
Quality of Service Assurance for Internet of Things
Time-Critical Cloud Applications

Experience with the SWITCH and ENTICE projects

Salman Taherizadeh and Vlado Stankovski

University of Ljubljana
Ljubljana, Slovenia

{Salman.Taherizadeh, Vlado.Stankovski}@fgg.uni-lj.si

Abstract—Various Internet of Things (IoT) applications, such
as home automation and disaster early warning systems, are
being introduced in various areas of human life and business.
Today, a common method for delivery of such applications is via
component-based software engineering disciplines based on cloud
computing technologies such as containers. However, there are
still numerous technological challenges to be solved particularly
related to the time-critical Quality of Service (QoS) aspects of
such applications. Runtime variations in the workload intensity
as the amount of service tasks to be processed may radically
affect the application performance perceived by the end-users or
lead to the underutilization of resources. In order to assure the
QoS of these containerized applications, monitoring is required
at both container and application levels. Currently, there is a
great lack of such multi-level monitoring systems. In this study,
we present an architecture and implementation of a multi-level
monitoring framework to ensure system health and adapt an IoT
application in response to varying quantity, size and
computational requirements of arrival requests. In this work,
cloud application adaptation possibility includes horizontal
scaling of container-based application instances.

Keywords—Internet of Things; monitoring; adaptation; cloud.

I. INTRODUCTION
The IoT is a paradigm where things/objects/sensors have a

pervasive presence in the Internet. In recent years, IoT systems
such as home automation, gaming or early warning systems
have emerged as cloud-based services which are increasingly
widely used and important, especially to organizations that
tend to look beyond the traditional approach of safety
applications. As IoT services can be virtualized, replicated and
distributed in different cloud infrastructures, cloud computing
has become a preferable solution for providing such
applications on the Internet. The cloud computing model is a
pay-per-use on-demand offer through which organizations can
exploit elastic cloud resources and a federated cloud
environment to support the QoS needed for running these types
of applications. The ultimate goal is to enhance the Quality of
Experience (QoE) of their end-users.

Nowadays, a popular cloud technology for the delivery of
these applications is through the use of containers (e.g.

Docker 1 , CoreOS 2 , etc.). Due to the lightweight nature of
containers and their fast boot time, it is possible to deploy IoT
cloud service instances in hosting environments faster and
more efficiently than using Virtual Machines (VMs) [1].

Ensuring IoT applications to be able to offer favorable
performance has been a challenging issue due to runtime
variations in the execution environment such as increase or
decrease in the number of connected IoT sensors. Accordingly,
the next generation of IoT systems should be built as being
self-adaptive, that means, the IoT applications should operate
without human intervention [2]. Such applications should be
able to detect runtime environmental changes in terms of
varied workload intensity as the number of IoT sensors, and
then determine their own way of reacting to such changes.

This research work presents a multi-level monitoring
approach based upon a non-intrusive design intended to enable
IoT-based time-critical cloud-based applications to
autonomously reconfigure and adapt to changing workload at
runtime. To adapt these applications to the changing
conditions, this work presents a rule-based horizontal scaling
method to dynamically estimate the number of running
containers needed to provide the service. This innovative
horizontal scaling method is able to add more container
instances into the pool of resources in order to share the
workload or remove some running containers, if this does not
significantly affect the QoS. The results of our evaluation show
that our new adaptation method offers a high level of merits
with regard to the automatic scalability of vertualized IoT
application components without both resource over and under-
provisioning.

The rest of the paper is organized as follows. Section 2
presents the basic framework of an IoT time-critical cloud
application. Section 3 describes monitoring requirements as the
QoS assurance. Section 4 discusses the implementation of our
proposed multi-level monitoring framework. Section 5 presents
the architecture of our adaptation solution, followed by
empirical evaluation results and finally conclusion respectively
in Sections 6 and 7.

1 Docker, https://www.docker.com/
2 CoreOS, https://coreos.com/

II. BASIC FRAMEWORK OF AN IOT CLOUD APPLICATION

A. Use Case
One typical example for IoT systems is a disaster early

warning system. Such systems are developed to provide alerts
in a community before disaster occurs. Fig. 1 depicts the basic
architecture of an IoT time-critical cloud application including
different application components: Call Operator (dedicated and
ad-hoc agents), Contact Centre Server (Apache Web server),
Database Server (Apache Cassandra server), IP Gateway (e.g.
TA900e or Cisco-ASA) and IoT Sensors (transmitters for
temperature, barometric pressure, humidity and other
environmental variables).

