Pump 2 flow 

1
 

: Voltage input 1 (pump 1) 

2  : Voltage input 2 (pump 2)
 

1y  : Voltage from level measurement devices of tank 1 

2y  : Voltage from level measurement devices of tank 2 

MPS : Minimum Phase System 

NMPS : Non Minimum Phase System 

 

Let note by  Ti0i hhx  , i=1,...,4, the state variable vector,  T202101    the 

control vector and  T21 yyy   is the output vector. The linearized model [28] around the 

equilibrium points 0

1 , 0

2 , 0

1h , 0

2h , 0

3h , 0

4h  , 0

1y , 0

2y  can be expressed by :  

BuAxx    

Cxy   (4) 
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









00k0

000k
C

c

c
 

The parameters of the quadruple–tank process are presented in [8]. The eigenvalues of the 

open-loop system are - 0.0159, - 0.0111, - 0.0419 and - 0.0333. The system admits two 

multivariable transmission zeros, which are determined by the zeros of its determinant as: 








 





 
21

21
434

1i i

212121
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)γ)(1γ(1
)sT)(1sT(1

)sT(1

γγkkTT
detG(s)

   

 
 

(5) 

Thus, the zeros can be computed analytically: 
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The adjustable multivariable zero 1z  given by (6) can be set to a left or the right-half plane. 

The valves position adjustment determines if the system is minimum-phase or non-minimum 

phase. The results can be written in terms of the flow ratios 1  and 2  as shown in Table 1.  

 

Table 1: Location of zeros on the linearized system as a 

function of the flow ratios 1  and 2  

 1z  2z  System behavior 

2γγ1 21   negative negative Minimum phase 

1γγ 21   zero negative Boundary 

1γγ0 21   positive negative Non minimum phase 
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The multivariable zeros being in the left or in right half-plane has a straightforward physical 

interpretation. Let iq  denote the flow through Pump i and assume that qqq 21  . Then the 

sum of the flows to the upper tanks is )]qγ(γ[2 21   and the sum of the flows to the lower 

tanks is )qγ(γ 21   which is greater than the flow to the upper tanks if  1γγ 21  , i.e., if the 

system is in minimum phase, 1γγ 21  . The flow in the lower tanks is smaller than the flow 

to the upper tanks if the system is non-minimum phase. In that case, 1γγ0 21  . It is 

easier to control y1 with u1 and y2 with u2, if most of the flows go directly to the lower tanks. 

The control problem is particularly hard if the total flow going to the left tanks (Tanks 1 and 

3) is equal to the total flow going to the right tanks (Tanks 2 and 4). This corresponds to 

1γγ 21   or a multivariable zero in the origin. Therefore, there is an immediate connection 

between the zero location of the model and physical intuition of controlling the quadruple-

tank process [8]. The chosen operating points corresponds to the parameter values exposed in 

Table 2. The parameters values of the laboratory process are summarized in Table 3. 

 

Table 2 : MPS and NMPS operating parameters of the quadruple-tank process 

Parameters Unit MPS values NMPS values 
0

1h , 0

2h  [cm] 12.4, 12.7 12.6 , 13 

0

3h , 0

4h  [cm] 1.8 , 1.4 4.8 , 4.9 

0

1 , 0

2  [V] 3.00, 3.00 3.15 , 3.15 

1k , 2k  [cm 3 /V.s] 3.33, 3.35 3.14 , 3.29 

1γ , 2γ   - 0.7 , 0.6 0.43 , 0.34 

 

Table 3: Parameter values of the quadruple-tank process 

Parameters unit Value 

31 A,A  [cm 2 ] 28 

42 A,A  [cm 2 ] 32 

31 a,a  [cm 2 ] 0.071 

42 a,a  [cm 2 ] 0.057 

k c  [V/cm] 0.5 

g [cm 2 /s] 981 
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III. MIMO PID CONTROL VIA ILMI APPROACHES 

 

Consider the linear time-invariant (LTI) MIMO system described by (4)  where nx  is 

the state vector, mu  is the control vector, py   is the output vector. The matrices   

A, B, C are with appropriate dimensions. The problem to be solved is to design the 

feedback gain matrices 
1F , 

2F , 3F    pm  such that system (4) is stabilized via a PID 

controller described by: 

dt

dy
FydtFy(t)Fu 3

t

0
21    

(8) 

where 
1F , 

2F  and 3F  are denoted by the proportional, time integral and time derivative gain 

matrices respectively. PID control synthesis can be easily reduced to a SOF stabilization 

problem. The main merit of this transformation is computing constant gains matrices hors line. 

