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Abstract—Various Internet of Things (IoT) applications, such 
as home automation and disaster early warning systems, are 
being introduced in various areas of human life and business. 
Today, a common method for delivery of such applications is via 
component-based software engineering disciplines based on cloud 
computing technologies such as containers. However, there are 
still numerous technological challenges to be solved particularly 
related to the time-critical Quality of Service (QoS) aspects of 
such applications. Runtime variations in the workload intensity 
as the amount of service tasks to be processed may radically 
affect the application performance perceived by the end-users or 
lead to the underutilization of resources. In order to assure the 
QoS of these containerized applications, monitoring is required 
at both container and application levels. Currently, there is a 
great lack of such multi-level monitoring systems. In this study, 
we present an architecture and implementation of a multi-level 
monitoring framework to ensure system health and adapt an IoT 
application in response to varying quantity, size and 
computational requirements of arrival requests. In this work, 
cloud application adaptation possibility includes horizontal 
scaling of container-based application instances. 
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I. INTRODUCTION 
The IoT is a paradigm where things/objects/sensors have a 

pervasive presence in the Internet. In recent years, IoT systems 
such as home automation, gaming or early warning systems 
have emerged as cloud-based services which are increasingly 
widely used and important, especially to organizations that 
tend to look beyond the traditional approach of safety 
applications. As IoT services can be virtualized, replicated and 
distributed in different cloud infrastructures, cloud computing 
has become a preferable solution for providing such 
applications on the Internet. The cloud computing model is a 
pay-per-use on-demand offer through which organizations can 
exploit elastic cloud resources and a federated cloud 
environment to support the QoS needed for running these types 
of applications. The ultimate goal is to enhance the Quality of 
Experience (QoE) of their end-users.  

Nowadays, a popular cloud technology for the delivery of 
these applications is through the use of containers (e.g. 

Docker 1 , CoreOS 2 , etc.). Due to the lightweight nature of 
containers and their fast boot time, it is possible to deploy IoT 
cloud service instances in hosting environments faster and 
more efficiently than using Virtual Machines (VMs) [1]. 

Ensuring IoT applications to be able to offer favorable 
performance has been a challenging issue due to runtime 
variations in the execution environment such as increase or 
decrease in the number of connected IoT sensors. Accordingly, 
the next generation of IoT systems should be built as being 
self-adaptive, that means, the IoT applications should operate 
without human intervention [2]. Such applications should be 
able to detect runtime environmental changes in terms of 
varied workload intensity as the number of IoT sensors, and 
then determine their own way of reacting to such changes.  

This research work presents a multi-level monitoring 
approach based upon a non-intrusive design intended to enable 
IoT-based time-critical cloud-based applications to 
autonomously reconfigure and adapt to changing workload at 
runtime. To adapt these applications to the changing 
conditions, this work presents a rule-based horizontal scaling 
method to dynamically estimate the number of running 
containers needed to provide the service. This innovative 
horizontal scaling method is able to add more container 
instances into the pool of resources in order to share the 
workload or remove some running containers, if this does not 
significantly affect the QoS. The results of our evaluation show 
that our new adaptation method offers a high level of merits 
with regard to the automatic scalability of vertualized IoT 
application components without both resource over and under-
provisioning.  

The rest of the paper is organized as follows. Section 2 
presents the basic framework of an IoT time-critical cloud 
application. Section 3 describes monitoring requirements as the 
QoS assurance. Section 4 discusses the implementation of our 
proposed multi-level monitoring framework. Section 5 presents 
the architecture of our adaptation solution, followed by 
empirical evaluation results and finally conclusion respectively 
in Sections 6 and 7. 

