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Abstract. Renting very high bandwidth or special connection links is neither 

affordable nor economical for service providers. As a consequence, ensuring 

data streaming systems to be able to guarantee desired service quality 

experienced by the users has been a challenging issue due to real-time changes 

in the network performance of the Internet communications. This paper 

presents a network monitoring approach that is broadly applicable in the 

adaptation of real-time services running on network edge computing platforms. 

The approach identifies runtime variations in the network quality of links 

between application servers and end-users. It is shown that by identifying 

critical conditions, it is possible to continuously adapt the deployed service for 

optimal performance. Adaptation possibilities include reconfiguration by 

dynamically changing paths between clients and servers, vertical scaling such 

as re-allocation of bandwidth to specific links, horizontal scaling of application 

servers, and even live-migration of application components from one edge 

server to another to improve the application performance. 
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1 Introduction 

Real-time applications such as online gaming, telemedicine services, environment 

monitoring systems, and video conferencing have highly on-demand needs to provide 

not only a high-quality result but also deliver the result as early as possible for the 

best real-time user experience—such as shorter response time via closer interaction 

with the application server or higher resolution via more stable connection. However, 

using cloud infrastructure to deploy such real-time applications provides some 

benefits, such as reduction of operation costs, on-demand resource allocation should 

be flexible enough in order to dynamically assign infrastructure according to needs of 

such application and hence save the expense.  

mailto:Vlado.Stankovski@fgg.uni-lj.si


Since real-time applications may become sensitive to the network quality, such as 

latency between clients and running services, the requirements of such applications 

could potentially be addressed by emerging edge computing technologies, which 

allow computations to be performed at the edge of the network. The rationale of 

employing these technologies is that computing should happen at the proximity of 

data sources—e.g. cameras or sensors—and closer to where the results are needed [1].  

Due to the federated nature of edge computing scenarios, real-time applications can 

be deployed on different edge nodes with diverse properties (for instance network 

performance, physical location, reliability, connectivity and so on). Hence, the 

performance of such real-time applications varies significantly depending on the 

runtime properties of their infrastructural resources as well as their clients’ network 

conditions. To come up with these challenges, implementing effective, transparent 

and elastic methods to monitor the Quality of Service (QoS) at the network edge is 

difficult, yet also necessary. It is necessary because obtaining such network QoS 

parameters makes it possible to take appropriate adaptation decisions at strategic level 

(e.g. about the application topology and the selection of one or more physical 

machines on which it will be running at geographic locations) and dynamic level (e.g. 

about the application reconfiguration, vertical or horizontal scaling, re-location and so 

on). The edge servers should continue to monitor these parameters and determine if 

user experience needs to be improved. In this way, more dynamic adaptations to the 

user’s conditions (e.g. network status) can be accomplished by utilising network edge-

specific knowledge [2]. Therefore, particular attention has to be paid to monitoring 

network links between end-users’ clients and edge servers.  

The goal of the present paper is to implement a network edge monitoring approach 

that considers critical QoS metrics including delay, packet loss, throughput and jitter 

which are specific to the real-time applications we envisage. Therefore, it can be used 

for functionalities such as runtime service adaptations for streaming cases, for 

example automatically tuning the network quality by changing network paths to re-

route via other edge servers or dynamically connecting the clients to the best servers 

based on their network edge conditions, location, etc. In this way, our proposed 

system is able to ensure the best possible Quality of Experience (QoE) for the users.  

The rest of the paper is organized as follows. Section 2 presents the related work. 

Section 3 describes a real-time data streaming use case. Section 4 presents our 

network edge monitoring approach, followed by preliminary results in Section 5, and 

the discussion and conclusions appear in Section 6. 

2 Related work 

There have been many research approaches, trying to provide network QoS 

guarantees for real-time data streaming services. A new paradigm, called edge 

computing, is emerging as an extension of cloud computing to support and meet the 

QoS requirements of real-time applications which are delay and jitter-sensitive [3]. 

Since edge computing is deployed at the edge of the network, it provides low latency, 



location awareness, and optimizes users’ experience under QoS requirements for 

streaming and real-time applications [4].  