The last problem is a difficult task but can be solved using Lyapunov theory and IILMI 

approaches. Consider then the augmented system:   

uBzAz   

zCy   

yFu   

 

(9) 

 where: 
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
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1 z,zz  , xz1  , 
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2 ydtz  

and: 

  zCyyyy 321   

where: 

 z0CCzyy 11   
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 zI0zydty
t

0
22    

 z0CA(t)xC
dt

dy
y3    

The original PID gain matrices can be recovered as: 

1

333 )FCB(IFF   (10) 

232 FCB)F(IF   (11) 

131 FCB)F(IF   (12) 

a. Approach 1  

Theorem 1 [24]: 

The system (4) is stabilizable via SOF if and only if there exist P>0 and F  satisfying the 

following matrix inequality: 

0)CFPB)(CFPB(PBBPAPPA TTTT    (13) 

The negative sign of the term - PBBP T  makes its solution very complicated. This approach 

introduced a new variable X to deal with the problem. Thus, we consider a matrix Ψ which 

depends on P affinely and satisfies: 

PBBPψ T   (14) 

with XBBXPBBPPBBX TTTTTT    where X>0. 

The system (13) can be stabilized if the following inequality has solution for (P, F ): 

0)CFPB()CFPB(ψAPPA TTTT    (15) 

Using Schur complement, inequality (15) is equivalent to the following inequality: 

0
I)CFPB(

)CFPB(ψAPPA
T

TTT













 

 (16) 

Once X is given, matrix inequality (16) can be solved very efficiently. 
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b. Approach 2  

Theorem 2 [26]: 

 If 

0αPP)CFBA()CFBAP( T    (17) 

holds, the closed-loop system matrix CFBA   has its eigenvalues in the strict left-hand side 

of the line α/2  in the complex s-plane. If a 0  satisfying (17), the SOF stabilization 

problem is solved.   

The key point of this approach is to divide the problem into two steps: the first one is to find 

an initial optimal P; the second step is to stabilize the system and thus compute the PID gains 

matrices. The ILMI algorithm corresponding to this approach is detailed in [26].  

The two ILMI previous approaches are applied to design the feedback gain matrices of the 

MIMO PID controllers (10)-(12) of the quadruple-tank process. Sedumi and Yalmip toolbox 

[30] are used to solve the numerical problem. Simulation results are summarized for MPS and 

NMPS in Table 4 and Table 5, respectively. 

Table 4: PID controllers for MPS 

Approach Feedback matrices Poles 

1 











3.19420.2936

0.36553.1559
F1

 











0.15410.0708

0.08380.2196
F2

 











32.23040.0208

0.064624.3199
F3

 

- 10.0175 

- 6.1201 

- 0.0166 

- 0.0598 

-0.0615±0.0149i 

2 













2.16856.4028

6.33620.1792
F1

 













2.30322.5015

2.65481.3497
F2

 











18.80279.5034

12.814030.4919
F3

 

-0.2410±0.5686i 

-0.1671±0.3083i        

- 0.0585 

- 0.0172 
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Table 5: PID controllers for NMPS 

Approach Feedback matrices Poles 

1 













2.16856.4028

6.33620.1792
F1

 













2.30322.5015

2.65481.3497
F2

 











18.80279.5034

12.814030.4919
F3  

 

- 1.4903 

- 0.3065 

-0.0228 ± 0.0083i 

- 0.0130 

- 0.0173 

2 











1.66981.8290

0.94902.4164
F1

 











0.24470.2678

0.23340.2995
F2

 













57.61590.0432

0.283141.2985
F3

 

-1.5404±11.6372i  

-0.0003±0.0124i      

-0.0771±0.0158i       

 

IV. PERFORMANCES ASSESSMENT  

 

