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Abstract- This paper proposes the Fictitious Reference Iterative Tuning-Particle Swarm Optimization 

(FRIT-PSO) method to design PID controllers for feedback control systems. The proposed method is an 

offline PID parameter tuning method. Moreover it is not necessary to derive any mathematical models 

of objected control systems. The proposed method is demonstrated by comparing with the FRIT method 

in numerical examples and an experiment. 

 
Index terms: PID control, feedback control systems, iterative methods, fictitious reference iterative tuning, 

particle-swarm optimization, DC motors. 

 

 

 

 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 4, DECEMBER 2015 



 
 

1877 
 

I. INTRODUCTION 

 

Recently it is strongly needed to improve productivity and cost-saving in some process industries, 

which are chemical process, oil process and steel process and so on. Moreover power systems are 

one of large-scale plants with PI control[1][2]. In these process control systems, PID controllers 

are embedded to achieve stability and some performances. The PID controller is described as the 

following form and only three parameters KP, KI, KD are designed.  

  .)( D
I

P sK
s

KKsC ++=                                                 (1) 

Because the performances of the control system are directly dependent to KP, KI, KD, the design 

of the PID parameters is very important [3]. 

Traditionally PID controllers are designed based on dynamical models of the considered systems 

[4][5]. The models are described as simple transfer functions such as first-order systems with a 

time-delay. In the papers [6-12], general transfer functions are considered and PID controllers can 

be designed based on the Bode plots. H-infinity controllers are designed based on the transfer 

functions of magnetic bearings in the paper [13-15]. Recently PID design methods using 

optimization techniques have been pointed out [16][17]. However usual process control systems 

are difficult to derive exact transfer functions of the considered systems.  

Therefore data-driven PID design techniques have been focused on [18-22]. In the data-driven 

PID design method, mathematical models of the considered control systems are not necessary at 

all although the reference model is one of design parameters. Because the data-driven PID design 

techniques are based on iterative methods [23-25], the design can be reduced to a problem by 

using optimization techniques [26][27]. By using only input and output data for the considered 

control systems, given performance indices which depends on PID parameters are optimized. 

One of data-driven PID design techniques is FRIT (Fictitious Reference Iterative Tuning) which 

is proposed in the paper [28][29]. The advantage of FRIT is that PID tuning is offline and 

possible based on a set of one-shot data. However FRIT has a disadvantage such that local 

solutions are easy to obtain after PID tuning because the nonlinear and non-convex optimization 

problem is considered.  

In this paper, FRIT and an optimization technique, that is particle swarm optimization (PSO)[30], 

is applied to data-driven PID design and the FRIT-PSO method is proposed. Firstly the 
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disadvantage of the FRIT is revealed based on the developed networked control system [31][32]. 

Secondly it is shown that the disadvantage of FRIT is solved by using the proposed FRIT-PSO in 

the numerical example. Moreover it is demonstrated that FRIT-PSO achieves better performances 

than FRIT in an experiment. In the experiment, the angular speed control of a DC-motor with 

Arduino [33] is carried out. 

 

II. OPTIMIZATION PROBLEM IN FRIT 

a. A set of input and output data  

The control system is shown in the Fig. 1. Here assume that the control object is described as P(s) 

in Fig. 1 but the mathematical model of P(s) is not known in advance or is not necessary. Since 

PID gains are design parameters, the PID controller in the equation (1) is described as the 

following form. 
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 In the figure 1, the reference signal is r, the control input is u and the output is y. A reference 

model is given as Td(s) and the error signal between y and Td(s)r(s) is defined as e. It is assumed 

that a one-shot data set {u0, y0} is given in advance by using an initial PID parameter 0ρ . The 

data u0 is time series of the control input and y0 is time series of the output by using 0ρ . 

 

 
 

Figure 1. Feedback control systems and reference models 
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b. Optimization problem in FRIT 
Since the reference model is given as Td(s) in Fig. 1, the error signal can be described as 

),()()(),( srsTsyse d−=ρ  

and this equation can be described as  

),())(),((),( srsTsTse d−= ρρ  

where the transfer function ),( sT ρ  from r to y is given as the following equation. 