Chen et al. [5] focused on the users’ perspective in online gaming systems; from 

their point of view, the QoS metrics related to network conditions—namely delay, 

packet loss, bandwidth—have an important effect on gaming experience. Their results 

showed that packet loss and bandwidth limitations impose negative impact on the 

frame rates and the graphic quality in these systems. To provide more stable network 

performance for real-time services and optimizing the network path and resources, 

Jutila [6] presents adaptive edge computing solutions based on different traffic 

management methods that monitor and react to network QoS changes. To check the 

network quality in the context of such applications, the most important metrics to be 

analysed for adaptation are network throughput, latency, packet loss and jitter [7]. 

According to the cited literature, we can conclude that monitoring of these 

network-related metrics can help data streaming service providers guarantee QoE to 

end-users facing network resources limitations. Furthermore, an investigation of the 

recent related work supports the conclusion that a current challenge in this area is to 

continuously adjust the deployed environment according to the runtime changes in 

network conditions intrinsic to connections of both application servers and also users; 

this is the main focus of the research presented in the paper. 

For dynamic adaptation of edge-based applications, emphasis should be put on the 

importance of scalability, robustness, non-intrusiveness, interoperability and 

possibilities to support live-migration of the service. 

 Scalability: A scalable monitoring system is able to handle huge amounts of 

monitoring data across large numbers of resources and services [8].  

 Robustness: A robust monitoring system is able to be highly tolerant of many 

failure scenarios and detect changes in environment, adapting to a new situation 

and continuing its operation [9]. 

 Non-intrusiveness: A non-intrusive monitoring system is capable of being 

lightweight to the normal flows of application and infrastructure [10]. 

 Interoperability: An interoperable monitoring system is not specific to a given 

infrastructure and is able to monitor an application that resides on other cloud 

providers’ infrastructure [11].  

 Live-migration support: In live-migration, applications migrate from a physical 

host to another one at any time without stopping operations [12]. 

Table 1 presents the analysis of the essential properties for the widely used multi-

cloud monitoring tools. The goal of the comparison is to specify and trade-off the 

strengths, drawbacks and challenges which have been encountered in the context of 

self-adaptive edge-based applications. 

 

 

 



Table 1. Requirement analysis for multi-cloud monitoring systems 

Tool Scalability Robustness 
Non-

intrusiveness 
Interoperability 

Live-migration 

support 

Zenoss1 Yes No Yes Yes No 

Ganglia2 Yes Yes limited Yes Yes 

Zabbix3 Yes No Yes Yes No 

Nagios4 No No limited Yes No 

OpenNebula5 Yes Yes Yes No limited 

Lattice6 Yes Yes Yes Yes Yes 

JCatascopia7 Yes Yes limited Yes Yes 
 

Comparison in Table 1 is upon the reviewed literature and based on conducting 

experiments with the tools. These tools are investigated in order to find out an 

appropriate base-line technology for the needs of monitoring edge-based applications 

and the requirements of automatic adaptation to guarantee the QoS and the QoE 

performances which are subjective measure from the users' viewpoint on the overall 

value of the provided service.  

3 Real-time data streaming use case: WebRTC/MCU 

Real-time communication plays an increasingly important role for many business 

applications, including cooperative working environments and video-conferencing for 

instance via WebRTC8 (Web Real-Time-Communications) technology [13]. The 

WebRTC use case is explained here as an example of a large range of new potential 

real-time applications which need to have very high QoS in regard to their 

communication service, detect and respond to network-based urgent events very 

rapidly and also operate reliably and robustly throughout their lifetime.  

The WebRTC open project enables real-time communications directly in the 

browser, and its performance may be influenced by highly fluctuating quality of the 

Internet connections. To this end, intermediate devices called Multipoint Control Unit 

(MCU) servers, which can be running on different data centers all around the world, 

are being used to manage the communication between the clients. The function of 

these MCU servers deployed at the edge of the network is to coordinate the 

distribution of audio, video, and data streams amongst the multiple participants in a 

multimedia session. These data centers allow interconnecting MCU servers in 

different regions. Therefore, for every user, there is an opportunity to have more than 

one MCU server to provide the service and hence it would be possible to connect a 

user to the best possible MCU. Figure 1 shows an example of how to interconnect all 

MCU servers to each other.  

