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Foreword

The ninth edition of the Global Trajectory Optimization Competition took place during
April-May 2016. After a one month long registration period, scientists were presented with
an interplanetary trajectory optimization problem with a complex solution landscape. The
theme chosen to elaborate the competition problem was “active space debris removal” and
the competition was named “The Kessler Run” after the famous chain effect that can lead
to catastrophic consequences in overpopulated and uncontrolled orbital environments.. It
is imagined that in the year 2060 a serious explosion triggered the Kessler effect compro-
mising the Sun-synchronous orbital environment. Fortunately, not all is lost, it is imagined
that scientists isolate a set of 123 orbiting debris pieces that, if removed, would allow to
restore the orbital environment functionalities. Participating teams were asked to design a
series of space missions that could cumulatively remove all the debris pieces. Each mission
cost depended on the spacecraft mass and a base cost that was set to be increasing during
the competition timeframe as to stimulate early submissions and create a race effect.

The innovative format of the competition, with an online leaderboard where all teams could
monitor the other teams performances and progress, created quite an enjoyable event which
was both entertaining for outsiders and informative for the scientists who battled up to the
very last second to secure a better solution score. A total of 320 scientists divided in 69
teams from 125 different institutions and 19 different countries registered to the competi-
tion. A total of 36 teams submitted a solution to the challenge and more than 1200 missions
were planned to remove those 123 debris pieces.

This special issue of the Acta Futura journal gathers the contributions of the teams that
accepted to write about the methods developed and used during the competition to design
the missions that would cumulatively remove all debris pieces. The papers include con-
tributions from all top ranking teams as well as from the competition organizers, allowing
this issue to hopefully be of great interest in the years to come to mission designers as well
as to the automated debris removal community.

Dario Izzo
(Competition Organizer)



1 Jet Propulsion Laboratory 10 123 731.2756
2 NUDT Team 12 123 786.21452
3 XSCC-ADL 12 123 821.37966
4 Tsinghua-LAD 12 123 829.57987
5 NPU 13 123 878.99821
6 Strathclyde++ 14 123 918.9808

7 DLR 14 123 949.85389
8 Missions Learners 14 123 964.51134
9 The Aerospace Corporation 14 123 1004.4860
10 Team Jena 15 123 1022.9063
11 UT Austin 15 122 1044.1787
12 NJU Team 16 123 1047.9685
13 EFLMAN TEAM 14 119 1107.6936
14 CU Boulder 17 123 1150.8439
15 CAS-NUAA 14 123 1182.0632
16 MTU-UoM 16 122 1192.7433
17 NSSC-THU 16 122 1210.3333
18 Brute WORHP 18 123 1229.5475
19 The Goonies 15 122 1238.6396
20 NablaZeroLabs 16 123 1267.7501
21 TYSE 16 123 1336.8590
22 ™ 18 123 1490.9659
23 Occitania 22 120 1493.8567
24 ARGOoPS 20 123 1512.6017
25 Personal team 23 123 1588.5770
26 GO to space 20 112 1819.1391
27 Uofl and Goddard 23 123 1951.6797
28 LSPirates 20 105 2164.2321
29 Astro-ASAP-UC3M 13 85 3141.1951
30 Cal Poly SLO 39 84 4467.8746
31 Team STAR Lab 12 57 4481.7781
32 Nicolas RAVE 13 18 6453.0254
33 National University of Colombia 2 7 6511.5471
34 MeltedCode 1 5 6594.1105
35 AMSS_GTOC 1 4 6619.3569
36 Bremen optimizers 1 2 6760.20

TABLE 1. The final rankings achieved during the ninth edition of the Global Trajectory Optimization Competition (GTOC9).
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The Kessler Run: On the Design of the GTOC9 Challenge

DARIO IZZOTT MARCUS MARTENS?

T ADVANCED CONCEPTS TEAM, EUROPEAN SPACE AND TECHNOLOGY CENTER (ESTEC)

¥ FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE
DELFT UNIVERSITY OF TECHNOLOGY, DELFT, THE NETHERLANDS.

Abstract. As organizers of the 9th edition of
the Global Trajectory Optimization Competition
we were tasked to design a challenging trajectory
optimization problem to be solved during the du-
ration of one month. We gave ourselves the goal
to create a problem which was accessible enough
for newcomers, deep enough for experts, uncon-
ventional in its objective function and which al-
lowed for a real-time format of the competition.
This document describes our design process from
the initial idea up to the final form. We document
some of our experiments conducted to learn about
the solution landscape of an earlier simplified ver-
sion of the problem and show how this exploration
helped us in tuning the problem parameters to cre-
ate a balanced and challenging task.

1 Introduction

The Global Trajectory Optimization Competition
(GTOC) started in 2006 [1] with the intent to attract
interest in the fascinating and difficult problem of op-
timizing interplanetary trajectories and to advance its
methods. The winners are presented with a trophy they
will keep up to the following edition (see Figure 1) and
are asked to organize the following edition according

*Corresponding author. E-mail: dario.izzo@gmail.com

FIGURE 1. The GTOC trophy as of May 2017.

to their own schedule and rules. During the years, pri-
vate citizens, academic institutions and companies have
competed in the various editions making GTOC an es-
tablished and prestigious event. The GTOC web por-
tal [2] collects and presents various resources and fea-
tures an exhaustive collection of scientific publications
related to the various competitions, which shows how it
has stimulated the research in this field.

As winners of the 8th GTOC, organized by the Jet
Propulsion Laboratory [3, 4], we accepted the honour
(and burden) to organize the following edition: GTOC9.
Starting from our experience with the complexity of the
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design of multiple debris removal missions [5] we de-
cided to design the GTOCY problem around that sce-
nario, trying to leverage on the under-explored chal-
lenges that the differential motion of the right ascension
of the ascending node (RAAN) introduces when multi-
ple debris have to be selected for removal.

This document describes the trajectory problem cho-
sen and its evolution as we tuned its various parameters
to ensure a challenging and interesting event. It is orga-
nized as follows: Section §2 introduces our main goals
in developing the challenge. The following Section §3
presents the finalized formal mathematical description
of the problem. Section §4 describes the results of a
dry-run we made on a simplified (and preliminary) ver-
sion of the problem and the lessons learned from that
exploration of the solution landscape. We then conclude
in Section §5 discussing briefly the design of the real-
time aspect of the event.