.
),()(1

),()(),(
sCsP

sCsPsT
ρ

ρρ
+

=  

Here strongly note that ),( sT ρ  is not known because P(s) is not known in advance. The main 

optimization problem is to find the following optimal parameter based on the data set {u0, y0} 

only. The quadratic form of the error signal is considered as the performance index because the 

purpose of the PID design problem is to minimize the error signal.  
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∫                                                 (2) 

where L means the Laplace transform and L-1 means the inverse Laplace transform. This 

optimization problem is difficult to solve. 

On the FRIT, the following fictitious reference signal is introduced to solve the optimization 

problem in the equation (2). 

.),(),(~
00

1 yusCsr += −ρρ  

Moreover a new error signal and a new performance index are defined as the following forms. 

  

[ ]..),(~),(~
,),(~)(~

),,(~)(),(~

1
0

2

0

seLte

dtteJ

srsTyse d

ρρ

ρρ

ρρ

−

∞

=

=

−=

∫                                   (3)  

Then the fictitious optimization problem is defined as follows,  

),(~minarg* ρρ
ρ

J=                                              (4) 

instead of the main problem defined in the equation (2). 
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c. Gradient method in FRIT 

To compute the optimal solution *ρ in the equation (4), the iterative method is given as the 

equation (5). This is same as the steepest descent method [26][27].  
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)( 11                                    (5) 
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for 0,0,0 321 >>> γγγ . In the equation (7), the partial differential term of the fictitious error 

signal defined by the equation (3) is same as the next equation  
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and the calculated result is given as the following equation. 
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It is possible to compute the equation (6) offline because the equations (7) and (8) can be 

computed offline by using the data set {u0, y0} and the reference model Td(s). Thus the iteration 

in the equation (5) can be computed offline and suboptimal solutions are obtained because the 

optimization problem in the equation (4) with (3) is nonlinear and non-convex. 

 

d. Motivated numerical examples 

Now we consider the vehicle system considered in the paper [31][32] and assume that the input 

and output data {u0, y0} is obtained in the figure 2 in advance. The figure 2(a) is the input data 

u0(t) and the figure 2(b) is the output data y0(t). The PID parameter is given 
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as [ ]T151515=ρ . Based on the paper [7], we consider the following reference model which 

is described as the 3-order system to avoid overshoot in the reference response. 

 
1

8
3

256
1

1)(
23 +++

=
sss

sTs                                                    (9) 

 
(a) The input data u0(t) 

 
(b) The output data y0(t) 

Figure 2. A data set {u0, y0}( [ ]T151515=ρ ) 

The maximum number of iteration of FRIT is 1000 and the gain ia  is given adequately in the 

equation (5). Then the following PID parameter and the fictitious performance index based on 

FRIT are obtained.  

[ ] 0.0174.)(~,9.840.939.60 ** == ρρ JT  
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The figure 3 shows the output signals based on FRIT. The black dotted line denotes the reference 

response, the blue dashed line denotes the output signal before FRIT and the red solid line 

denotes the output signal after FRIT. We can see that the output signals are improved after FRIT. 

However it seems that the PID tuning is not enough since the output signal after FRIT is not 

fitted with the reference response.  

 

 
Figure 3. The reference response and the output signals before and after FRIT 

 

The figure 4 shows the output signals applying FRIT in 3 different cases. The black dotted line 

denotes the reference response. The case 1 means FRIT using [ ]T1515150 =ρ . The red solid 

line denotes the output signal in case 1. The case 2 means FRIT using [ ]T2020200 =ρ . The 

green dashed line denotes the output signal in case 2 and the following PID parameter and the 

fictitious performance index are obtained.  

[ ] 0.0174.)(~,9.800.929.61 ** == ρρ JT  

The case 3 means FRIT using [ ]T1010100 =ρ . The purple chained line denotes the output 

signal in case 3 and the following PID parameter and the fictitious performance index are 

obtained. 

