
A network edge monitoring approach for real-time data

streaming applications

Salman Taherizadeh1,4, Ian Taylor2, Andrew Jones2, Zhiming Zhao3, and

Vlado Stankovski4

1 University of Ljubljana, Faculty of Computer and Information Science
{Salman.Taherizadeh}@fgg.uni-lj.si

2 Cardiff University, School of Computer Science and Informatics
{TaylorIJ1, JonesAC}@cardiff.ac.uk

3 University of Amsterdam, Informatics Institute
{Z.Zhao}@uva.nl

4 University of Ljubljana, Faculty of Civil and Geodetic Engineering
{Vlado.Stankovski}@fgg.uni-lj.si

Abstract. Renting very high bandwidth or special connection links is neither

affordable nor economical for service providers. As a consequence, ensuring

data streaming systems to be able to guarantee desired service quality

experienced by the users has been a challenging issue due to real-time changes

in the network performance of the Internet communications. This paper

presents a network monitoring approach that is broadly applicable in the

adaptation of real-time services running on network edge computing platforms.

The approach identifies runtime variations in the network quality of links

between application servers and end-users. It is shown that by identifying

critical conditions, it is possible to continuously adapt the deployed service for

optimal performance. Adaptation possibilities include reconfiguration by

dynamically changing paths between clients and servers, vertical scaling such

as re-allocation of bandwidth to specific links, horizontal scaling of application

servers, and even live-migration of application components from one edge

server to another to improve the application performance.

Keywords: Edge computing, network monitoring, real-time data streaming

1 Introduction

Real-time applications such as online gaming, telemedicine services, environment

monitoring systems, and video conferencing have highly on-demand needs to provide

not only a high-quality result but also deliver the result as early as possible for the

best real-time user experience—such as shorter response time via closer interaction

with the application server or higher resolution via more stable connection. However,

using cloud infrastructure to deploy such real-time applications provides some

benefits, such as reduction of operation costs, on-demand resource allocation should

be flexible enough in order to dynamically assign infrastructure according to needs of

such application and hence save the expense.

mailto:Vlado.Stankovski@fgg.uni-lj.si

Since real-time applications may become sensitive to the network quality, such as

latency between clients and running services, the requirements of such applications

could potentially be addressed by emerging edge computing technologies, which

allow computations to be performed at the edge of the network. The rationale of

employing these technologies is that computing should happen at the proximity of

data sources—e.g. cameras or sensors—and closer to where the results are needed [1].

Due to the federated nature of edge computing scenarios, real-time applications can

be deployed on different edge nodes with diverse properties (for instance network

performance, physical location, reliability, connectivity and so on). Hence, the

performance of such real-time applications varies significantly depending on the

runtime properties of their infrastructural resources as well as their clients’ network

conditions. To come up with these challenges, implementing effective, transparent

and elastic methods to monitor the Quality of Service (QoS) at the network edge is

difficult, yet also necessary. It is necessary because obtaining such network QoS

parameters makes it possible to take appropriate adaptation decisions at strategic level

(e.g. about the application topology and the selection of one or more physical

machines on which it will be running at geographic locations) and dynamic level (e.g.

about the application reconfiguration, vertical or horizontal scaling, re-location and so

on). The edge servers should continue to monitor these parameters and determine if

user experience needs to be improved. In this way, more dynamic adaptations to the

user’s conditions (e.g. network status) can be accomplished by utilising network edge-

specific knowledge [2]. Therefore, particular attention has to be paid to monitoring

network links between end-users’ clients and edge servers.

The goal of the present paper is to implement a network edge monitoring approach

that considers critical QoS metrics including delay, packet loss, throughput and jitter

which are specific to the real-time applications we envisage. Therefore, it can be used

for functionalities such as runtime service adaptations for streaming cases, for

example automatically tuning the network quality by changing network paths to re-

route via other edge servers or dynamically connecting the clients to the best servers

based on their network edge conditions, location, etc. In this way, our proposed

system is able to ensure the best possible Quality of Experience (QoE) for the users.