                                                           
1 Zenoss monitoring system, http://www.zenoss.org 
2 Ganglia monitoring system, http://ganglia.info/ 
3 Zabbix monitoring system, http://www.zabbix.com/ 
4 Nagios monitoring system, https://www.nagios.org/ 
5 OpenNebula, http://www.opennebula.org/ 
6 Lattice, http://reservoir-fp7.eu/ 
7 JCatascopia monitoring system, http://linc.ucy.ac.cy/CELAR/jcatascopia/ 
8 WebRTC, https://webrtc.org/ 



 
Fig. 1. A deployment of MCU servers’ interconnection globally running all over the world 

 

There are plenty of other applications, similar to MCU servers in a WebRTC 

video-conference, in which communication between users is required to pass through 

intermediate servers. Examples include the Openfire9 server in instant messaging (IM) 

group chat, and CipSoft10 servers in online gaming.  

4 Design and implementation of the monitoring approach 

In our work, we focus on performance indicators from the user perspective; since 

they can be used to evaluate the network quality delivered to an end-user, then it is 

possible to improve the overall acceptability of the service, as perceived subjectively 

by each user. Figure 2 provides the schema of a user’s communication via an MCU 

server as intermediary, which has to be monitored and compared with the other 

alternatives as potential MCU servers deployed in highly distributed, edge computing 

infrastructures. Supported by edge computing platforms such as Docker, the 

intermediary service can be deployed on-the-fly or on several running instances in 

different edge computing nodes.  

 

 
Fig. 2. Use and monitoring of MCUs to support real-time streaming 

 

                                                           
9 Openfire, http://www.igniterealtime.org/projects/openfire/ 
10 CipSoft, http://www.cipsoft.com/ 



An overview of the proposed monitoring architecture is shown in Figure 3.  

 

 
Fig. 3. Overview of the proposed model for user-centric network monitoring 

 

This monitoring system employs a number of distinct components. The light-

weight, scalable, custom-made monitoring system implemented in JCatascopia 

framework [14] is responsible for monitoring QoS parameters of connections between 

the real-time application edge server and clients at the network layer. The 

implemented monitoring system is not limited to operating on specific cloud 

providers and can be utilized to monitor federated cloud environments where 

applications are residing on multiple infrastructures. As shown in Figure 4, the 

network-level monitoring probe could separately represent a standalone application 

that runs amongst other running applications. 

 

 
Fig. 4. Network-level monitoring probe running amongst other applications 

 



Different network-level QoS metrics—including throughput, delay, jitter and 

packet loss, which have been considered as important parameters for various 

video/audio streaming applications—are measured by monitoring probes on top of 

each edge node. The pseudocode of the developed algorithm for the monitoring probe 

is depicted in Figure 5. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

/* Monitoring probe running on a Host/VM/Docker which resides in Edge Computing Node i (ECNi)*/ 

/* PL: Packet Loss */ 

/* NT: Network Throughput */ 

/* AD: Average Delay */ 

/* AJ: Average Jitter */ 

while(true){ 

   TS ← TimeStamp() 

   for each current Userx do { 

       PL ← Calculate_PL(ECNi, Userx) //Calculate PL of link between ECNi and Userx 

       NT ← Calculate_NT(ECNi, Userx) //Calculate NT of link between ECNi and Userx 

       AD ← Calculate_AD(ECNi, Userx) //Calculate AD of link between ECNi and Userx 

       AJ ← Calculate_AJ(ECNi, Userx) //Calculate AJ of link between ECNi and Userx 

       Message ← Make_Message(ECNi, Userx, TS, PL, NT, AD, AJ) 

       Send_To_Monitoring_Server(Message)  

   } // end of for 

   wait(interval) 

} // end of while 

Fig. 5. Pseudocode for the implemented monitoring probe 

 

A monitoring server is responsible for orchestrating and collecting QoS data from 

each monitoring probe. The monitoring server consists of two parts: a Time Series 