2 Problem Requirements

When we started thinking about the GTOC9 challenge,
we defined a set of goals by inheriting some from pre-
vious editions organizers and some from our own view
on what GTOCs can (and should) be:

1. From a mathematical point of view, the problem
has to be a global optimization problem with mul-
tiple local minima. Its complexity has to make it
highly unlikely for the different participants to pro-
duce the same solution so that the final spread of
returned trajectories should be as diverse as possi-
ble.

2. The objective function needs to be unusual in the
sense that many of the problem details should be
perceived as novel to ensure that no participant has
a clear advantage because he has worked on some
similar issues before.

3. The development of novel ideas and use of orig-
inal algorithms should give a competitive advan-
tage with respect to the reuse of well established
methods. No standard approach should be imme-
diately applicable and different strategies should
be equally likely to return promising solutions.

4. The mission design problem to be tackled should
go beyond being an academic exercise, and aim for
real world relevance

5. The entry level for participation should be as low
as possible, allowing exploration of the problem
at different levels of complexity by participants
with different levels of expertise and effort in-
vested within the given time span of 4 weeks.

6. The problem solutions have to be easily and objec-
tively verifiable.

7. A clear winner has to be declared soon after the
competition ends.

8. If possible, the competition format should be inno-
vated.

We thus started from these objectives to design an
active debris removal mission, relying on the knowl-
edge that some instances of this trajectory design prob-
lem map to complex variants of the Travelling Salesman
Problem and thus belong to the class of A/P-hard prob-
lems (nondeterministic-polynomial complexity) [5].

While a number of scientists addressed, also recently,
the problem of the design of missions able to remove
multiple debris at once [6, 7, 8, 9, 5] (to name just a
few of the works consulted), we had the impression that
there was still a good amount of space for improvement
left in this specific area of trajectory design. In partic-
ular, the combinatorial problem of debris selection (i.e.
the problem of selecting what pieces of debris to re-
move from a potentially large set) was far from being
explored satisfactorily, especially for long removal se-
quences. Considering long sequences imposes a quite
interesting challenge, since the differential .J; effect re-
sults in the evolution of a complex RAAN distribution.
From these thoughts, the basic idea for the GTOC9
problem was born.

3 The Kessler Run

To construct a scenario where the removal of long
chains of multiple debris is relevant, we thought to look
into a possible future scenario where the Kessler Syn-
drome [10] triggered a significant damage to an impor-
tant, and crowded, orbital environment such as that of
the Sun-synchronous satellites. The following storyline
emerged:

“It is the year 2060 and the commercial exploitation
of Low Earth Orbits (LEOs) went well beyond the tril-
lion of Euros market size. Following the unprecedented
explosion of a Sun-synchronous satellite, the Kessler ef-
fect triggered further impacts and the Sun-synchronous

12
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The Kessler Run: On the Design of the GTOC9 Challenge

FIGURE 2. Visualization of the M orbits of the M debris
at some fixed epoch. The earth is visualized as the transpar-
ent blue sphere. See also https://youtu.be/zvxZx—
ongQo

LEO environment was severely compromised. Scientists
from all main space agencies and private space compa-
nies isolated a set of 123 orbiting debris pieces that, if
removed, would restore the possibility to operate in that
precious orbital environment and prevent the Kessler ef-
fect to permanently compromise it. You are thus called
to design a series of missions able to remove all critical
debris pieces while minimizing the overall cumulative
cost of such an endeavour.”!

Finally, we decided to name the competition “The
Kessler Run” after a famous Star Wars [11] nonsensical
quote from Han Solo claiming his ship, the Millennium

Falcon, did “The Kessel run in less than 12 parsecs”.”

Formal Problem Definition

We report here parts of the original document [12] con-
taining the official description of the problem which
was made public and sent to all 69 teams who regis-
tered to GTOCO by the 1st of April 2017.

Design n missions able to cumulatively remove
M = 123 orbiting space debris moving along Keple-
rian orbits perturbed by the mean .J, effect as detailed
in Appendix A. Figure 2 shows a visualization of those

The decision to target 123 debris was, at this stage, purely arbi-
trary. Merely the result of keyboard proximity (the same way some
people pick passwords such as “QWERTY”.

Zhttps://www.youtube.com/watch?v=nmyvFEkJSE4

orbits while Figure 3 presents the histograms for their
orbital parameters.

One mission is a multiple-rendezvous spacecraft tra-
jectory where a subset of size N of the M orbiting
debris is removed by the delivery and activation of N
de-orbit packages. In between debris visits, the space-
craft dynamics are Keplerian and subject to the full Jy
perturbation. The equations of motion are reported in
Appendix A. The following cost function needs to be
minimized:

n n
J = ZC’i = Z [ci + a(mo, — mdry)ﬂ (1)

i=1 i=1
where C; is the cost charged by the contracted launcher
supplier for the i-th mission and it is composed of a
base cost ¢; (increasing linearly during the competition
time frame) and a term « (mg, — md,«y)2 favouring a
lighter spacecraft. At the beginning of the i-th mission,
mg, denotes the (total) spacecraft mass and mg,,, its
dry mass. Each kg of launch mass saved thus results
in a discount over the mission cost (but also in a less

capable spacecraft).

The i-th mission starting epoch is denoted with ¢{ and
its end epoch with t{ . A mission starts with a launch
delivering, at ¢, one spacecraft at a chosen debris and
ends when all the N de-orbit packages on-board have
been delivered and activated. An orbiting debris is con-
sidered as removed if: a) its position and velocity vector
at some epoch ¢ coincides with the spacecrafts position
and velocity vector and b) the spacecraft stays in prox-
imity of the debris for the following ¢,, > 5 [days]
while delivering and activating a de-orbit package of
mass mg. = 30 [kg].

Afterwards, the spacecraft is free to ignite its propul-
sion system again and leave towards the next debris
(note that only in-between debris transfers the space-
craft is subject to the full .J, perturbation and its dynam-
ics is described by the equations of motion reported in
Appendix A. During the removal operations (i.e. for a
time ¢,,) the position and velocity of the spacecraft must
be considered to be those of the debris as computed by
the ephemerides).