[ ] 0.0174.)(~,9.540.899.61 ** == ρρ JT  
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 In each case, the output signals are not enough matched to the reference response. It is difficult 

to understand which is best. However the values of the performance index in the equation (2) can 

be computed as follows, Case 1: 0.2088,)( * =ρJ Case 2: 0.2089,)( * =ρJ Case 3: 

0.2110.)( * =ρJ It is possible to see that Case 1 is best. This result shows that the PID design 

using FRIT is highly dependent on the initial PID parameter 0ρ . The figure 5 shows the values of 

the performance index )(~ iJ ρ   in case 1, case 2 and case 3. The value in case 2 is smaller than 

those in case 1 and case 3 however the output signal in case 2 does not become better.  

 
Figure 4. The output signals(Case 1, Case 2 and Case 3) 

 
Figure 5. The values of the performance index )(~ iJ ρ   (Case 1, Case 2 and Case 3) 
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From the figures 4 and 5, we can see that the minimization of the fictitious performance index 

does not directly influence the minimization of the performance index in the equation (2). 

Therefore it seems that the optimal solution is difficult to obtain based on FRIT only. Moreover 

the number of iteration seems large because the values of performance indexes do not become 

small after the iteration number is large in FRIT. To overcome this problem, we propose the 

FRIT-PSO approach for the PID controller design by utilizing the advantage of FRIT. The 

advantage is offline computation of optimal or suboptimal PID parameters. 

In this example, the following 4-order system is used to obtain the one-shot data set {u0, y0}.  

.
86214711320

812)( 234 ++++
+

=
ssss

ssP  

Because the reference model is given as the 3-order system in the equation (9), the optimization 

problem becomes nonlinear and non-convex. The above examples show that the suboptimal 

solutions exist. If the reference model is chosen as the higher order system, the optimization 

problem may become easy but it seems difficult to obtain the optimal solution by using FRIT.  

 

 

III. PID DESIGN USING FRIT-PSO 

In this section, the FRIT-PSO method is proposed. The optimization problem to design PID 

controllers is same as the equation (2).  

 

a. Optimization and Algorithm of FRIT-PSO 

Since the proposed approach is based on PSO, it assumed that the number of particles is n and 

each particle consists of PID gains. Each particle },,,{ 21 nρρρ   is described as a 3-

dimensional vector. 

 

Step 0: Initialization     

The initial PID parameter is given as [ ]TDIP KKK=0ρ  and a one-shot data set {u0, y0} is 

obtained based on the figure 1. Here assume that the transfer function using 0ρ is stable. The 

initial values of particles are assigned as )}(,),(),({ 21 kkk nρρρ   between a suitable range.  
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Moreover )}(,),(),({ 21 kkk nρρρ   are chosen as uniformly distributed random numbers. The 

parameter k is the number of iteration for FRIT-PSO and the initial number is given as k=1.  

Step 1: Optimization using FRIT 

For each particle ( nj ,,2,1 = ), the fictitious reference signals are defined as  

                                                      .)),(()),((~
00

1 yuskCskr jj += −ρρ                                                 (10) 

The error signal and the performance index are also defined as the following forms.  
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∫                                      (11) 

The following optimization problems are solved for each particle ( nj ,,2,1 = ) based on the 

equation (5).  

)).((~minarg)(
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* kJk jkj
j

ρρ
ρ

=  

 

Step 2: Updating particles based on the PSO algorithm 

Step 2-a: Updating the local best and the global best 

The parameters )(),( kk gjL ρρ  are defined as follows, 
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where the parameter )(kjLρ  is called as the local best of the jth particle and the parameter )(kgρ  

is called as the global best.  

If ))1((~)),((~ −< kJTmJ jLj ρρ , then the local best )(kjLρ  is updated as )()( mk ljL ρρ = . 

Otherwise the local best is not updated and the local best is kept as )1()( −= kk jLjL ρρ . Moreover 

if ))1((~))((~ −< kJmJ gjL ρρ , then the global best )(kgρ  is updated as )()( mk lLg ρρ = . Otherwise 

the global best is not updated and the global best is kept as )1()( −= kk gg ρρ . 
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Step 2-b: Updating the vector and the position 

The vector of the jth particle jv is updated as follows, 

)}.()({)}()({)()1( 22110 kkckkckvckv jgjjLjj ρρψρρψ −+−+=+  

The parameters 21,ψψ  are random numbers between 0 to 1. The parameters c0, c1, c2 are the 

weighting factors for stability and performance of PSO. Since the setting of the parameters is 

based on the paper [34], the parameters which satisfy the following equation are used,  

.22
2

0,10 0
21

0 +<
+

<<≤ c
cc

c  

Then the position of the jth particle jρ is updated as follows, 

),1()()1( ++=+ kvkk jjj ρρ  

where the position is the PID gain. Thus PID tuning is done by the above equation.  