Fig. 1. Example of an Internet of Things (IoT) system.

The basic framework of an IoT cloud application, shown in
Fig. 1, consists of the following components:

• IoT Sensors: IoT Sensors can measure different
parameters such as water pressure, noise, luminance and
other environmental variables.

• IP Gateway: The IP Gateway is a node that allows
communication between networks. It receives data over
direct radio link or GSM/GPRS from IoT sensors,
aggregates the data and sends the data to the database.

• Database Server (DB Server): The DB Server is the
database which is used for storing and handling sensed
values indexed by time.

• Contact Centre Server (CC Server): The CC server checks
sensed data stored in the DB Server and statistics in real-
time and sends notifications (such as e-mail, SMS or voice
call via SIP-based IP telephony or ordinary PSTN) to Call
Operators if values are outside of predetermined thresholds.

• Call Operator: The Call Operators decide whether or not to
send an alert to emergency systems or to the public
entities.

IoT Sensors and IP Gateway cannot be virtualized as these
components have physical items like attached antennas. In this
research work, the CC Server and the DB Server can be
containerized, replicated and distributed in a federated cloud
environment.

III. QUALITY OF SERVICE ASSURANCE
One of the main requirements of containerized self-

adaptive early warning applications is to implement a multi-
level monitoring tool. This multi-level monitoring tool should
be able to monitor execution environment where containerized
application components are running on cloud infrastructures.
Our implemented monitoring tool considers container-related
and application-level parameters.

A. Container-level monitoring
Today, cloud computing is realized through the use of VMs

or containers. VM-based virtualization is achieved through the
use of a hypervisor. The hypervisor emulates machine
hardware and then instantiates other VMs along with guest
Operating Systems (Guest OSs) on top of that hardware. Each
VM instance has a set of its own libraries and software
components, and operates within the emulated environment
provided by the hypervisor.

On the other hand, containers offer a more modern
lightweight approach than VM-based virtualization. A
container-based system provides a shared, virtualized OS
image consisting of a root file system and a safely shared set of
system libraries and executables. This eliminates the need for
the use of a hypervisor. Compared to a VM-based system, the
use of containers which does not require an OS to boot up as
another form of server virtualization is rapidly increasing in
popularity. The container-level monitoring tool is able to
measure and display runtime value of key attributes (e.g. CPU
or memory usage) for a given container such as a containerized
CC Server instance.

B. Application-level monitoring
Service or application-level monitoring systems measure

metrics that present information about the situation of the
cloud-based service and its performance. However, although a
large number of research works consider the reliability of the
underlying cloud infrastructures, there still exists an absence of
efficient application-level monitoring techniques to be able to
detect and monitor QoS degradation of cloud applications.
Monitoring of application-level metrics needs to be done on the
application layer. Application-level metrics can be monitored
by application-level monitoring probes. The probe could
represent a standalone application that runs on the application
layer amongst other applications. On the other hand, the
application-level probe could be implemented by changing the
source code of the application. Also, there are specific service-
level metrics which cannot be measured if an application does
not provide an interface such as an API for it. In this work, for
example, an application-level metric in the conducted use case
can be the average response time of the CC Server.

IV. MONITORING FRAMEWORK

A. Architecture of the monitoring system

In order to develop a monitoring system to measure
metrics, JCatascopia [4] has been chosen as baseline
technology which was extended in this work to fulfil the
requirements of (1) containerized, (2) self-adaptive, (3) IoT, (4)
time-critical cloud-based applications.

Our proposed monitoring system uses an agent-based
client-server approach, which is able to support a fully
interoperable, highly scalable and light-weight architecture.
The distributed nature of this monitoring framework quenches
the runtime overhead of system to a number of Monitoring
Agents running across different cloud resources. This
monitoring system offers a framework to measure, store and
report monitoring metrics from different layers e.g. containers
as well as possible performance metrics from deployed
applications. Fig. 2 shows an overview for the architecture of
the proposed monitoring framework.

Fig. 2. Architecture of the monitoring system.

The architecture of our designed monitoring framework
includes different components namely Monitoring Probes,
Monitoring Agents, Monitoring Server, Time Series Database
(TSDB), Alarm-Trigger and Graphical User Interface (GUI)
Web Server.