The rest of the paper is organized as follows. Section 2 presents the related work.

Section 3 describes a real-time data streaming use case. Section 4 presents our

network edge monitoring approach, followed by preliminary results in Section 5, and

the discussion and conclusions appear in Section 6.

2 Related work

There have been many research approaches, trying to provide network QoS

guarantees for real-time data streaming services. A new paradigm, called edge

computing, is emerging as an extension of cloud computing to support and meet the

QoS requirements of real-time applications which are delay and jitter-sensitive [3].

Since edge computing is deployed at the edge of the network, it provides low latency,

location awareness, and optimizes users’ experience under QoS requirements for

streaming and real-time applications [4].

Chen et al. [5] focused on the users’ perspective in online gaming systems; from

their point of view, the QoS metrics related to network conditions—namely delay,

packet loss, bandwidth—have an important effect on gaming experience. Their results

showed that packet loss and bandwidth limitations impose negative impact on the

frame rates and the graphic quality in these systems. To provide more stable network

performance for real-time services and optimizing the network path and resources,

Jutila [6] presents adaptive edge computing solutions based on different traffic

management methods that monitor and react to network QoS changes. To check the

network quality in the context of such applications, the most important metrics to be

analysed for adaptation are network throughput, latency, packet loss and jitter [7].

According to the cited literature, we can conclude that monitoring of these

network-related metrics can help data streaming service providers guarantee QoE to

end-users facing network resources limitations. Furthermore, an investigation of the

recent related work supports the conclusion that a current challenge in this area is to

continuously adjust the deployed environment according to the runtime changes in

network conditions intrinsic to connections of both application servers and also users;

this is the main focus of the research presented in the paper.

For dynamic adaptation of edge-based applications, emphasis should be put on the

importance of scalability, robustness, non-intrusiveness, interoperability and

possibilities to support live-migration of the service.

 Scalability: A scalable monitoring system is able to handle huge amounts of

monitoring data across large numbers of resources and services [8].

 Robustness: A robust monitoring system is able to be highly tolerant of many

failure scenarios and detect changes in environment, adapting to a new situation

and continuing its operation [9].

 Non-intrusiveness: A non-intrusive monitoring system is capable of being

lightweight to the normal flows of application and infrastructure [10].

 Interoperability: An interoperable monitoring system is not specific to a given

infrastructure and is able to monitor an application that resides on other cloud

providers’ infrastructure [11].

 Live-migration support: In live-migration, applications migrate from a physical

host to another one at any time without stopping operations [12].

Table 1 presents the analysis of the essential properties for the widely used multi-

cloud monitoring tools. The goal of the comparison is to specify and trade-off the

strengths, drawbacks and challenges which have been encountered in the context of

self-adaptive edge-based applications.

Table 1. Requirement analysis for multi-cloud monitoring systems

Tool Scalability Robustness
Non-

intrusiveness
Interoperability

Live-migration

support

Zenoss1 Yes No Yes Yes No

Ganglia2 Yes Yes limited Yes Yes

Zabbix3 Yes No Yes Yes No

Nagios4 No No limited Yes No

OpenNebula5 Yes Yes Yes No limited

Lattice6 Yes Yes Yes Yes Yes

JCatascopia7 Yes Yes limited Yes Yes

Comparison in Table 1 is upon the reviewed literature and based on conducting

experiments with the tools. These tools are investigated in order to find out an

appropriate base-line technology for the needs of monitoring edge-based applications

and the requirements of automatic adaptation to guarantee the QoS and the QoE

performances which are subjective measure from the users' viewpoint on the overall

value of the provided service.

3 Real-time data streaming use case: WebRTC/MCU

Real-time communication plays an increasingly important role for many business

applications, including cooperative working environments and video-conferencing for

instance via WebRTC8 (Web Real-Time-Communications) technology [13]. The

WebRTC use case is explained here as an example of a large range of new potential

real-time applications which need to have very high QoS in regard to their

communication service, detect and respond to network-based urgent events very

rapidly and also operate reliably and robustly throughout their lifetime.