The basic cost ¢; of each mission (i.e. not including
the « term), increases linearly during the competition
month and is computed as follows:

tsubmission - tstart (

c;, =Cm + CM—Cm)

tend - tstart

where tsypmission 18 the epoch at which the ¢-th mis-
sion is validated and t.,q and ts .+ are the end and

DOI: 10.5281/zenodo.1139022
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FIGURE 3. Histograms for the various orbital parameters of the M debris orbits.
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FIGURE 4. Histogram for all differential RAAN drifts be-
tween pairs of debris.

the beginning epochs of GTOCY9. The minimal basic
cost ¢, is 45 MEUR, while the maximum cost ¢ is
55 MEUR. Each orbiting debris not removed by any of
the missions is considered, at the end of the competi-
tion, removed by a dedicated launch with a fixed cost of
Cpenalty = 95.0018 MEUR

Spacecraft

Each spacecraft’s initial mass mg is the sum of its dry
mass, the weights of the N > 1 de-orbit packages to be

used and the propellant mass: mg = Mmqry + Nmge +
my. All spacecraft have a dry mass of mg,, = 2000
[kg] and a maximum initial propellant mass of m, =
5000 [kg]. Less propellant may be used, in which case
the launch costs will decrease. Each de-orbit package
has a fixed weight of mg. = 30 [kg].

Allowed Manoeuvres

The only manoeuvres allowed to control the spacecraft
trajectory are instantaneous changes of the spacecraft
velocity, its magnitude being denoted by AV. After
each such manoeuvre, the spacecrafts mass needs to be
updated by Tsiolkovsky’s equation:

(%)
my =m;exp | — ,

Ve

where v, = I5,g0. A maximum of 5 impulsive velocity
changes are allowed within each transfer (leg) between
two successive debris, excluding the departure and ar-
rival impulse.

Operational Constraints

The debris removal operations during each of the
multiple-rendezvous trajectories are complex and de-
mand some control over the schedule of the debris vis-
its:

14
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1. The overall time between two successive debris
rendezvous, within the same mission, must not ex-
ceed 30 days. Thus, if the arrival epoch at a debris
a is t, and the arrival to the next debris b is ¢, then
ty — t, < Aty = 30 [days].

2. Different missions cannot be operated in parallel
and a time of at least Aty; = 30 [days] must be
accounted for between any two consecutive mis-
sions so that tf + 30 < ¢ [days] if ¢] > t7 for all
1 7.

3. All mission events (arrivals, departures, maneu-
vers) have to take place in an allowed time win-
dow. Thus, for every event happening at epoch
tevent, it has to hold that 23467 < tepen: <
26419 [MJD2000] (corresponding to a window of
8 years).

4. The osculating orbital periapsis 7, must not be
smaller than r, = 6600000 [m]. For simplicity,
this condition is only checked immediately after
arrival, departures and at deep space manoeuvres,
but never in-between those events.

Table 1 summarizes the values of the problem con-
stants and parameters used for GTOC9 and for the sim-
plified version of the problem, which we introduce in
the following section.

4 Preliminary Solution Space Analysis

A concern in the design of a GTOC challenge is to en-
sure that the parameters of the selected problem are
well balanced to provide an interesting experience. It
seemed necessary for us to gain some insight into pos-
sible solution landscapes and an idea about the general
complexity of the problem to be able to make informed
choices on the parameters. Thus, we performed an in-
ternal one week long dry-run on a simplified version of
the problem.

The Simplified Problem

During our dry-run, we neglected the quadratic and
mass dependent term of the objective function by set-
ting a = 0. We also considered a fixed cost for each
launch independent of the time of submission by set-
ting ¢,, = ¢y, effectively ignoring the competitive as-
pect of the problem to reward early submissions. Based
on these decisions, the cost function in Eq.(1) reduces

value (simple version) units
@ 2.0-107%(0.0) MEUR /kg?
Cm 45 (55) MEUR
M 55 (55) MEUR
Atg 30 days
Aty 30 days
tw 5 days
mge 30 kg
Mary 2000 (1000) kg
my 5000 (2000) kg
Tp, 6600000 m
1 398600.4418 - 10° m?3/sec?
Ja 1.08262668 - 10~3 —
Teq 6378137 m
I, 340 (492) sec
9o 9.80665 m/sec?
Day 86400 sec
Year 365.25 days

JD = MJD2000 + 2451544.5 ——
MIJD = MJD2000 + 51544 ——

TABLE 1. Problem constants and conversions. The values
in parenthesis were used during a dry-run and were later ad-
Jjusted. JD is the Julian date. MJD the Modified Julian Date
and MJD2000 the Modified Julian Date 2000.

to its simplified version indicated with a subscript S:
Jg = n, that is to minimize the number of missions
needed for a complete removal of all debris.

During our preliminary exploration, we also relaxed
the constraints on the total time of flight, by having
23467 < teyent < 27119, effectively giving a 10 year
time window to find solutions. The set of the M = 123
orbiting debris was also generated with a different dis-
tribution of orbital parameters (one of the outcomes of
the dry-run was to introduce a more challenging set of
debris orbits). To further simplify, we restricted the tra-
jectories to avoid any deep space maneuvers and thus
having the spacecraft only thrust at departure and arrival
of debris. The launching systems defined by I, mq,y
and m,, were also different than in the final description
(compare Table 1). Apart from these modifications, the
basic challenge, i.e. finding a favorable combination of
debris removal sequences, remained still the same.

DOI: 10.5281/zenodo.1139022
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A Set Cover Problem?

Consider the set S of all possible missions (i.e. mul-
tiple debris removal missions) that can be flown with
the given spacecraft. The simplified problem is easily
mapped to a set cover problem (see Appendix B) with
some additional constraints: the universe U is the set
of debris, while each valid mission within the time con-
straints defines a subset S € S containing the debris it
removed. As each debris can only be removed once, a
disjoint set cover problem has to be considered and sets
of conflicting missions (i.e. mission overlapping in time
or violating the Atj; time gap) must not be part of the
solution. This can be incorporated in the integer linear
programming (ILP) formulation of the set cover prob-
lem (see Appendix B) by adding additional inequality
constraints, as detailed later.

We conclude that the simplified GTOC9 problem
maps onto a disjoint set cover problem, whose solu-
tion results in the selection of a minimal amount of non-
conflicting valid missions. Due to the NP-hardness of
set cover and ILPs in general, the computational com-
plexity of the simplified problem is already high and
brute force approaches are unlikely to be a feasible op-
tion. Clearly, it is impossible to compute the entire
set S, and even if it was possible the dimensionality
of the corresponding set cover problem would be much
too large to be directly solvable. Consequently, if one
wants to follow this solution strategy, one has to reduce
the problem-size to a small collection of subsets S re-
flecting possible debris removal sequences. Since each
subset in S will correspond to an actual mission, we will
interchangeably talk about subsets and missions, using
S also as a notion for a collection of missions with the
following, vaguely defined, qualities:

1. Each debris should be removed at least once by
some element of S.

2. There should be as little conflicting missions in &
as possible.

3. S needs to be small enough to support a fast con-
vergence of an integer linear programming solver.

4. S should be large enough to allow for the existence
of good solutions.

5. The size of each set in S should be as large as pos-
sible since removing more debris within a few mis-
sions is more cost-effective than removing only a
small amount of debris by a high number of mis-
sions.