1) Monitoring Probes

Monitoring Probes are the actual components that collect
individual metrics at different levels such as container and
application. For example, a container-level Monitoring Probe
can be the component to measure the CPU utilization of a
given container e.g. a containerized CC Server instance.
Another one can be able to measure the memory percentage
usage of the container. Or an application-level Monitoring
Probe can monitor the response time of an application running
inside the deployed containers. In essence, Monitoring Probes
are in charge of gathering values of measured metrics, which
are then aggregated by an associated Monitoring Agent.

2) Monitoring Agents

The Monitoring Agent is responsible for the management
of metrics collection on a particular element. It aggregates the
values measured by Monitoring Probes and then distributes
them to the Monitoring Server.

3) Monitoring Server

The Monitoring Server is a component that receives
measured metrics from the Monitoring Agents. The collected

metrics are then processed and stored in the monitoring TSDB
to manage huge amount of structured data.

4) Time Series Database (TSDB)

The monitoring data streams coming from Monitoring
Probes/Agents are stored in the TSDB, which is a special
database customized for the storage of series of data points.
The reason to use the TSDB is the capability of storing huge
volumes of time-ordered data more efficiently than it could be
stored in a Knowledge Base.

5) Alarm-Trigger

The Alarm-Trigger is a configurable surveillance
component which investigates the incoming measured values
to initiate actions when irregular incidents occur. This
component comprises different thresholds for all monitoring
metrics. It notifies the Self-Adapter when the monitoring data
reach or exceed a pre-determined threshold level. The Alarm-
Trigger is using rule-based mechanism to avoid the complexity
of our proposed self-adaptation approach and to prohibit
human interventions.

6) GUI Web Server

The GUI Web Server allows all external entities to access
the monitoring information stored in the TSDB in a unified
way, via prepared REST-based Web services and APIs.

B. Operation of the monitoring system

A Monitoring Agent which is running alongside an
application service in a container aggregates the measured
values and then transmits them to the Monitoring Server.

The Alarm-Trigger will detect the key quality attributes
such as the need for less or more resources on the DB Server or
the CC Server, and then the adaptation part dynamically tunes
the execution of the whole application to improve the possible
performance drops. In order to measure the status of
containerized CC Server and DB Server instances, the needed
monitoring metrics could be divided in two main categories
including container-level metrics and application-level metrics.

V. RUNTIME ADAPTATION MECHANISM
The proposed runtime adaptation mechanism, shown in

Fig. 3, includes various entities when the application executes.

Fig. 3. The proposed runtime adaptation mechanism

In order to make an effective improvement in the
performance of IoT time-critical cloud applications, the entities
(shown in Fig. 3) will proceed as follows:

I) Data collection
The purpose of Monitoring Probes/Agents is to collect the

data that represents the current state of managed elements
namely application and container, and then aggregate and
transfer the measured values to the Monitoring Server and the
Alarm-Trigger. The monitored metrics depend on the use case
since the important parameters for each application are
different. The Monitoring Probes/Agents should be non-
intrusiveness [5], scalable [6], robust [7], interoperable [8] and
able to support live-migration [9] as the essential non-
functional monitoring requirements needed to support dynamic
adaptation of cloud-based applications.

II) Storing the monitoring data
The Monitoring Server receives the collected data and

stores it in a TSDB to build a focused and comprehensive
representation of the system state. The TSDB can be
implemented by the Apache Cassandra technology which is a
distributed storage system for managing very large amount of
time-ordered data [10]. Concurrently, the Alarm-Trigger
investigates if the measured values of monitored parameters
exceed predefined limits. In other words, The Alarm-Trigger is
a rule-based component which processes the incoming
monitoring data streams and notifies the Self-Adapter when
predefined thresholds are violated. The Monitoring Server and
the Alarm-Trigger should be tightly coupled, i.e. running on
the same machine in order to save network bandwidth and
computational resources needed for data distribution and
processing.

III) Proposing suitable adaptation strategies
When problems are detected, the Self-Adapter is invoked to

propose suitable adaptation strategies in terms of increment or
decrement in the number of containerized CC Server and DB
Server instances. The Self-Adapter is able to automatically
identify metrics (e.g. CPU or memory utilization) that are the
most predictive for the application performance. The Self-
Adapter specifies a set of adaptation actions for the Control-
Agent that allows the passage of the whole system from a
current state to a desired state. In other words, the Self-Adapter
reasons about adaptation changes which should be done to
adapt the system to the desired behavior. In this work,
adaptation possibility can be horizontal scaling of the DB
Server and the CC server.