The WebRTC open project enables real-time communications directly in the

browser, and its performance may be influenced by highly fluctuating quality of the

Internet connections. To this end, intermediate devices called Multipoint Control Unit

(MCU) servers, which can be running on different data centers all around the world,

are being used to manage the communication between the clients. The function of

these MCU servers deployed at the edge of the network is to coordinate the

distribution of audio, video, and data streams amongst the multiple participants in a

multimedia session. These data centers allow interconnecting MCU servers in

different regions. Therefore, for every user, there is an opportunity to have more than

one MCU server to provide the service and hence it would be possible to connect a

user to the best possible MCU. Figure 1 shows an example of how to interconnect all

MCU servers to each other.

1 Zenoss monitoring system, http://www.zenoss.org
2 Ganglia monitoring system, http://ganglia.info/
3 Zabbix monitoring system, http://www.zabbix.com/
4 Nagios monitoring system, https://www.nagios.org/
5 OpenNebula, http://www.opennebula.org/
6 Lattice, http://reservoir-fp7.eu/
7 JCatascopia monitoring system, http://linc.ucy.ac.cy/CELAR/jcatascopia/
8 WebRTC, https://webrtc.org/

Fig. 1. A deployment of MCU servers’ interconnection globally running all over the world

There are plenty of other applications, similar to MCU servers in a WebRTC

video-conference, in which communication between users is required to pass through

intermediate servers. Examples include the Openfire9 server in instant messaging (IM)

group chat, and CipSoft10 servers in online gaming.

4 Design and implementation of the monitoring approach

In our work, we focus on performance indicators from the user perspective; since

they can be used to evaluate the network quality delivered to an end-user, then it is

possible to improve the overall acceptability of the service, as perceived subjectively

by each user. Figure 2 provides the schema of a user’s communication via an MCU

server as intermediary, which has to be monitored and compared with the other

alternatives as potential MCU servers deployed in highly distributed, edge computing

infrastructures. Supported by edge computing platforms such as Docker, the

intermediary service can be deployed on-the-fly or on several running instances in

different edge computing nodes.

Fig. 2. Use and monitoring of MCUs to support real-time streaming

9 Openfire, http://www.igniterealtime.org/projects/openfire/
10 CipSoft, http://www.cipsoft.com/

An overview of the proposed monitoring architecture is shown in Figure 3.

Fig. 3. Overview of the proposed model for user-centric network monitoring

This monitoring system employs a number of distinct components. The light-

weight, scalable, custom-made monitoring system implemented in JCatascopia

framework [14] is responsible for monitoring QoS parameters of connections between

the real-time application edge server and clients at the network layer. The

implemented monitoring system is not limited to operating on specific cloud

providers and can be utilized to monitor federated cloud environments where

applications are residing on multiple infrastructures. As shown in Figure 4, the

network-level monitoring probe could separately represent a standalone application

that runs amongst other running applications.

Fig. 4. Network-level monitoring probe running amongst other applications

Different network-level QoS metrics—including throughput, delay, jitter and

packet loss, which have been considered as important parameters for various

video/audio streaming applications—are measured by monitoring probes on top of

each edge node. The pseudocode of the developed algorithm for the monitoring probe

is depicted in Figure 5.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

/* Monitoring probe running on a Host/VM/Docker which resides in Edge Computing Node i (ECNi)*/

/* PL: Packet Loss */

/* NT: Network Throughput */

/* AD: Average Delay */

/* AJ: Average Jitter */

while(true){

 TS ← TimeStamp()

 for each current Userx do {

 PL ← Calculate_PL(ECNi, Userx) //Calculate PL of link between ECNi and Userx

 NT ← Calculate_NT(ECNi, Userx) //Calculate NT of link between ECNi and Userx

 AD ← Calculate_AD(ECNi, Userx) //Calculate AD of link between ECNi and Userx

 AJ ← Calculate_AJ(ECNi, Userx) //Calculate AJ of link between ECNi and Userx

 Message ← Make_Message(ECNi, Userx, TS, PL, NT, AD, AJ)