6. S should also contain short missions since they are
less likely to overlap and thus avoid constraint vi-
olations by making it easier to assemble disjoint
sets for the final solution.

Some of these qualities are plainly contradictory and
while the quality of the solution rises and falls with S,
it is far from trivial to generate a favorable collection of
such missions.

We implemented a beam search algorithm to con-
struct the elements of S which we call single mission
beam search: BS. Beam search [13], [14] is a tree
search algorithm which has been established as a help-
ful building block for solving past GTOCs [15]. The
strength of beam search is that it allows to inspect large
search spaces created by combinatorial decisions by
ranking partial solutions and exploring only the most
promising further.

By defining a beam width bw, only the bw best partial
solutions are maintained at each level of the tree while
all others are pruned. Each of those bw solutions is than
expanded to compute multiple possible next steps (e.g.
the next transfer to all reachable space debris) to gen-
erate the next level of the search tree, which will be
pruned down to the highest ranking bw solutions again.
Adjusting the beam width bw thus allows to balance so-
lution exploration versus a given computational budget.
A beam width of bw = 1 corresponds to a greedy search
which only picks the optimal (partial) solution at each
step. An unlimited beam width bw = oo corresponds
to a breadth-first search that would exhaustively explore
all possible combinatorial decisions.

Incremental Searches

Before using the BS to construct S and thus solve the
resulting set cover instance, we first used BS, by com-
parison, to generate full solutions to the simplified prob-
lem. Beginning with the set of 123 debris as target set
U, BS is used (starting at a random debris and at the
earliest possible epoch) to remove the largest possible
subset 57 of debris. Afterwards, BS is called again on
the reduced set of targets U\S; to generate So, starting
again from a random debris and at an epoch accounting
for the Aty; gap between missions. This approach is
referred to as incremental BS.

Figure 5 shows the score distribution of various full
solutions created by multiple runs of a greedy search
(incremental BS with a beam width of 1) and in-
cremental BS with a beam width of 30, denoted by

16
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FIGURE 5. Score Js (total numbers of missions) achieved by 1000 different runs of (left) incremental greedy search and

(right) incremental BS with bw = 30.
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FIGURE 6. Number of debris removed per mission in 1000 different runs of (left) incremental greedy search and (right)
incremental BS with bw = 30. The black crosses mark the biggest positive outliers, i.e. a trajectory that would be most likely

part of the final solution.

BS30. The greedy search produces solutions with
Js = 19.5(+2.87) on average. Its best solution scores
Js = 15, but only 1 out of 1000 runs was able to dis-
cover such a solution. A small beam width of 30 is
already enough to improve the quality: BS30 produces
solutions with Jg = 14.5(+1.71). The top solution
with Jg = 12 appeared only once out of 1000 runs.

Although it is possible to increase the beam width
further in the hope to find better solutions, it comes
at a higher computational cost and does not address a
fundamental flaw of the incremental approach: While
more and more debris get removed, efficient transfers
between the remaining set of debris are becoming in-
creasingly difficult to find. This difficulty arises be-
cause of the ascending nodes movement. Consequently,
removing debris without a look-ahead strategy or some
global perspective leaves debris clouds with evenly dis-
tributed RAANS, resulting in the average AV cost per
transfer to increase tremendously.

Figure 6 shows the number of debris removed per
successive mission in 1000 runs of the incremental

greedy search and the incremental BS30. It is clear to
see how the average length of the removal sequences
decreases as the debris cloud becomes thinner. Note
how this is the result of the search algorithm used, not
a fundamental property of the problem solution. The
globally optimal solution is, instead, expected to have
no correlation between launch date and number of de-
bris removed per mission.

Set Cover Beam Search

The issue of the thin debris cloud disappears if we take
the set cover approach and thus use beam search no
longer incrementally, but always on the complete debris
cloud to generate a potentially overlapping and conflict-
ing set of mission candidates S. We grid the remaining
time window for missions at b different time epochs and
run, starting at each of those epochs, BS for each of the
123 starting debris, returning the k best trajectories to
get a high quality sample of possible trajectories. This
results in 123-b-k missions constituting our collection S
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which is subsequently used to create a disjoint set cover
problem instance.

Once we have the set cover instance, an ILP-solver
can be applied to determine the optimal solution by se-
lecting non-conflicting missions with disjoint removal
sequences. However, our first attempts to solve the
complete problem via this approach failed due to the
large problem dimension which was unsuitable for the
ILP solver we used: SCIP [16]. Thus, it was necessary
to create instances of set cover which were still solvable
in practice.

The Hybrid Strategy

Since the issue of thin debris clouds becomes only crit-
ical at the late stages of the incremental searches, we
opted for a hybrid strategy applying first an incremental
BS to reduce the size of the debris cloud and, finally,
solving the remaining, lower dimensional disjoint set
cover problem. In particular, we find the first 4 missions
by incremental BS with a beam width of bw = 100, re-
moving 21, 19, 20 and finally 11 debris. This leaves
52 debris to be removed and reduces the available time
window by 1533 days (accounting for the AT}y, time
gap between missions). We divided the remaining time
window equally into b = 300 epochs (which is roughly
one new mission each 7 [days]) and started BS from
each of these epochs and for each of the remaining de-
bris as a start debris, returning the £ = 2 best missions
out of each run. Consequently, we considered 31200
missions, and thus an S with 31200 subsets defining
the disjoint set cover problem.