Database (TSDB) and a control agent. The TSDB, implemented by Apache Cassandra 

server, is used to store the measured values, while the control agent, implemented in 

Java, is responsible for network-based QoS analysis, evaluating relevant policies and 

returning decisions consistent with these policies. It analyses the running servers’ 

status and provides adaptation plans, for instance, changing network paths to re-route 

via other edge servers, or vertical scaling by resizing the resources e.g. to offer more 

bandwidth, or application server check-pointing/live-migration, and so forth. The 

pseudocode of the developed algorithm for the control agent is depicted in Figure 6 

where the coefficients C1, C2, C3 and C4 are the weights assigned to each network-

level QoS metric. These weights could be dependent on the use case. For example, for 

VoIP applications, jitter is more important than delay. Consequently, jitter should 

have bigger weight in this case as it has more influence on user experience. 
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6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

 /* Control agent running as a part of monitoring server*/ 

/* NQi,x: Network Quality of link between Edge Computing Node i (ECNi) and Userx */ 

/* BECNx: The Best Edge Computing Node to provide the service for Userx: */ 

while(true){ 

   for each current Userx do { 

      for each ECNi do { //Calculate Network Quality for each possible Edge Computing Node 

           NQi,x ← C1*PL + C2*NT + C3*AD + C4*AJ 

      } // end of for 

      BECNx ← Choose_The_Best_Node_With_Maximum_Network_Quality(NQi,x) 

      if BECNx has better network quality compared to the current Edge Computing Node 

      during the last α intervals do{  // α can be defined according to the use case 

            Adaptation plan is launched 

      } // end of if 

   } // end of for 

   wait(interval) 

} // end of while 

Fig. 6. Pseudocode for the implemented control agent 
 

Considering Figure 3, when our monitoring solution executes, it proceeds as 

follows: (1) A real-time application server (e.g. MCU server implemented by 

Medooze11 as an open source conference application in our experiment) typically 

serves a large number of users and can be deployed and run on a selected edge 

computing node. (2) All relevant QoS metrics are measured at regular intervals by a 

monitoring probe and then all measured values will be reported to the monitoring 

server. (3) The monitoring server stores the collected metrics in a TSDB. The 

collected data can be analysed and used for capacity planning and strategic analysis 

like longer-term usage trends. (4) The control agent checks possible degradation of 

the required network quality for each edge computing node, and relates any such 

information to the current demand. When the current condition does not satisfy the 

expected requirements, an adaptation plan to achieve the desired performance can be 

launched. Using Docker's container-based virtualization, the control agent includes 

Kubernetes12 technology for dynamically automating deployment, scaling, and 

management of containerized applications. 

5 Measurements 

In order to demonstrate the presented monitoring approach, network QoS is 

evaluated through four metrics, namely delay, packet loss, throughput and jitter. 

Deployed monitoring probes can measure these network QoS metrics which 

particularly affect the application performance. In case of any deterioration of system 

health, for example due to the presence of excessive jitter, control agent may trigger 

an adaptation mechanism to fix the QoS-related problem. The possible adaptation 

mechanism could be, for instance, re-connecting users to a set of the best reliable 

servers offering fully-qualified network performance.  

                                                           
11 Medooze, http://www.medooze.com/ 
12 Kubernetes, http://kubernetes.io/ 



For experimentation, we used a WebRTC client with a low-throughput connection 

and two MCU servers (A and B) running on infrastructures in different geographical 

locations with one Gbps bandwidth and the same processing power and memory— 

2397.222 MHz and 2 GB RAM respectively. The monitoring probes use ping results 

to periodically measure the QoS metrics via the ICMP (Internet Control Message 

Protocol) protocol. The monitoring probes deployed on the two MCU servers send 10 

ICMP packets at an interval of 200 ms to the WebRTC client and then they calculate 

the QoS metrics on an average basis. Each ICMP packet includes 500 bytes of data. 

The set of measurements are repeated continuously at a frequency of 15 times per 

minute which means every 4 seconds.  