Besides that, ensuring that these types of IoT applications
are able to offer favorable service quality has been a
challenging issue due to runtime variations in network
conditions intrinsic to connections between individual
application components in different tiers. In this case, the Self-
Adapter can provide a solution to replicate application
components in different cloud infrastructures in order to
increase availability and reliability under various network
conditions and varied amount of traffic. Therefore, the
adaptation action can dynamically connect each component
instance to the best possible component instance in each

different tier, together offering fully-qualified network
performance that was proposed in our previous work [11].
Examples of different application tiers include the application
components (the CC Server instances and the DB Server
instances) that can run in data centres, gateways/routers that
can run in edge devices, or Raspberry Pis and fog devices such
as smartphones and automatically driven cars.

IV) Performing adaptations
The Control-Agent which has the full control of application

configurations and infrastructure resources e.g. containers
finally carries out the adaptation actions defined by the Self-
Adapter. This entity is able to increase or decrease the required
number of containerized application components on demand
even in different cloud data centers that is often an essential
requirement for providers of IoT early warning applications
running on the cloud.

V) Metadata handling mechanisms
The Knowledge Base will be used to store all information

about the current system metadata, awareness and application
configuration for analysis, reuse, reasoning, optimization and
refinement of design, topology and execution. The knowledge
stored in this element describes profiles of all entities (e.g.
application profile, infrastructure profile, performance profile,
adaptation strategies, etc.), and it is used to interpret monitoring
data [12].

VI. RESULTS
We conducted a set of proof-of-concept experiments. Their

goal was to examine the design details of the proposed QoS
assurance system and to explore the horizontal-scaling
adaptation possibility.

The initial set of experiments measured the CC Server’s
performance. To this end, incoming requests have been
generated by the httperf tool and sent to the CC Server. The
httperf tool provides a flexible facility for generating various
workload patterns.

For resource intensive applications such as the CC Server, a
performance bottleneck could be the CPU power consumption
and the memory capacity utilization. In this situation, when the
workload density is rising, a possible adaptation mechanism
could be horizontal scaling, which can be achieved by adding
more running container instances into the pool of resources.
This pool of running containers is then able to handle more
requests. Another scaling possibility is to stop some of the
container instances, if they are not required to avoid resource
over-provisioning.

Based on our experiments, the period of time taken to
launch a container instance is two seconds. Also, after the
container start-up, registering the associated Monitoring Agent
in the Monitoring Server takes four seconds. The monitoring
interval should be set longer than the container instance’s
initiation time. In this way, the whole system is able to
continue operating properly without losing control over
running container instances. Therefore, to prevent any problem
at runtime, the monitoring interval has been set to 20 seconds
in the experiments.

In order to develop the self-adaptation mechanism, a
threshold for every single monitoring metric in different levels
has been defined. The Alarm-Trigger is responsible for
periodically checking the incoming monitoring data streams
and notifies the Self-Adapter when predefined thresholds for
metrics are violated. For example, the thresholds for average
CPU usage and average memory usage for each Dockerized
component (e.g. CC Server) at the container level have been
considered to be 80 percent. Moreover, we assume that if the
average response time at the application level for the CC
Server component is less than 15ms, there is no performance
issue and hence, the threshold for average response time of the
CC Server has been set to the value of 15ms. A big value for
this threshold makes the adaptation method less sensitive to the
application performance and more dependent on the
infrastructure utilization. However, a very low threshold for the
average response time may compel the adaptation method to
unnecessarily change the number of container instances
whereas the system is currently able to provide users an
appropriate performance without any threat.

The final rule for this scenario can be specified as follows.
If one of the monitored metrics (average CPU usage, average
memory usage or average response time) pertaining to a
specific application component (here, for the CC Server)
exceeds associated thresholds, the Alarm-Trigger sends an
announcement to the Self-Adapter. The Self-Adapter then
helps to estimate the number of needed running container
instances providing the service since the number of container
instances is needed to be increased on demand. Following is a
pseudocode of an algorithm which estimates the number of
needed containers to be added to a cluster for a certain service
(e.g. CC Server) upon metric values measured at container
level.

Increment ← 0;
do {
 Increment ← Increment + 1;
 Expectedmetric←[(Containerno*Usagemetric)/(Containerno+Increment)];
} while (Expectedmetric > Thresholdmetric);

In this algorithm, the metric from the actual experiment can
be the average CPU and memory usage of all running container
instances for a certain service, Thresholdmetric is the threshold
defined for the metric (in our experiment, 80%), Usagemetric is
the current value of the metric, Containerno is the current
number of running container instances together providing the
service, Increment is the number of containers to be added for
the service and Expectedmetric is the expected value of the metric
after initiating new container instances.