To ensure a feasible final solution, we have to account
for mission conflicts (i.e. missions that overlap in their
time of flight or violate the At), time gap). The direct
way to approach this is to introduce one constraint for
each pair (z;, ;) of possible (conflicting) missions, al-
lowing at most one of them to be selected (z;+x; < 1).
Given the large amount of sets created, we quickly real-
ized that constructing this amount of constraints makes
our set cover instances intractable. Thus, we had to re-
lax our constraints as followed: once again, we divided
the remaining time window, but this time equally in c
epochs t5,...,¢%. For any epoch t, let E(t) C S be
the collection of subsets from S whose corresponding
mission takes place at ¢ (accounting for the Aty time
gap in between missions as well). Then, we can substi-
tute the pairwise intermission constraints by a constant

number of ¢ constraints:

>

J:S; €B(L})

;<1 Viel,...c

As a consequence of these new constraints, we might
find invalid solutions, i.e. missions which overlap at
epochs in between those selected ¢ epochs. However,
increasing c allows to minimize the amount of possible
overlap while balancing the feasibility of the set cover
instance by keeping the number of constraints low. We
decided to set ¢ to 200, which restricted the maximum
possible overlap for mission times to roughly 10 [days].
As it turns out, the trajectories found by BS are most of
the time stable enough to be moved a few days to the
past or the future without compromising the set of re-
moved debris. Thus, a violation of these new and softer
constraints was (most of the time) repairable by some
simple post processing of the selected trajectories.

To summarize, our hybrid strategy constructs a set
cover instance of 31200 variables and 252 constraints.
To solve this instance, we used a non-commercial solver
named SCIP [16]. SCIP deploys pre-solving techniques
by default before it tries to find the optimal solution for
the LP relaxation. This pre-solving step simplified the
instance to contain only 11355 variables and 233 con-
straints.

SCIP returned a solution corresponding to an en-
semble of 11 missions when tasked with the disjoint
set cover variant of the problem, which is already a
slight improvement to the results obtained by incremen-
tal BS. However, after softening the problem to a basic
set cover problem, a solution of only 10 missions was
generated. There were only 4 debris removed multiple
times within those missions. Three out of these defects
could be repaired by simply dropping the last leg of a
mission, as they were (coincidentally) removed as last
debris. Only one debris was part of the middle legs of
two missions. By exchanging one deorbiting of this de-
bris by a deep space maneuver and applying some man-
ual adjustments, this defect could be repaired as well.
Additionally, due to the softer constraints, some mis-
sions in the solution generated were still conflicting as
they had a gap Aty smaller than 30 [days]. After these
conflicts were repaired by moving the conflicting mis-
sions a few days apart while maintaining their removal
sequences, it was finally possible to obtain a valid so-
lution removing all 123 debris with only 10 missions.
The number of removed debris for those missions was
21,19,20,11,11,8,7,10,7 and 9 debris at last, which
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shows that the thin debris cloud problem was success-
fully mitigated following this approach.

Figure 7 shows a visualization of the hybrid strategy
and the resulting full solution. The gridded search that
was used to create the sets for each remaining debris at
nearby epochs is visible as the black area at the upper
right corner.

An additional trick that was deployed to allow for
better solutions was to have the last debris of some of
the fixed 4 missions be variable. For example, if the last
leg of the first mission could go to two possible debris,
a or b, we saved two versions of this mission, one with
the last leg to a and one to b. However, we left @ and b
as valid targets for later searches, artificially increasing
the density of the remaining debris cloud. The sets of
all possible combinations of those optional debris were
used in the set cover problem as special variables, which
could be picked without increasing the objective func-
tion while we still accounted for overlapping missions.
The isolated horizontal lines of dots visible in Figure 7
show these debris, which were still part of the search in
the set cover stage of our hybrid strategy, but were se-
lected by the solver to be removed as part of the earlier
missions.

Lesson Learned

The dry-run provided us the necessary feedback in
terms of problem complexity and suitability for a
GTOC to realize a number of important properties on
the problem and its potential solutions. Firstly, we had
reasons to believe that most solutions would be com-
pressed in the Jg = 9 — 11 area which would then re-
sult in assigning the victory to the team submitting that
score the earliest. We also did not want the final com-
petition days to be spent to improve some top solution
from (say) 9 to 8. So we decided to add the quadratic
term (o > 0) to the objective function and thus intro-
duced an interesting trade-off between heavy and light
spacecraft and, at the same time, have the score not di-
rectly linked to the number of submitted missions. We
liked the idea that solutions with more missions could
potentially score better than solutions with less mis-
sions.

A second change we made to the problem was to cre-
ate a debris cloud with a larger average AV per transfer
between debris pairs. This was done by enlarging the
spread of inclinations, semi-major axes and eccentric-
ities. We tried to tune this change such that it would
be difficult to find a solution shorter than 12 missions

while obtaining a good score.> The number of debris

M = 123, proved of sufficient complexity, since ex-
haustive searches in the trajectory space were infeasi-
ble and the problem needed to be reduced in size be-
fore global solvers like SCIP could be applied to di-
rectly find solutions. Since our set-cover solution was
taking 7.57 years to remove all debris, we now could
also decide on the windows for the entire removal se-
quence and fixed it to 8 years. Finally, we choose the
values for c,,, cys and « so that the total cost increase
during the competition of a solution with 12 missions
would roughly cover the cost of one launch of a heavy
spacecraft, i.e. =& 110MEUR. By doing so, we ensured
that a team submitting its solution on the last day and
cutting down the number of missions by one, while ap-
proximately keeping the same overall AV needs, would
likely win over an early submission.

5 A real-time competition

One of the defining aspects of our challenge was cer-
tainly the on-line submission system, used for the first
time for a GTOC event, which allowed for a very dif-
ferent (and hopefully enjoyable) experience. We had
this idea in mind from the very beginning, as well as
the awareness of the challenges and risks that coding
an automated validation system brings forth in the field
of optimal control and trajectory optimization. Fortu-
nately we are also the creators and maintainers of the
Kelvins on-line platform [17] which was created with
the intend to host both data-mining competitions (for
which the verification is a more standardized task) and
algorithmic competitions (for which the verification has
to planned case-by-case).

At the very beginning, we looked into automated val-
idation of low-thrust trajectories, only to realize that we
could not develop code reliably validating trajectories
without making use of a detailed thrust profile (result-
ing in large files), or introducing tolerances that would
be deemed as unacceptable. Fortunately the challenge
we had in mind for GTOC9 was suitable also for a
spacecraft powered by chemical propulsion and we thus
decided to delay our study on automated validation of
low-thrust trajectories and set-up the problem around
that type of spacecraft.