 

Step 3: Iteration of the PSO algorithm 

The iteration of Step 2 is repeated until the iteration number of PSO becomes k=kmax. The 

parameter kmax is called as the maximum iteration number of FRIT-PSO in this paper. For the 

proposed FRIT-PSO, the following theorems are satisfied.  

Theorem 1. For each max,,2,1,,,2,1),( kknjkj  ==ρ , 0))(( =kJ jρ  is satisfied, if and 

only if 0))((~ =kJ jρ is satisfied. Moreover the optimal solution is given as  

)( max
* kgρρ = . 

with the minimum performance index )(~ *ρJ .  

Proof: The fictitious reference signal in the equation (10) can be rewritten as  

,)),(()),((~ rskFskr jj ρρ =  
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On the other hand, the equation 
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can be calculated as the following simple form 
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.)),((~)),(( 0yskrskT jj =ρρ  

Then the error signal )),((~ ske jρ in the equation (11) is derived as follows, 

),),((~)()),((~)),(()),((~ skrsTskrskTske jdjjj ρρρρ −=  

,))()),(()(),(( rsTskTskF djj −= ρρ  

).),(()),(( skeskF jj ρρ=                                                             (12) 

Here note that 0)),((~ =ske jρ  is satisfied if 0))((~ =kJ jρ  and 0)),(( =ske jρ is satisfied 

if 0))(( =kJ jρ . Thus the equation (11) means that 0))((~ =kJ jρ  is a necessary and sufficient 

condition for 0))(( =kJ jρ  because )),(( skF jρ  is not zero. Moreover it is obvious that the 

optimal parameter *ρ  is given as the global best )( maxkgρ  after the FRIT-PSO algorithm. 

Theorem 2.  For each max,,2,1,,,2,1),( kknjkj  ==ρ , there exists a positive scalar 0>β  

which satisfies the following condition. 

                                                        )).((~))(( kJkJ jj ρβρ ≥                                                     (13) 

Proof : From the equation (12), the following condition is satisfied. 

22
))(()),(())((~ keskFke jjj ρρρ

∞
≤ .                                       (14) 

where 2
x is a 2-norm of a signal x(t) and 

∞
)(sX is an infinity-norm of a transfer function. 

Moreover because  

,))(())((,))((~))((~ 2

2

2

2
kekJkekJ jjjj ρρρρ ==  

are satisfied, then the inequality (14) can be described as  

))(()),(())((~ 2
kJskFkJ jjj ρρρ

∞
≤  

Thus the condition (13) is satisfied for the following positive scalar. 
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)),((

1
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∞
skF jρ

β  

 

b. A numerical example of FRIT-PSO 

Considering the result of Theorem 2, it is clear that the small value of the fictitious performance 

index is not equivalent to the small value of the real performance index. Moreover the number of 
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iteration of FRIT imax can be small because the important problem is how to set the suitable initial 

PID gains for FRIT. The proposed FRIT-PSO can solve this problem. 

Here we demonstrate the proposed approach in comparison with the result shown in the figure 4.  

The same data set in the previous section is used. The parameters are summarized as follows,  

 Data set : {u0, y0} in the figure 2 

 The reference model: the equation (9) 

 The number of particles : n=10 

 The initial range of particles in FRIT-PSO: 1<KP<2, 1<KI<2, 10<KD<20 

The advantage of the proposed FRIT-PSO method is to be able to select PID gains 

considering the forecasted information about the gains. 

 Parameters of PSO : c0=0.3, c1=0.5, c2=0.5 

 The maximum number of iteration in FRIT: imax =10 

 The maximum number of iteration in FRIT-PSO: kmax=30 

 
Figure 6. The output signals (FRIT vs FRIT-PSO) 

 

By using the proposed FRIT-PSO, the following PID parameters are obtained. 