The implemented network edge monitoring technique takes into account two types 

of conditions, shown in Figure 7: when ICMP packet filtering is (a) disabled or (b) 

enabled, inside a private network which is depicted by a rectangle. It is not unusual 

that ICMP traffic is filtered in private administrative domains due to various security 

concerns. In such case, the ping command returns no response and the packet loss is 

100%; hence, the monitoring probe changes its mode of operation and uses traceroute 

to identify the path to the edge router. With this information available, the monitoring 

probe measures the QoS metrics between the edge server and the edge router (instead 

of the client). This measurement is an appropriate approximation of network-based 

QoS between the server and the client; since our main target is to compare the QoS of 

different routes from the MCU servers to the edge router.  

 

 
(a) Without ICMP Packet Filtering            (b)  With ICMP Packet Filtering through edge router  

Fig. 7. Path between an edge server and a client with different administrative domains 

 

The measurements presented in Figure 8 show how this tradeoff helps the system 

monitor the network-level QoS metrics related to two different connections with the 

same destination, the first connection between edge server A and a client, the second 

one between edge server B and the same client. 

 



 
(a) Delay (ms)        (b) Jitter (ms) 

Fig. 8. Experimental results related to two different connections with the same destination 

 

Figure 8 (a) shows that according to the delay, the performance of edge server A is 

better than that of edge server B for a certain period of time. Since jitter is calculated 

as the magnitude of the delay variation, it will always be a positive number with zero 

indicating that no jitter is present. The standard deviation of delay was computed to 

measure jitter. Server A, as depicted in Figure 8 (b), provides better QoS in terms of 

jitter on the average than the server B. Besides, throughput belonging to the both 

MCU servers was almost steady in the conducted experiment, whereas in real-time 

systems, continuous fluctuation is significant to be considered as an issue. Also, the 

system showed that packet loss ratio is zero, which indicates efficient packet 

transmission in both connections related to server A and server B.  

A running monitoring probe does not provoke a meaningful network overhead for 

one user as we investigated the output of nethogs tool to compute its bandwidth 

overhead. We discovered that the implemented monitoring probe transmits ~1714 and 

receives ~1397 bytes per second for every user in average. Furthermore, in our 

experiment, it consumes only 0.7 percent of the whole CPU time and 2.28 percent of 

the whole memory usage in average. 

6 Discussion and conclusions 

Cost issues and other associated network-related parameters such as bandwidth 

capacity and data transfer are outstanding issues for multi-cloud service providers 

[15]. Therefore, effective usage of network resources plays a significant role in the 

distributed interoperable environment to save the expense. To this end, our study 

showed how edge services for time-critical applications could be used to 

automatically optimize the process of allocating and choosing the best infrastructure, 

which is responsible for offering acceptable network QoS and QoE.  

This research paper presented a network monitoring approach that is particularly 

suitable in the adaptation of real-time data streaming applications running on edge 

computing platforms. Adaptation approaches could be, for instance, re-configuration 

of connections among running application servers and users, or vertical scaling by 



resizing the network resources e.g. to offer more bandwidth, or even live-service 

migration by moving running application servers from the current infrastructure to 

another one. One of the goals of this paper was also to investigate those network-level 

metrics that are particularly important for the development and adaptation of time-

critical applications. Because these network-based measures can vary greatly and 

have significant effects on the system’s performance and users’ satisfaction. One 

important aspect is the design of adaptation mechanisms that can help the real-time 

services to react to environmental conditions and events, such as sudden increase in 

workload or in the number of users.  

Due to the distributed nature of edge computing, companies can run their real-time 

applications in different edge nodes, connecting each one with the users that are using 

the service in each region. We applied this method in a novel manner within an edge 

computing platform, such that this extensible architecture can be combined with 

monitoring information that is only available at the edge of the network. As the major 

finding, more dynamic adaptation to the user’s conditions (e.g. network status and 

user’s geographical location) can also be accomplished with network edge specific 

knowledge. Our future work includes applying more optimisation algorithms (e.g. 

Pareto-based multi-objective optimisation approach [16]) and comparing the 

feasibility of these approaches in the edge computing environment. 
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