 Send_To_Monitoring_Server(Message)

 } // end of for

 wait(interval)

} // end of while

Fig. 5. Pseudocode for the implemented monitoring probe

A monitoring server is responsible for orchestrating and collecting QoS data from

each monitoring probe. The monitoring server consists of two parts: a Time Series

Database (TSDB) and a control agent. The TSDB, implemented by Apache Cassandra

server, is used to store the measured values, while the control agent, implemented in

Java, is responsible for network-based QoS analysis, evaluating relevant policies and

returning decisions consistent with these policies. It analyses the running servers’

status and provides adaptation plans, for instance, changing network paths to re-route

via other edge servers, or vertical scaling by resizing the resources e.g. to offer more

bandwidth, or application server check-pointing/live-migration, and so forth. The

pseudocode of the developed algorithm for the control agent is depicted in Figure 6

where the coefficients C1, C2, C3 and C4 are the weights assigned to each network-

level QoS metric. These weights could be dependent on the use case. For example, for

VoIP applications, jitter is more important than delay. Consequently, jitter should

have bigger weight in this case as it has more influence on user experience.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

 /* Control agent running as a part of monitoring server*/

/* NQi,x: Network Quality of link between Edge Computing Node i (ECNi) and Userx */

/* BECNx: The Best Edge Computing Node to provide the service for Userx: */

while(true){

 for each current Userx do {

 for each ECNi do { //Calculate Network Quality for each possible Edge Computing Node

 NQi,x ← C1*PL + C2*NT + C3*AD + C4*AJ

 } // end of for

 BECNx ← Choose_The_Best_Node_With_Maximum_Network_Quality(NQi,x)

 if BECNx has better network quality compared to the current Edge Computing Node

 during the last α intervals do{ // α can be defined according to the use case

 Adaptation plan is launched

 } // end of if

 } // end of for

 wait(interval)

} // end of while

Fig. 6. Pseudocode for the implemented control agent

Considering Figure 3, when our monitoring solution executes, it proceeds as

follows: (1) A real-time application server (e.g. MCU server implemented by

Medooze11 as an open source conference application in our experiment) typically

serves a large number of users and can be deployed and run on a selected edge

computing node. (2) All relevant QoS metrics are measured at regular intervals by a

monitoring probe and then all measured values will be reported to the monitoring

server. (3) The monitoring server stores the collected metrics in a TSDB. The

collected data can be analysed and used for capacity planning and strategic analysis

like longer-term usage trends. (4) The control agent checks possible degradation of

the required network quality for each edge computing node, and relates any such

information to the current demand. When the current condition does not satisfy the

expected requirements, an adaptation plan to achieve the desired performance can be

launched. Using Docker's container-based virtualization, the control agent includes

Kubernetes12 technology for dynamically automating deployment, scaling, and

management of containerized applications.

5 Measurements

In order to demonstrate the presented monitoring approach, network QoS is

evaluated through four metrics, namely delay, packet loss, throughput and jitter.

Deployed monitoring probes can measure these network QoS metrics which

particularly affect the application performance. In case of any deterioration of system

health, for example due to the presence of excessive jitter, control agent may trigger

an adaptation mechanism to fix the QoS-related problem. The possible adaptation

mechanism could be, for instance, re-connecting users to a set of the best reliable

servers offering fully-qualified network performance.

11 Medooze, http://www.medooze.com/
12 Kubernetes, http://kubernetes.io/

For experimentation, we used a WebRTC client with a low-throughput connection

and two MCU servers (A and B) running on infrastructures in different geographical

locations with one Gbps bandwidth and the same processing power and memory—

2397.222 MHz and 2 GB RAM respectively. The monitoring probes use ping results

to periodically measure the QoS metrics via the ICMP (Internet Control Message

Protocol) protocol. The monitoring probes deployed on the two MCU servers send 10

ICMP packets at an interval of 200 ms to the WebRTC client and then they calculate

the QoS metrics on an average basis. Each ICMP packet includes 500 bytes of data.