[ ] 52.0)(~,18.751.173.90 )10( ** === ρρρ JT
g  

The output signals are shown in the figure 6. In this figure, the black dotted line denotes the 

reference response, the red dashed line denotes the output signal using FRIT in case 1 and the 
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blue solid line denotes the output signal using the proposed FRIT-PSO. Moreover the value of 

the performance index is computed as 

0.162)( * =ρJ . 

Thus the proposed FRIT-PSO achieves better performances than FRIT. Moreover the value in 

Theorem 2 is computed as 2308.0=β by using FRIT-PSO. Thus Theorem 2 is satisfied. 

The value of the fictitious performance index is shown in Figure 7. The value is decreasing 

linearly after 5 in the number of iteration. The particle positions before FRIT-PSO and after 

FRIT-PSO are shown in Figure 8 and Figure 9 respectively. The particles are concentrating at 

the optimal position which is equal to the global best. This means that all particles can find out 

the same local best. Moreover this optimal position is beyond the initial area of PID parameters. 

This figure shows the effectiveness of the proposed FRIT-PSO. 

 

 
Figure 7. The value of the performance index (FRIT-PSO) 

 
Figure 8. The particle positions before FRIT-PSO 
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Figure 9. The particle positions after FRIT-PSO 

 
Figure 10. The experimental device 

 

 

c. An experimental result of FRIT-PSO 

In this section, the effectiveness of the proposed FRIT-PSO approach is verified based on an 

experiment. The figure 10 shows the simple experimental device. The input signal is the voltage 

of a DC motor and the output is the angular velocity of a DC motor. The angular velocity is 

measured as the voltage of another DC motor. Arduino is also the input-output device to a 

computer. The purpose of this experiment is to design the optimal PI controller to control the 
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angular velocity by using only the input and output data shown in Figure 11. The PI controller is 

designed in this experiment because the output signal contains some noises and the D controller, 

which is a high pass filter, leads to the worse control performance.  

 

 
(a) The input data u0(t) 

 
(b) The output data y0(t) 

Figure 11. A data set {
00 , yu }( [ ]T1515=ρ ) 
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The reference signal is changing from 1.0 [V] to 1.5[V]. The PI controller is given as follows, 

[ ] [ ] .

,),(

21
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T
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s
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==

+=

ρρρ

ρ
ρρ

 

The reference model is the 2-order system described in the following equation. 

44
4)( 2 ++

=
ss

sTs  

 The number of particles is 10 and the initial PI gains are given as 20,20 ≤≤≤≤ IP KK . The 

number of iteration is 30 in the proposed FRIT-PSO, that is imax=30 and kmax=30. On the other 

hand the number of iteration is 1000 in case of FRIT, that is imax=1000. The parameters of PSO 

are same as the numerical example. The data set {u0, y0} is obtained in Figure 11. By using the 

proposed FRIT-PSO and the traditional FRIT, the designed PI controllers are given as follows, 

FRIT-PSO : [ ]TPSOFRIT 95.036.0* =−ρ , 

FRIT : [ ]TFRIT 23.105.0* =ρ .  

 

 
Figure 12. Output signals for experimental results 

 

The experimental result is illustrated in Figure 12. The black dotted line denotes the reference 

response, the red dashed line denotes the output using FRIT and the blue solid line denotes the 
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output using the proposed FRIT-PSO. The output using FRIT-PSO is well matched to the 

reference response. The following values of the performance indexes 

0.162.)(
 0.022,)(

*

*

=

=−

FRIT

PSOFRIT

J
J
ρ

ρ
 

The above values of the performance index also indicates the efficacy of the proposed FRIT-PSO 

to design the PI controller. 

 

VI. CONCLUSIONS 

The FRIT-PSO approach has been proposed for PID tuning. Because the proposed approach is 

based on FRIT, offline PID tuning is possible. Moreover the proposed approach can avoid to 

obtain the local solution since the PSO method is also applied. The performance of the proposed 

FRIT-PSO has been demonstrated by comparing with the FRIT method in the numerical 

examples and an experiment. Especially the effectiveness of the proposed method has been 

demonstrated in the experiment based on the angular speed control of a DC-motor. The proposed 

FRIT-PSO method has achieved better performances than the traditional FRIT method. 
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