                                                           
1 Docker, https://www.docker.com/ 
2 CoreOS, https://coreos.com/ 



II. BASIC FRAMEWORK OF AN IOT CLOUD APPLICATION 

A. Use Case 
One typical example for IoT systems is a disaster early 

warning system. Such systems are developed to provide alerts 
in a community before disaster occurs. Fig. 1 depicts the basic 
architecture of an IoT time-critical cloud application including 
different application components: Call Operator (dedicated and 
ad-hoc agents), Contact Centre Server (Apache Web server), 
Database Server (Apache Cassandra server), IP Gateway (e.g. 
TA900e or Cisco-ASA) and IoT Sensors (transmitters for 
temperature, barometric pressure, humidity and other 
environmental variables). 

 

 
Fig. 1. Example of an Internet of Things (IoT) system. 

The basic framework of an IoT cloud application, shown in 
Fig. 1, consists of the following components:  

• IoT Sensors: IoT Sensors can measure different 
parameters such as water pressure, noise, luminance and 
other environmental variables. 

• IP Gateway: The IP Gateway is a node that allows 
communication between networks. It receives data over 
direct radio link or GSM/GPRS from IoT sensors, 
aggregates the data and sends the data to the database. 

• Database Server (DB Server): The DB Server is the 
database which is used for storing and handling sensed 
values indexed by time. 

• Contact Centre Server (CC Server): The CC server checks 
sensed data stored in the DB Server and statistics in real-
time and sends notifications (such as e-mail, SMS or voice 
call via SIP-based IP telephony or ordinary PSTN) to Call 
Operators if values are outside of predetermined thresholds. 

• Call Operator: The Call Operators decide whether or not to 
send an alert to emergency systems or to the public 
entities. 

IoT Sensors and IP Gateway cannot be virtualized as these 
components have physical items like attached antennas. In this 
research work, the CC Server and the DB Server can be 
containerized, replicated and distributed in a federated cloud 
environment.  

III. QUALITY OF SERVICE ASSURANCE 
One of the main requirements of containerized self-

adaptive early warning applications is to implement a multi-
level monitoring tool. This multi-level monitoring tool should 
be able to monitor execution environment where containerized 
application components are running on cloud infrastructures. 
Our implemented monitoring tool considers container-related 
and application-level parameters. 

A. Container-level monitoring 
Today, cloud computing is realized through the use of VMs 

or containers. VM-based virtualization is achieved through the 
use of a hypervisor. The hypervisor emulates machine 
hardware and then instantiates other VMs along with guest 
Operating Systems (Guest OSs) on top of that hardware. Each 
VM instance has a set of its own libraries and software 
components, and operates within the emulated environment 
provided by the hypervisor. 

On the other hand, containers offer a more modern 
lightweight approach than VM-based virtualization. A 
container-based system provides a shared, virtualized OS 
image consisting of a root file system and a safely shared set of 
system libraries and executables. This eliminates the need for 
the use of a hypervisor. Compared to a VM-based system, the 
use of containers which does not require an OS to boot up as 
another form of server virtualization is rapidly increasing in 
popularity. The container-level monitoring tool is able to 
measure and display runtime value of key attributes (e.g. CPU 
or memory usage) for a given container such as a containerized 
CC Server instance. 

B. Application-level monitoring 
Service or application-level monitoring systems measure 

metrics that present information about the situation of the 
cloud-based service and its performance. However, although a 
large number of research works consider the reliability of the 
underlying cloud infrastructures, there still exists an absence of 
efficient application-level monitoring techniques to be able to 
detect and monitor QoS degradation of cloud applications. 
Monitoring of application-level metrics needs to be done on the 
application layer. Application-level metrics can be monitored 
by application-level monitoring probes. The probe could 
represent a standalone application that runs on the application 
layer amongst other applications. On the other hand, the 
application-level probe could be implemented by changing the 
source code of the application. Also, there are specific service-
level metrics which cannot be measured if an application does 
not provide an interface such as an API for it. In this work, for 
example, an application-level metric in the conducted use case 
can be the average response time of the CC Server. 