The set of measurements are repeated continuously at a frequency of 15 times per

minute which means every 4 seconds.

The implemented network edge monitoring technique takes into account two types

of conditions, shown in Figure 7: when ICMP packet filtering is (a) disabled or (b)

enabled, inside a private network which is depicted by a rectangle. It is not unusual

that ICMP traffic is filtered in private administrative domains due to various security

concerns. In such case, the ping command returns no response and the packet loss is

100%; hence, the monitoring probe changes its mode of operation and uses traceroute

to identify the path to the edge router. With this information available, the monitoring

probe measures the QoS metrics between the edge server and the edge router (instead

of the client). This measurement is an appropriate approximation of network-based

QoS between the server and the client; since our main target is to compare the QoS of

different routes from the MCU servers to the edge router.

(a) Without ICMP Packet Filtering (b) With ICMP Packet Filtering through edge router

Fig. 7. Path between an edge server and a client with different administrative domains

The measurements presented in Figure 8 show how this tradeoff helps the system

monitor the network-level QoS metrics related to two different connections with the

same destination, the first connection between edge server A and a client, the second

one between edge server B and the same client.

(a) Delay (ms) (b) Jitter (ms)

Fig. 8. Experimental results related to two different connections with the same destination

Figure 8 (a) shows that according to the delay, the performance of edge server A is

better than that of edge server B for a certain period of time. Since jitter is calculated

as the magnitude of the delay variation, it will always be a positive number with zero

indicating that no jitter is present. The standard deviation of delay was computed to

measure jitter. Server A, as depicted in Figure 8 (b), provides better QoS in terms of

jitter on the average than the server B. Besides, throughput belonging to the both

MCU servers was almost steady in the conducted experiment, whereas in real-time

systems, continuous fluctuation is significant to be considered as an issue. Also, the

system showed that packet loss ratio is zero, which indicates efficient packet

transmission in both connections related to server A and server B.

A running monitoring probe does not provoke a meaningful network overhead for

one user as we investigated the output of nethogs tool to compute its bandwidth

overhead. We discovered that the implemented monitoring probe transmits ~1714 and

receives ~1397 bytes per second for every user in average. Furthermore, in our

experiment, it consumes only 0.7 percent of the whole CPU time and 2.28 percent of

the whole memory usage in average.

6 Discussion and conclusions

Cost issues and other associated network-related parameters such as bandwidth

capacity and data transfer are outstanding issues for multi-cloud service providers

[15]. Therefore, effective usage of network resources plays a significant role in the

distributed interoperable environment to save the expense. To this end, our study

showed how edge services for time-critical applications could be used to

automatically optimize the process of allocating and choosing the best infrastructure,

which is responsible for offering acceptable network QoS and QoE.

This research paper presented a network monitoring approach that is particularly

suitable in the adaptation of real-time data streaming applications running on edge

computing platforms. Adaptation approaches could be, for instance, re-configuration

of connections among running application servers and users, or vertical scaling by

resizing the network resources e.g. to offer more bandwidth, or even live-service

migration by moving running application servers from the current infrastructure to

another one. One of the goals of this paper was also to investigate those network-level

metrics that are particularly important for the development and adaptation of time-

critical applications. Because these network-based measures can vary greatly and

have significant effects on the system’s performance and users’ satisfaction. One

important aspect is the design of adaptation mechanisms that can help the real-time

services to react to environmental conditions and events, such as sudden increase in

workload or in the number of users.

Due to the distributed nature of edge computing, companies can run their real-time

applications in different edge nodes, connecting each one with the users that are using

the service in each region. We applied this method in a novel manner within an edge

computing platform, such that this extensible architecture can be combined with

monitoring information that is only available at the edge of the network. As the major

finding, more dynamic adaptation to the user’s conditions (e.g. network status and

user’s geographical location) can also be accomplished with network edge specific

knowledge. Our future work includes applying more optimisation algorithms (e.g.