A real-time competition set-up offers also new op-
portunities for the problem itself. While we were rather

3 A hint for this could be found in the competition subtext: Can
you do it in less than 12 parsec?
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FIGURE 7. Visualization of the full solution found by the hybrid strategy together with all possible debris removals generated
for its construction. Vertical axis: id of removed debris, ordered in sequence of removal by the found solution. Horizontal axis:
epoch in MJD. Each black dot marks the epoch of a possible removal of the corresponding debris as returned in one the runs
of BS. Each colored line corresponds to one mission of the full solution. The first four missions (lower left corner) are found
by incremental BS, picking the missions with the longest removal sequences out of 1000 runs. The remaining 6 missions were
selected by solving the set cover problem. The set of possible missions S was built considering only the remaining debris.
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“conservative” in our final choice, we discussed the
possibility of introducing a game theoretical aspect in
the competition with teams having the possibility to in-
fluence past and future decisions of other teams (think
for example of set-ups where the debris population is
shared and needs to be collectively cleaned, etc.), or
to go against specific teams at the cost of losing re-
sources, thus creating the possibility of team coalitions,
etc. Since possible team interactions were somewhat
hard to predict, we were afraid that these dynamics
could negatively impact the experience of some par-
ticipants. Moreover, making the objective function de-
pendant on the decision of all participating teams rather
than having it fixed for each team would make it hard to
study the problem in isolation. As a consequence, we
refrained from this idea, but allowed for teams to get
an early submission bonus and access to a leader-board.
The leader-board provided real-time information on the
current ranking of all teams and, perhaps even more im-
portantly, reliable information about possible values of
the objective function and the number of submissions
that were used to obtain it. It turned out that our deci-
sions on ¢,, and cy; were not game-breaking but just
enough to motivate the teams to keep their trajectories
updated and visible to all, creating an engaging race
throughout the whole month of the competition.

6 Concluding remarks

The 9th edition of the Global Trajectory Optimization
Competition turned out to be a great success, mostly
thanks to the many teams who registered and worked
hard on the challenge we created. Designing such a
problem and making sure that our on-line submission
system would be prepared for it, was a challenge we
faced with great enthusiasm. We hope that the lessons
we learned as organizers will be of use to future similar
endeavours.

Looking back at our initial objectives, we believe we
managed to achieve most of them satisfactorily and to
provide the community with a new, complex and rele-
vant benchmark in the field of interplanetary trajectory
optimization.
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A Dynamics

Equations of Motion

Each spacecraft dynamics is described, between two
manoeuvres, by the following set of Ordinary Differ-
ential Equations (ODEs):

k=143, (Te)® (1-52
y=—m 1+ in (B (1-5%
=t {1438 ()" (3-55) )

that describe a Keplerian motion perturbed by main ef-
fects of an oblate Earth, i.e. Jy. Note that between
an arrival and a departure event the spacecraft is co-
orbiting with the debris piece and hence its position and
velocity is not described by the above equations, but co-
incides with the debris’ orbit.

Debris Ephemerides

Each debris orbit is defined by the values
to,a,e,i,Qq,wo, My as read from the file dis-
tributed on the competition starting day (all files can
be downloaded from the official portal [2]). At any
given epoch t the position and velocity vectors of
each debris piece must be computed by updating its
osculating Keplerian elements using the mean motion
and the precession rates and then converting, as in the
Keplerian case, the updated osculating elements to
position and velocity. Note that by doing so we are
neglecting the velocity component deriving from Q and
w, for the purpose of this competition this is deemed
as appropriate as it removes complexity from the
equations without introducing any significant change
on the search space landscape.

The procedure detailed below (assumes consistent
units everywhere) shows all necessary equations.
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1 - Computation of the Osculating Keplerian
Parameters

After having defined the mean motion n = /213, the
semilatus rectum p = a(1—e?) and the precession rates:

3 r 2
© =7 (pff) n(5cos?i — 1)

compute the right ascension of the ascending node (2
from:

Q- Q= Q(t — to),
the argument of perigee w from:

w—wo =w(t—tp),
and the mean anomaly from:

M—M():n(t—to)

2 - Computation of Position and Velocity as in the
Keplerian Case

The Kepler’s equation is used to compute the eccentric
anomaly F from the mean anomaly:

E—esinE=M

while the true anomaly 6 can be obtained from the rela-
tion:
E 1—e 0

tan — = tan —
an2 1+e an2,

compute the flight path angle + from:

esinf

tany = ———
T +ecosf’
the norm of the radius vector from:

_a(l —e?)
" 1+4ecosf’

and the velocity norm from:

_f2p p
V=4 — = —.
T a

The Cartesian coordinates of the position vector r
and velocity vector v can then be computed from:

x = rfcos(f + w) cos Q—
—sin(f + w) cos i sin Q]
y = r[cos(f + w) sin Q+
+sin(f + w) cosi cos ]
z = r[sin(d + w) sin |
vy = v[—sin(d + w — y) cos N—
cos(f + w — ) cos i sin ]
vy = v][—sin(f + w — ) sin QO+
cos(f + w — 7y) cos i cos ]

v, = v[cos(0 + w — ) sin ]

B The Set Cover Problem

The set cover problem (sometimes denoted as set cover-
ing problem) was one of the original 21 A'P-complete
problems proposed in the landmark paper* of Richard
Karp [18]. It is a decision problem which asks, whether
a set of elements can be “covered” by selecting k& sub-
sets of those elements out of given collection of those
subsets. Formally, let the universe U = {1,2,...,n}
be a set of n elements, k£ be an integer and S =
{51, 852,...,Smn} a collection of subsets S; C U for
i =1,...,m, m > k. The set cover problem is to de-
cide, whether there is a sub-collection C C S of size k
such that the universe U can be written as the union of

all setsin C :
U=Js.
sec

In its optimization variant, the set cover problem is ask-
ing for the smallest number k to cover U completely.
Karp showed by polynomial-time reduction from the k-
Clique problem that there cannot be a polynomial time
algorithm for solving the set cover problem if N'P # P,

4Richard Karp introduced the concept of polynomial reducibility
into the newly developing field of computational complexity theory.
Thanks to this methodology, N PP-completeness of thousands of prob-
lems have been proven. Richard Karp received the highest award in
computer science, the Turing Award, 1985 for his contributions to the
theory NP-completeness.
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an unproven conjecture of long history in mathemat-
ics [19]. Given the common belief that this conjec-
ture holds, solving large instances of the set cover prob-
lem with the means of nowadays computational power
can be regarded as extremely time-consuming up to the
point of intractability. This does not rule out the possi-
bility, that special cases of the problem may be solvable,
though set cover showed itself as a particularly difficult
problem among the N'P-complete problems we know
about. Under the assumption that NP # P, there exists
no constant factor approximation of k for the set cover
problem. In fact, it has been shown that approximating
set cover within a factor of (1 — &) Inn for arbitrarily
small o > 0 is already A/ P-hard [20].