IV. MONITORING FRAMEWORK 

A. Architecture of the monitoring system 

In order to develop a monitoring system to measure 
metrics, JCatascopia [4] has been chosen as baseline 
technology which was extended in this work to fulfil the 
requirements of (1) containerized, (2) self-adaptive, (3) IoT, (4) 
time-critical cloud-based applications.  



Our proposed monitoring system uses an agent-based 
client-server approach, which is able to support a fully 
interoperable, highly scalable and light-weight architecture. 
The distributed nature of this monitoring framework quenches 
the runtime overhead of system to a number of Monitoring 
Agents running across different cloud resources. This 
monitoring system offers a framework to measure, store and 
report monitoring metrics from different layers e.g. containers 
as well as possible performance metrics from deployed 
applications. Fig. 2 shows an overview for the architecture of 
the proposed monitoring framework. 

 

Fig. 2. Architecture of the monitoring system. 

The architecture of our designed monitoring framework 
includes different components namely Monitoring Probes, 
Monitoring Agents, Monitoring Server, Time Series Database 
(TSDB), Alarm-Trigger and Graphical User Interface (GUI) 
Web Server.  

1) Monitoring Probes 

Monitoring Probes are the actual components that collect 
individual metrics at different levels such as container and 
application. For example, a container-level Monitoring Probe 
can be the component to measure the CPU utilization of a 
given container e.g. a containerized CC Server instance. 
Another one can be able to measure the memory percentage 
usage of the container. Or an application-level Monitoring 
Probe can monitor the response time of an application running 
inside the deployed containers. In essence, Monitoring Probes 
are in charge of gathering values of measured metrics, which 
are then aggregated by an associated Monitoring Agent. 

2) Monitoring Agents 

The Monitoring Agent is responsible for the management 
of metrics collection on a particular element. It aggregates the 
values measured by Monitoring Probes and then distributes 
them to the Monitoring Server. 

3) Monitoring Server 

The Monitoring Server is a component that receives 
measured metrics from the Monitoring Agents. The collected 

metrics are then processed and stored in the monitoring TSDB 
to manage huge amount of structured data. 

4) Time Series Database (TSDB) 

The monitoring data streams coming from Monitoring 
Probes/Agents are stored in the TSDB, which is a special 
database customized for the storage of series of data points. 
The reason to use the TSDB is the capability of storing huge 
volumes of time-ordered data more efficiently than it could be 
stored in a Knowledge Base. 

5) Alarm-Trigger 

The Alarm-Trigger is a configurable surveillance 
component which investigates the incoming measured values 
to initiate actions when irregular incidents occur. This 
component comprises different thresholds for all monitoring 
metrics. It notifies the Self-Adapter when the monitoring data 
reach or exceed a pre-determined threshold level. The Alarm-
Trigger is using rule-based mechanism to avoid the complexity 
of our proposed self-adaptation approach and to prohibit 
human interventions. 

6) GUI Web Server 

The GUI Web Server allows all external entities to access 
the monitoring information stored in the TSDB in a unified 
way, via prepared REST-based Web services and APIs.  

B. Operation of the monitoring system 

A Monitoring Agent which is running alongside an 
application service in a container aggregates the measured 
values and then transmits them to the Monitoring Server. 

The Alarm-Trigger will detect the key quality attributes 
such as the need for less or more resources on the DB Server or 
the CC Server, and then the adaptation part dynamically tunes 
the execution of the whole application to improve the possible 
performance drops. In order to measure the status of 
containerized CC Server and DB Server instances, the needed 
monitoring metrics could be divided in two main categories 
including container-level metrics and application-level metrics.  

V. RUNTIME ADAPTATION MECHANISM 
The proposed runtime adaptation mechanism, shown in 

Fig. 3, includes various entities when the application executes.  
 