Pareto-based multi-objective optimisation approach [16]) and comparing the

feasibility of these approaches in the edge computing environment.

7 Acknowledgements

This project has received funding from the European Union’s Horizon 2020

Research and Innovation Programme under grant agreement No. 643963 (SWITCH

project: Software Workbench for Interactive, Time Critical and Highly self-adaptive

cloud applications).

References

1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge Computing - Vision and Challenges.

Technical Report MIST-TR, Wayne State University, 2016.

2. Zhu, J., Chan, D., Prabhu, M., Natarajan, P., Hu, H., Bonomi, F.: Improving web sites

performance using edge servers in fog computing architecture. IEEE 7th International

Symposium on Service Oriented System Engineering (SOSE), Pp. 320-323, 2013.

3. Shojafar, M., Cordeschi, N., Baccarelli, E.: Energy-efficient Adaptive Resource

Management for Real-time Vehicular Cloud Services. IEEE Transactions on Cloud

Computing, Vol. PP, Iss. 99, 2016.

4. Stojmenovic, I., Wen, S.: The fog computing Paradigm - Scenarios And Security Issues.

Conference on Computer Science and Information Systems (FedCSIS), 2014.

5. Chen, K.T., Chang, Y.C., Hsu, H.J., Chen, D.Y., Huang, C.Y., Hsu, C.H.: On the quality of

service of cloud gaming systems. IEEE Transactions on Multimedia, Vol. 16, No. 2, Pp.

480-495, 2014.

6. Jutila, M.: An Adaptive Edge Router Enabling Internet of Things. IEEE Internet of Things

Journal, Vol. PP, Iss. 99, 2016.

7. Cervino, A.J.: Contribution to multiuser videoconferencing systems based on cloud

computing. Doctoral thesis, Technical University of Madrid, 2012.

8. Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks with lattice. Proceedings

of 2010 IEEE/IFIP Network Operations and Management Symposium Workshops (NOMS

Wksps), IEEE, Osaka, Pp. 239–246, 2010.

9. Fatema, K., Emeakaroha, V.C., Healy, P.D., Morrison, J.P., Lynn, T.: A survey of cloud

monitoring tools: Taxonomy, capabilities and objectives. Journal of Parallel and

Distributed Computing, Vol. 74, No. 10, Pp. 2918-2933, 2014.

10. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Martin, P., Stankovski, V.: Runtime

network-level monitoring framework in the adaptation of distributed time-critical cloud

applications. Proceedings of the 22nd International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA'16), ACM, Las Vegas, 6 pages.

11. Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P.P., Ullah-Khan, S., Guabtni,

A., Bhatnagar, V.: An overview of the commercial cloud monitoring tools: research

dimensions, design issues, and state-of-the-art. Computing, Vol. 97, No. 4, Pp. 357-377,

2015.

12. Nadjaran-Toosi, A., Calheiros, R. N., Buyya, R.: Interconnected cloud computing

environments: Challenges, taxonomy, and survey. ACM Computing Surveys (CSUR), Vol.

47, No. 1, 2014.

13. Perkins, C., Westerlund, M., Ott, J.: Web Real-Time Communication (WebRTC) Media

Transport and Use of RTP. IETF Active Internet Draft, 2012.

14. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia - Monitoring Elastically Adaptive

Applications in the Cloud. 14th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, 2014.

15. Sookhak, M., Gani, A., Talebian, H., Akhunzada, A., Khan, S.U., Buyya, R., Zomaya,

A.Y.: Remote data auditing in cloud computing environments: a survey, taxonomy, and

open issues. ACM Computing Surveys (CSUR), Vol. 47, No. 4, 2015.

16. Al-Jubouri, B., Gabrys, B.: Multicriteria approaches for predictive model generation: A

comparative experimental study. 2014 IEEE Symposium on Computational Intelligence in

Multi-Criteria Decision-Making (MCDM), IEEE, Pp. 64-71, IEEE, 2014.