The best known (polynomial) approximation algo-
rithm for the problem is a greedy algorithm, which iter-
atively selects the subset S; that covers the maximum of
still uncovered elements of U. Despite its simplicity, it
can be shown that this algorithm achieves an “optimal”
approximation with respect to the given inapproxima-
bility results [21].

Integer Linear Programming Formulation

The set cover problem can be reformulated as the fol-
lowing integer linear program (ILP):

minZ:ci
subject to: x; € {0,1}

Z 1']21

JwES;

Each variable x; corresponds to the subset S; being
selected or not. The first constraint ensures x; to be
binary, while the second constraint ensures that each el-
ement from U is covered by at least one subset S;. If
we modify this constraint to

Z $j:1

JweS;

YveU

we enforce each element of U to be covered exactly
once. This variant is called the disjoint set cover prob-
lem, since it demands that the solution sets are mutually
disjoint.
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Abstract. The removal of 123 pieces of debris
from the Sun-synchronous LEO environment is ac-
complished by a 10-spacecraft campaign wherein
the spacecraft, flying in succession over an 8-yr
period, rendezvous with a series of the debris ob-
jects, delivering a de-orbit package at each one
before moving on to the next object by means
of impulsive manoeuvres. This was the GTOC9
problem, as posed by the European Space Agency.
The methods used by the Jet Propulsion Labo-
ratory team are described, along with the win-
ning solution found by the team. Methods include
branch-and-bound searches that exploit the natural
nodal drift to compute long chains of rendezvous
with debris objects, beam searches for synthesis-
ing campaigns, ant colony optimisation, and a ge-
netic algorithm. Databases of transfers between all
bodies on a fine time grid are made, containing an
easy-to-compute yet accurate estimate of the trans-
fer AV. Lastly, a final non-linear programming
optimisation is performed to ensure the trajectories
meet all the constraints and are locally optimal in
initial mass.
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1 Introduction

The 9*" Global Trajectory Optimisation Competition
(GTOC9) considered the problem of debris removal
from the Sun-synchronous, Low-Earth-Orbit environ-
ment [1]. In this paper we describe the methods devel-
oped at the Jet Propulsion Laboratory to tackle the prob-
lem in the short, one-month competition timeframe.
We also present the results obtained, both the submit-
ted winning solution which removed all 123 debris ob-
jects in a campaign of ten missions, and results obtained
shortly after the close of the competition.

An initial rough sizing of the problem was performed
to understand the dynamics, estimate the AV sensitiv-
ities, and characterise the effect of number of missions
on the cost function. The range of inclinations of the
debris object orbits (about 96° — 101°) and semi-major
axes (about 600 — 900 km larger than the Earth’s radius)
were sufficient to result in considerable variation in the
drift rate of the ascending nodes (0.75°/day — 1.3°/day);
the eccentricity, ranging from about 0.02 down to al-
most zero provided only a second order effect on the
drift rate. The drift rate must of course be exploited
in the transfers, because the ascending nodes are spread
over the full circle and the cost of large plane changes is
prohibitive (about 1.3 km/s per ten degrees). Drift-rate
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changes of about 0.1°/day can be achieved for about
100 m/s AV; for larger drift-rate changes, above about
0.2°/day, changing inclination is increasingly more ef-
fective (per unit AV') than raising apoapsis in affect-
ing the node rate, and also permits an increase in the
node rate, not just a decrease. The AV cost of match-
ing the phasing and argument of periapsis of the debris
was deemed of secondary importance.

Initial estimates of the number of missions that would
be required were difficult to make, a fact reflected in the
initial range of estimates that were made — from about
5 to 20. The base cost of a mission was comparable
to the mass-dependent cost of a fully fueled spacecraft.
Thus the trade-off between few missions with large AV
requirements versus many missions with low AV re-
quirements had to remain in play. This tradeoff was
captured graphically a few days into the competition as
shown in the Results section.

It was also realised early on that using the debris
dynamics to propagate the spacecraft trajectory, rather
than the full, unaveraged, .Jo dynamics, would be suffi-
ciently accurate for good preliminary solutions. A va-
riety of methods were then used to develop databases
of body-to-body transfers, chains of bodies comprising
a single mission, and complete campaigns of missions.
The remaining sections of the paper describe these main
facets of our solution methods, followed by a section on
our results.

2 Propagation

A variety of spacecraft propagation methods were used,
depending on the specifics of the broad-search method
and the accuracy required. In the initial broad search,
the debris dynamics, which correspond to the averaged
Jo dynamics, were used as an approximation of the
spacecraft dynamics. In later searches, a correction to
the mean motion, n, was incorporated [2]:

3 .. 9.
143, (Teq)z 1—5sin Z]
2 (

7 1762)%

M=n

When phase is relevant, it is important both to use
the correction term to the mean motion and to prop-
agate from initial values for the elements that are ob-
tained from computing the mean orbital elements rather
than from the osculating element values at a particu-
lar epoch. Doing so results in relatively small errors
of about 5 to 50 km in position after ten days. An

asymptotic solution to the main problem was also im-
plemented but not extensively used. For full accuracy,
the spacecraft equations of motion were directly inte-
grated using the Gragg-Bulirsch-Stoer extrapolation, ei-
ther in their given Cartesian form or in equinoctial el-
ements. Since some broad searches used the accurate
integrations, some effort was spent to optimise the inte-
gration speed.

For final optimisation (see Final Optmisation), a sim-
ple, 8-th order Runge-Kutta integrator was used for
propagating the dynamics (via Cartesian states). Other
dynamical models such as equinoctial elements or the
averaged equations were considered but deemed not as
convenient, accurate, or robust.

3 Body-to-Body Transfers

A number of body-to-body transfer techniques and
databases were developed to approximate chains so that
they could be more easily computed, or so that bodies
could be easily added to existing chains using simple
database lookups. These databases grew in accuracy
and size as different methods were developed through-
out the competition.

Transfer techniques

One method for estimating the body-to-body AV was
coded in a subroutine called AF2. The goal of AF2 was
to find debris-to-debris candidate transfer opportunities
below a user defined AV threshold, for a range of de-
parture and transfer times. The algorithm estimated to-
tal transfer AV by selectively adding or taking the root-
sum-square of individual AV's required for matching
node, inclination, periapsis, apoapsis, argument of peri-
apsis and approximate phase change. Actual propaga-
tions in full J> dynamics were done (for node matching)
to capture the effect of varying transfer time on AV.
After refinements, the AV estimates from AF2 were
found to be within 5% of the actual optimised transfer
cost for most of the cases.