 

Fig. 3. The proposed runtime adaptation mechanism 



In order to make an effective improvement in the 
performance of IoT time-critical cloud applications, the entities 
(shown in Fig. 3) will proceed as follows: 

I) Data collection  
The purpose of Monitoring Probes/Agents is to collect the 

data that represents the current state of managed elements 
namely application and container, and then aggregate and 
transfer the measured values to the Monitoring Server and the 
Alarm-Trigger. The monitored metrics depend on the use case 
since the important parameters for each application are 
different. The Monitoring Probes/Agents should be non-
intrusiveness [5], scalable [6], robust [7], interoperable [8] and 
able to support live-migration [9] as the essential non-
functional monitoring requirements needed to support dynamic 
adaptation of cloud-based applications. 

II) Storing the monitoring data 
The Monitoring Server receives the collected data and 

stores it in a TSDB to build a focused and comprehensive 
representation of the system state. The TSDB can be 
implemented by the Apache Cassandra technology which is a 
distributed storage system for managing very large amount of 
time-ordered data [10]. Concurrently, the Alarm-Trigger 
investigates if the measured values of monitored parameters 
exceed predefined limits. In other words, The Alarm-Trigger is 
a rule-based component which processes the incoming 
monitoring data streams and notifies the Self-Adapter when 
predefined thresholds are violated. The Monitoring Server and 
the Alarm-Trigger should be tightly coupled, i.e. running on 
the same machine in order to save network bandwidth and 
computational resources needed for data distribution and 
processing. 

III) Proposing suitable adaptation strategies  
When problems are detected, the Self-Adapter is invoked to 

propose suitable adaptation strategies in terms of increment or 
decrement in the number of containerized CC Server and DB 
Server instances. The Self-Adapter is able to automatically 
identify metrics (e.g. CPU or memory utilization) that are the 
most predictive for the application performance. The Self-
Adapter specifies a set of adaptation actions for the Control-
Agent that allows the passage of the whole system from a 
current state to a desired state. In other words, the Self-Adapter 
reasons about adaptation changes which should be done to 
adapt the system to the desired behavior. In this work, 
adaptation possibility can be horizontal scaling of the DB 
Server and the CC server.  

Besides that, ensuring that these types of IoT applications 
are able to offer favorable service quality has been a 
challenging issue due to runtime variations in network 
conditions intrinsic to connections between individual 
application components in different tiers. In this case, the Self-
Adapter can provide a solution to replicate application 
components in different cloud infrastructures in order to 
increase availability and reliability under various network 
conditions and varied amount of traffic. Therefore, the 
adaptation action can dynamically connect each component 
instance to the best possible component instance in each 

different tier, together offering fully-qualified network 
performance that was proposed in our previous work [11]. 
Examples of different application tiers include the application 
components (the CC Server instances and the DB Server 
instances) that can run in data centres, gateways/routers that 
can run in edge devices, or Raspberry Pis and fog devices such 
as smartphones and automatically driven cars. 

IV) Performing adaptations 
The Control-Agent which has the full control of application 

configurations and infrastructure resources e.g. containers 
finally carries out the adaptation actions defined by the Self-
Adapter. This entity is able to increase or decrease the required 
number of containerized application components on demand 
even in different cloud data centers that is often an essential 
requirement for providers of IoT early warning applications 
running on the cloud.  

V) Metadata handling mechanisms 
The Knowledge Base will be used to store all information 

about the current system metadata, awareness and application 
configuration for analysis, reuse, reasoning, optimization and 
refinement of design, topology and execution. The knowledge 
stored in this element describes profiles of all entities (e.g. 
application profile, infrastructure profile, performance profile, 
adaptation strategies, etc.), and it is used to interpret monitoring 
data [12].  

VI. RESULTS 
We conducted a set of proof-of-concept experiments. Their 

goal was to examine the design details of the proposed QoS 
assurance system and to explore the horizontal-scaling 
adaptation possibility.  

The initial set of experiments measured the CC Server’s 
performance. To this end, incoming requests have been 
generated by the httperf tool and sent to the CC Server. The 
httperf tool provides a flexible facility for generating various 
workload patterns.  