Both thresholds for average CPU and memory utilization of
the cluster which includes the CC Server container instances
are considered 80%. This value gives the adaptation method a
chance to react to runtime variations in the workload before a
performance issue arises. If the workload trend is very even
and predictable, these two thresholds can be pushed a little
higher than 80%. However, a small value for these thresholds
may lead to the over-provisioning problem which wastes costly
resources.

In contrast, if the workload density drops at runtime,
unnecessary running container instances should be possibly
terminated to avoid resource over-provisioning. Based on our
proposed conservative strategy, at most one container could be
stopped in each adaptation interval in order to make sure that
the system offers favorable service quality to end-users. In this
way, the system certainly provides acceptable responses upon
uncertain environments at runtime. The following algorithm
evaluates if one of running container instances can be
terminated without any application performance degradation.

Decrement ← 0;
Expectedmetric←[(Containerno*Usagemetric)/(Containerno-1)];
if (Expectedmetric < Thresholdmetric) then Decrement ← 1;

According to Expectedmetric (expected value of the metric
after the termination of a container instance), value of
Decrement determines if it is needed to decrease the number of
containers running in the cluster.

As shown in Fig. 4, sometimes the workload pattern is
slowly rising or falling. Occasionally, it is drastically changing
or, on the other hand, gently shaking. If the number of
requests is increasing whereas one or more predefined
thresholds are reached, it is required to share the workload
among more running container instances, thus new containers
need to be initiated during the increasing workload. Or, if the
workload is decreasing, it is needed to possibly stop
unnecessary containers without any QoS degradation
perceived by the users. Fig. 4 shows that our proposed multi-
level monitoring is able to properly support self-adaptive IoT
time-critical cloud-based applications to handle the varying
workload by increasing or decreasing the number of running
container instances in a service cluster. During this
experiment, the average response time of the CC Server was
148ms at the worst case which is quite suitable to address QoS
of the application and QoE for the end-users.

Fig. 4. Number of container instances vs the changing number of requests.

Fig. 4 shows a delay which is a time difference between
workload colored green and the number of containers colored
blue. This delay implies the existing monitoring interval and
the time during which the adaptation action takes place in
regard to the changing workload.

VII. CONCLUSION AND DISCUSSION
The Next Generation Internet will increasingly rely on IoT

applications. These may include gaming, home automation,
supporting infrastructure for robots and disaster early warning
systems. These are applications practically covering all of
human life and business activities. Software engineers today
already prefer to use cloud computing technologies and tools,
such as Juju or Fabric8, to build their containerized
applications. In this paper, the time-critical QoS aspects of
such cloud applications are investigated in terms of varying
workload at runtime. It is shown that continuous monitoring of
the QoS is required at both container and application levels in
order to adapt the application performance to changing
workload intensity. Currently, there is a great lack of adequate
monitoring systems for this purpose, and this study proposes a
non-intrusive multi-level monitoring method.

The conducted experiments have demonstrated the benefits
of our presented adaptation approach which helps application
providers to avoid under-provisioning as well as over-
provisioning of resources in order to prevent QoS degradation
and cost overruns at execution time.

We have begun extending our proposed method towards
using network-level QoS metrics [13] in a multi-instance
architecture. This architecture applies one application instance
per one user or one type of users. In this model, any
autonomous adaptation mechanism would need to consider
more sophisticated options, such as setting up a new
monitoring environment for a different type of application
instance, which will add to the complexity of the adaptation
process for the application.

Our work is included in the software solutions of two
ongoing European Horizon 2020 projects: SWITCH 3 and
ENTICE 4 . The SWITCH project is funded under the
programme for software engineering for IoT and Big Data,
while the ENTICE project is funded under the programme of
advanced cloud computing. The SWITCH project provides an
interactive environment for developing applications and
controlling their execution, a real-time infrastructure planner
for deploying applications in clouds, and an autonomous
system adaptation platform for monitoring and adapting system
behaviour. The ENTICE project develops a technology for a
federated repository of VM and container images. For this
repository, the resource usage, speed, elasticity, redundancy,
fault tolerance and other QoS metrics are desired to be
considered. In this project, the develped monitoring solution
can be used for example to monitor point-to-point network
quality among storages in this federated repository.