To elaborate an efficient performance assessment for the NMPS controlled via the PID 

designed by the ILMI approaches, four tests are carried out including white noise disturbance, 

set points changes, parametric uncertainties and time-delays influence. The four performance 

indices, ISE, IAE, ITAE and ITSE are also used to complete the performance analysis.  

a. White Gaussian noise disturbance 

To evaluate the effect of a noise disturbance, we have performed simulation results with 

White Gaussian noise with a variation of 0.5 acting on the outputs of the system. The 

influence of this noise is observed in Figure 2. It is shown that the closed loop system is very 

sensitive to noise. 
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Figure 2. Test 1: (a) Approach 1- (b) Approach 2 

 

b. Test 2: Set point change  

In this section, the 4-tank process is subject to set point changes. The water level is regulated 

at 12.4 cm and 13.6cm, respectively. For the approach 2, better performances in terms of rise 

time and settling time are obtained, as shown by Table 6, compared to approach 1. Note that 

the system outputs converge to the set points with a small undershoot for the two approaches. 

Asymptotic stabilization with zero steady state error is achieved for the two approaches as 

shown in Figure 3.  
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Table 6: Quantitative comparison between approach 1 and approach 2 

PID Controller 

via ILMI 

approach 

Parameters Minimum phase 

System 

Non-Minimum 

phase System 

Tank 

Level 1 

Tank 

Level 2 

Tank 

Level 1 

Tank 

Level 2 

 

Approach 

1 

Rise Time (s) 3 5 2.3 3.73 

Peak Over-shoot (%) 3.66 2.41 4.51 3.22 

Settling time (s) 27.1 32.76 22.31 27.72 

 

 

Approach 

          2 

Rise Time (s) 18.7 19.12 8.3 9.75 

Peak Over-shoot (%) 0 0 0.43 0 

Settling time (s) 24.82 25.6 13.29 17.7 
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Figure 3. Test 2. a) Approach 1   b) Approach 2 
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c. Test 3: Parametric uncertainties 

In this section, we take into account uncertainties in the process parameters. Consider the case 

in which the flow ratios 1  and 2  are subject to an uncertainty of %20 . The influence of 

such uncertainties is shown by Figure 4. The values of the valve parameters 1 and 2  
are very 

important as they determine if the system is MPS or NMPS. The two approaches are less 

sensitive to the parametric perturbations. Therefore, PID controllers designed via Approach 1 

and Approach 2 are then robust.  
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Figure 4. Test 3: (a) Approach 1- (b) Approach 2 

d. Test 4: Multiple time-delays  

In this section, we consider that the NMPS is subject to multiple delays. To have a more 

realistic description of the quadruple-tank process, we take into account transport delays 

Wajdi Belhaj and Olfa Boubaker, MULTIVARIABLE PID CONTROL VIA ILMIs: PERFORMANCES ASSESSMENT 

1909



between valves and tanks. Consider the following linear system with time-delayed state and 

control [31]:  

)t(uB)t(uB)t(xA)t(xA)t(x 3120110    

)t(Cx)t(y   (18) 

where nx(t)  , mu(t)  , py(t)   are the state vector, the control  vector and the output 

vector respectively , nn

0A  , nn

1A  , mn

0B  and mn

1B   are known constant 

matrices with appropriate dimensions and 
1τ , 

2τ  and 3τ  are known and constant time-delays. 

To evaluate the time-delays effect , 4 case studies corresponding to different transport delays 

between tanks and valves are considered : 1sτ1  , 1sτ 2   and 1sτ3   for case 1, 2sτ1  , 

2sτ 2   and 4sτ3   for case 2, 3sτ1  , 3sτ 2   and 3sτ3   for case 3 and 4sτ1  , 4sτ2   

and 4sτ3  for case 4.  