For resource intensive applications such as the CC Server, a 
performance bottleneck could be the CPU power consumption 
and the memory capacity utilization. In this situation, when the 
workload density is rising, a possible adaptation mechanism 
could be horizontal scaling, which can be achieved by adding 
more running container instances into the pool of resources. 
This pool of running containers is then able to handle more 
requests. Another scaling possibility is to stop some of the 
container instances, if they are not required to avoid resource 
over-provisioning. 

Based on our experiments, the period of time taken to 
launch a container instance is two seconds. Also, after the 
container start-up, registering the associated Monitoring Agent 
in the Monitoring Server takes four seconds. The monitoring 
interval should be set longer than the container instance’s 
initiation time. In this way, the whole system is able to 
continue operating properly without losing control over 
running container instances. Therefore, to prevent any problem 
at runtime, the monitoring interval has been set to 20 seconds 
in the experiments.  



In order to develop the self-adaptation mechanism, a 
threshold for every single monitoring metric in different levels 
has been defined. The Alarm-Trigger is responsible for 
periodically checking the incoming monitoring data streams 
and notifies the Self-Adapter when predefined thresholds for 
metrics are violated. For example, the thresholds for average 
CPU usage and average memory usage for each Dockerized 
component (e.g. CC Server) at the container level have been 
considered to be 80 percent. Moreover, we assume that if the 
average response time at the application level for the CC 
Server component is less than 15ms, there is no performance 
issue and hence, the threshold for average response time of the 
CC Server has been set to the value of 15ms. A big value for 
this threshold makes the adaptation method less sensitive to the 
application performance and more dependent on the 
infrastructure utilization. However, a very low threshold for the 
average response time may compel the adaptation method to 
unnecessarily change the number of container instances 
whereas the system is currently able to provide users an 
appropriate performance without any threat. 

The final rule for this scenario can be specified as follows. 
If one of the monitored metrics (average CPU usage, average 
memory usage or average response time) pertaining to a 
specific application component (here, for the CC Server) 
exceeds associated thresholds, the Alarm-Trigger sends an 
announcement to the Self-Adapter. The Self-Adapter then 
helps to estimate the number of needed running container 
instances providing the service since the number of container 
instances is needed to be increased on demand. Following is a 
pseudocode of an algorithm which estimates the number of 
needed containers to be added to a cluster for a certain service 
(e.g. CC Server) upon metric values measured at container 
level.  

 

Increment ← 0; 
do { 
      Increment ← Increment + 1;  
      Expectedmetric←[(Containerno*Usagemetric)/(Containerno+Increment)]; 
} while (Expectedmetric > Thresholdmetric); 

 
 

In this algorithm, the metric from the actual experiment can 
be the average CPU and memory usage of all running container 
instances for a certain service, Thresholdmetric is the threshold 
defined for the metric (in our experiment, 80%), Usagemetric is 
the current value of the metric, Containerno is the current 
number of running container instances together providing the 
service, Increment is the number of containers to be added for 
the service and Expectedmetric is the expected value of the metric 
after initiating new container instances.  

Both thresholds for average CPU and memory utilization of 
the cluster which includes the CC Server container instances 
are considered 80%. This value gives the adaptation method a 
chance to react to runtime variations in the workload before a 
performance issue arises. If the workload trend is very even 
and predictable, these two thresholds can be pushed a little 
higher than 80%. However, a small value for these thresholds 
may lead to the over-provisioning problem which wastes costly 
resources. 

In contrast, if the workload density drops at runtime, 
unnecessary running container instances should be possibly 
terminated to avoid resource over-provisioning. Based on our 
proposed conservative strategy, at most one container could be 
stopped in each adaptation interval in order to make sure that 
the system offers favorable service quality to end-users. In this 
way, the system certainly provides acceptable responses upon 
uncertain environments at runtime. The following algorithm 
evaluates if one of running container instances can be 
terminated without any application performance degradation. 