3 The SWITCH project, http://www.switchproject.eu/
4 The ENTICE project, http://www.entice-project.eu/

ACKNOWLEDGMENT
This work has received funding from the European Union’s

Horizon 2020 Research and Innovation Programme under
grant agreements No. 643963 (SWITCH project: Software
Workbench for Interactive, Time Critical and Highly self-
adaptive cloud applications) and No. 644179 (ENTICE project:
dEcentralised repositories for traNsparent and efficienT vIrtual
maChine opErations).

REFERENCES
[1] M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, and M.

Steinder, “Docker containers across multiple clouds and data centers,”
In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC), 2015, pp. 368–371.

[2] M. Koprivica, 2013. “Self-adaptive requirements-aware intelligent
things,” International Journal of Internet of Things 2, 1, 2013, 4 pages.
DOI:10.5923/j.ijit.20130201.01

[3] A. Botta, W. de-Donato, V. Persico, and A. Pescape, “Integration of
cloud computing and internet of things: a survey,” Future Generation
Computer Systems 56, 2016, pp. 684-700.
DOI:10.1016/j.future.2015.09.021

[4] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “JCatascopia: Monitoring
Elastically Adaptive Applications in the Cloud,” In Proceedings of the
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), IEEE, Chicago, 2014, pp. 226-235.

[5] S. Suneja, C. Isci, V. Bala, E. De-Lara, and T. Mummert, “Non-
intrusive, out-of-band and out-of-the-box systems monitoring in the
cloud,” In: ACM SIGMETRICS Performance Evaluation Review 42 (1),
2014, pp. 249-261.

[6] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks
with Lattice,” In Proceedings of 2011 IEEE/IFIP Network Operations
and Management Symposium Workshops (NOMS Wksps), IEEE, 2011,
pp. 239-246.

[7] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,
“A survey of cloud monitoring tools: Taxonomy, capabilities and
objectives,” Journal of Parallel and Distributed Computing 74, 10,
October 2014, pp. 2918-2933.

[8] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S.
Ullah-Khan, A. Guabtni, and V. Bhatnagar, “An overview of the
commercial cloud monitoring tools: research dimensions, design issues,
and state-of-the-art,” Computing 97 (4), 2015, pp. 357-377.

[9] A. Nadjaran-Toosi, R. N. Calheiros, and R. Buyya, “Interconnected
cloud computing environments: Challenges, taxonomy, and survey,”
ACM Computing Surveys (CSUR) 47 (1), 2014, 47 pages.

[10] D. Namiot, “Time Series Databases,” In Proceedings of the XVII
International Conference Data Analytics and Management in Data
Intensive Domains (DAMDID/RCDL’2015), Russia, 2015, pp. 132-137.

[11] S. Taherizadeh, A. Jones, I. Taylor, Z. Zhao, P. Martin, and
V.Stankovski, “Runtime network-level monitoring framework in the
adaptation of distributed time-critical cloud applications,” In
Proceedings of the 22nd International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'16),
ACM, Las Vegas, USA, 2016.

[12] F. Zablith, G. Antoniou, M. d'Aquin, G. Flouris, H. Kondylakis, E.
Motta, D. Plexousakis, and M. Sabou, “Ontology evolution: a process-
centric survey,” The Knowledge Engineering Review 30 (01), 2015, pp.
45-75.

[13] S. Taherizadeh, I. Taylor, A. Jones, Z. Zhao, and V. Stankovski, “A
network edge monitoring approach for real-time data streaming
applications,” In Proceedings of the 13th International Conference on
Economics of Grids, Clouds, Systems and Services (GECON 2016),
ACM, Athens, Greece, 2016.

	I. Introduction
	II. Basic Framework of an IoT cloud application
	A. Use Case

	III. Quality of Service Assurance
	A. Container-level monitoring
	B. Application-level monitoring

	IV. Monitoring Framework
	A. Architecture of the monitoring system
	1) Monitoring Probes
	2) Monitoring Agents
	3) Monitoring Server
	4) Time Series Database (TSDB)
	5) Alarm-Trigger
	6) GUI Web Server

	B. Operation of the monitoring system

	V. Runtime Adaptation Mechanism
	I) Data collection
	II) Storing the monitoring data
	III) Proposing suitable adaptation strategies
	IV) Performing adaptations
	V) Metadata handling mechanisms

	VI. Results
	VII. conclusion and discussion
	Acknowledgment
	References