Figure 8 shows the input and the output variables for the two PID approaches. Approach 1 

seems to be very sensitive to multiple time delays since unstable dynamics appears. However, 

approach 2 appears to be more robust for small delays.  

e. Performance criteria   

The performance of the control system is usually evaluated based on its transient response 

behavior. This response is the reaction, when subjecting a control system, to inputs or 

disturbances. The characteristics of the desired performance are usually specified in terms of 

time domain quantities. Commonly, unit step responses are used in the evaluation of the 

control system performance due to their ease of generation. In the design of an efficient PID 

controller, the objective is to improve the unit step response by minimizing the domain 

parameters such as the maximum over-shoot, the rise time, the settling time and the steady 

state error [32]. The most commonly used functions are the time domain integral error 

performance criteria which are based on calculating the error signal between the system 

output and the input reference signal [33]. Generally, the error signal is expressed as: 

y(t)(t)ye(t)  c   (19) 
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Figure 5. Test 4- (a) Approach 1-(b) Approach 2 

For this signal error, the common integral performance function types are integral of absolute 

error (IAE), integral of time multiplied by absolute error (ITAE), integral of squared error 

(ISE), integral of time multiplied by squared error (ITSE), and integral of squared time 

multiplied by squared error (ISTE) [34]. The indices that involve time (ITAE and ITSE) 

evaluate the error occurring late in the response because t is small in the early stages. Both 

indices, IAE and ISE, intend to evaluate the errors at the early stages of the response (during 

the transient) regardless of the error sign, and finally the ISE index evaluates higher emphasis 

on large errors. Taking into account the methodology using performance evaluation criteria 

and the 4-tank process specifications, we introduce the following errors as: 

(t)y(t)y(t)e 11c1      (20) 

(t)y(t)y(t)e 22c2      (21) 
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The criteria 
1IAE , 

1ISE , 
1ITAE  , 

1ITSE  , 
2IAE , 

2ISE , 
2ITAE  , 

2ITSE  , and their formulas 

are as follows : 

1IAE = dt(t)e
sst

0
1  

   (22) 

1ISE = dt(t)e
sst

0

2

1  
   (23) 

1ITAE = dt(t)et
sst

0
1  

   (24) 

1ITSE = dt(t)te
sst

0

2

1  
   (25) 

2IAE = dt(t)e
sst

0
2  

   (26) 

2ISE = dt(t)e
sst

0

2

2  
   (27) 

2ITAE = dt(t)et
sst

0
2  

   (28) 

2ITSE = dt(t)te
sst

0

2

2  
   (29) 

 

Assume that the two references of the quadruple tank process are subject to a unitary step 

1V(t)yc1  and 1V(t)yc2  over 100st0  . Note that sst  is taken as 100s in all simulation 

results. The computed performance indexes (22)-(29) using the two ILMI approaches are 

shown by Table 7. The comparison over 100st0   shows that the ISE index gives the best 

value more heavily the ISE index for the Approach 1 whereas only the ISE index is the best 

for approach 2. We have also noted the important value of the ITAE index for the two 

approaches.  

Table 7: Closed-loop performance Indexes 

PID Controller 

via ILMI 

approach 

Error  

type 

Performances indexes 

IAE ISE ITAE ITSE 

Approach 

1 

1e  4.0478 2.6713 30.0264 1.0055 

2e  4.7743 2.9162 32.6258 2.3794 

Approach 

2 

1e  10.684 4.4182 170.1213 34.1761 

2e  8.6124 3.4360 129.8044 19.8623 
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f. Comparison analysis 

After carrying out this comparative analysis, one can deduce the following remarks: On the 

one hand, PID controller using Approach 1 provide good results in terms of rise time and 

appears to be robust to parametric uncertainties. However, it has a long setting time and fails 

to deal with multiple time-delays changes. On the other hand, PID controller using  Approach 

2 provide good results in terms of settling time and minimized overshoot and tends to be 

robust to parametric uncertainties assigned to the valves and multiple time-delays changes. A 

comparison established between different performances indices proves that Approach 1 is 

better than Approach 2 in terms of error dynamics precision. Thus, a suitable choice of PID 

parameters auto-tuning using ILMI approach can lead to a PID controller with higher 

performances in terms of stabilization, set-point tracking, disturbances rejection, robustness to 

parametric uncertainties... This study shows that these objectives are mainly reached by 

Approach 2 and partially by Approach 1.  

 

V. CONCLUSION 

 

In this paper, two ILMI approaches for  MIMO PID controllers are revised and compared 

using the quadruple tank process as a benchmark of non-minimum phase system. Simulation 

results show clearly that Approach 2, described in [26], achieves globally the best 

compromise between robustness and performance tests compared to Approach 1, described in  

[24], especially with respect to the multiple time-delays influence test, set-point changes test 

and performance indices.  
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