 

Decrement ← 0; 
Expectedmetric←[(Containerno*Usagemetric)/(Containerno-1)];       
if (Expectedmetric < Thresholdmetric) then Decrement ← 1; 

 

According to Expectedmetric (expected value of the metric 
after the termination of a container instance), value of 
Decrement determines if it is needed to decrease the number of 
containers running in the cluster.  

As shown in Fig. 4, sometimes the workload pattern is 
slowly rising or falling. Occasionally, it is drastically changing 
or, on the other hand, gently shaking. If the number of 
requests is increasing whereas one or more predefined 
thresholds are reached, it is required to share the workload 
among more running container instances, thus new containers 
need to be initiated during the increasing workload. Or, if the 
workload is decreasing, it is needed to possibly stop 
unnecessary containers without any QoS degradation 
perceived by the users. Fig. 4 shows that our proposed multi-
level monitoring is able to properly support self-adaptive IoT 
time-critical cloud-based applications to handle the varying 
workload by increasing or decreasing the number of running 
container instances in a service cluster. During this 
experiment, the average response time of the CC Server was 
148ms at the worst case which is quite suitable to address QoS 
of the application and QoE for the end-users. 

 

Fig. 4. Number of container instances vs the changing number of requests. 

 



Fig. 4 shows a delay which is a time difference between 
workload colored green and the number of containers colored 
blue. This delay implies the existing monitoring interval and 
the time during which the adaptation action takes place in 
regard to the changing workload. 

VII. CONCLUSION AND DISCUSSION 
The Next Generation Internet will increasingly rely on IoT 

applications. These may include gaming, home automation, 
supporting infrastructure for robots and disaster early warning 
systems. These are applications practically covering all of 
human life and business activities. Software engineers today 
already prefer to use cloud computing technologies and tools, 
such as Juju or Fabric8, to build their containerized 
applications. In this paper, the time-critical QoS aspects of 
such cloud applications are investigated in terms of varying 
workload at runtime. It is shown that continuous monitoring of 
the QoS is required at both container and application levels in 
order to adapt the application performance to changing 
workload intensity. Currently, there is a great lack of adequate 
monitoring systems for this purpose, and this study proposes a 
non-intrusive multi-level monitoring method.  

The conducted experiments have demonstrated the benefits 
of our presented adaptation approach which helps application 
providers to avoid under-provisioning as well as over-
provisioning of resources in order to prevent QoS degradation 
and cost overruns at execution time.  

We have begun extending our proposed method towards 
using network-level QoS metrics [13] in a multi-instance 
architecture. This architecture applies one application instance 
per one user or one type of users. In this model, any 
autonomous adaptation mechanism would need to consider 
more sophisticated options, such as setting up a new 
monitoring environment for a different type of application 
instance, which will add to the complexity of the adaptation 
process for the application.  

Our work is included in the software solutions of two 
ongoing European Horizon 2020 projects: SWITCH 3  and 
ENTICE 4 . The SWITCH project is funded under the 
programme for software engineering for IoT and Big Data, 
while the ENTICE project is funded under the programme of 
advanced cloud computing. The SWITCH project provides an 
interactive environment for developing applications and 
controlling their execution, a real-time infrastructure planner 
for deploying applications in clouds, and an autonomous 
system adaptation platform for monitoring and adapting system 
behaviour. The ENTICE project develops a technology for a 
federated repository of VM and container images. For this 
repository, the resource usage, speed, elasticity, redundancy, 
fault tolerance and other QoS metrics are desired to be 
considered. In this project, the develped monitoring solution 
can be used for example to monitor point-to-point network 
quality among storages in this federated repository. 

 

                                                           
3 The SWITCH project, http://www.switchproject.eu/ 
4 The ENTICE project, http://www.entice-project.eu/ 
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