Another technique was based on the debris dynamics
and provided an analytic estimate of the AV needed to
match the semi-major axis, node angle, and inclination
of the target debris in a specified transfer time. The AV
was split between an initial AV to change the drift rate
and a final AV to match the semi-major axis, node and
inclination. The AV was split optimally between the
two manoeuvres such that a linear combination of AV's
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needed to change each of those three elements individ-
ually was optimised.

A final technique involved making a quadratic fit
of the plane-change AV as a function of time of the
manoeuvre, which means that this simplified solution
space needs little information to describe it. The actual
departure and arrival time can be optimised later with
relatively small adjustments to fix phase.

Databases

Throughout the competition, the team created many
databases for quick lookups for estimating the AV for
transfers between bodies. One of the first databases pro-
vided estimates of the transfer AV between all body
pairs at one day intervals assuming debris dynamics and
transfer durations of approximately one day. This es-
timate did not exploit changing the node rate, but in-
tended to capture transfers between bodies whose orbit
planes naturally drifted close to each other. The esti-
mation included primarily a plane change at the relative
node and one or two further impulses to change the ec-
centricity vector and semi-major axis. About 340,000
such transfers were found below 400 m/s.

Another database was also developed early in the
competition that provided AV-optimal, full-phase
transfers based on two-impulses using the full J>-
dynamics. At discrete times and for a set of discrete
flight times, multi-revolution Lambert arcs were used
as initial guesses to seed optimisation with Matlab’s
fmincon. (A similar database of optimal single-impulse
transfers was also computed based on JPL optimisation
software.)

The final database, named the GIGABASE, was per-
haps the most reliable database created by the team
during the competition. The GIGABASE was created
roughly halfway through the competition and further
developed in the final weeks. Transfers in the GIGA-
BASE exploited the possibility of changing the node
rate using AV and also matched phase, overall provid-
ing a good estimate of the optimal AV

To quickly estimate the AV and flight time needed
to transfer between debris objects, the GIGABASE as-
sumed the spacecraft followed the dynamics of the de-
bris. First derivatives (with respect to inclination and
semi-major axis) of the nodal drift rate and the argu-
ment of latitude (= w + 6) rate were used to approxi-
mate the required changes in inclination () and semi-
major axis (da) for transfers with a given transfer time,
a given integer number of revolutions, and with a given

propulsive change in the right ascension of the ascend-
ing node, €2. These simple equations require only solv-
ing a two-dimensional linear system of equations.

These initial 47 and da values are then differentially
corrected to satisfy the full dynamics. The AV's to ef-
fect the differentially corrected initial J7 and da as well
as the given change in (2 are computed assuming two-
impulses. Subsequently, after the given transfer dura-
tion, another pair of impulses matches a, i and (2 of the
debris (also 6 has at this point drifted into alignment).
Within the next orbit, the final two impulses match ec-
centricity and argument of periapsis of the debris.

Since the method is simple and fast, it is possible to
loop over all possible number of integral revolutions
and choose the lowest AV for each transfer. Further-
more, the simplicity of the computations allows looping
over transfer times discretised in a fine grid, target bod-
ies, departure times and departure bodies. Thus, a large
database (the GIGABASE) was made with the follow-
ing spacings: Debris, from every object to every object
(1232 = 15,129 options); departure epoch, 2-day spac-
ing (1477 options); transfer time, 1 to 25 days, steps of
2 days (13 options). The resulting database contained
about 290 million rows of data.

In order to facilitate the conversion of broad-search to
detailed solution, a script called the decoderRing was
created to reproduce more accurately the actual ma-
noeuvre times and AV vectors approximated in the GI-
GABASE as a (good) initial guess into the final opti-
misation process. The inputs to this function were the
bodies, departure epoch, transfer time, intermediate a, ¢
and () values computed using the approximate method
and stored in the GIGABASE. These were sufficient
to allow analytic computation of all six manoeuvres,
and a final one-dimensional corrections scheme added
the missing secular term to the spacecraft J, dynam-
ics. The decoderRing was only used when transitioning
from campaign-level search to local optimisation and
therefore did not need to be particularly fast.

4 Chain Building

Branch-and-bound

To construct low-AV chains (and sets of compatible
chains), early in the competition a heuristic was devel-
oped that only considered plane change manoeuvres.
Starting from an initial debris object at time ty a set
of unvisited near-co-planar (to a tolerance) debris was
identified. The minimum node difference was com-
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puted numerically, and a transfer of 1 — 2 days was ini-
tiated at the minimum. The following three cases were
considered for when the minimum occurs: (i) within the
feasible time interval, AV done to match inclination;
(ii) before the feasible time interval (moving apart),
immediate inclination change to alter the drift rate to
match node in two days, and a second manoeuvre to
match inclination; and (iii) after the feasible time inter-
val (moving together), long stay at the initial debris ob-
ject, apply drift rate change manoeuvre, and manoeuvre
to match inclination two days later.

A branch-and-bound algorithm was used to build
good chains of varying length with the heuristic AV.
A grid of starting epochs and the set of unvisited de-
bris initialised chain construction. A chain was deemed
complete when there were no further targets, or when
it ran up against the maximum time constraint. Filter-
ing (bounding) was applied to chain length (minimum),
total fuel, and average AV. The branch-and-bound al-
gorithm was parallelized to quickly yield a database of
low-AV chains over all epochs, with chain lengths from
3 — 22. The longest were used as backbones to seed
building of campaigns.

Ant Colony Optimisation

A previous investigation applied Ant Colony Optimisa-
tion (ACO) to the removal of debris objects [3]; modifi-
cations were made to this to accommodate J5 drift and
the constraint that missions cannot overlap in epoch.
Briefly, the ACO algorithm seeds “agents” at starting
debris objects, where these agents then build chains of
encounters by interspersing random steps and the di-
rected following of “pheromone” trails laid by previ-
ous generations. When an agent reaches the defined
propulsive limits for an individual mission, it resets by
“launching” to a new debris object and begins again,
repeating this behavior until a complete mission set is
generated. At the end of each generation, the mission
sets are evaluated using the GTOC9 cost function, with
the best performing agents chosen to lay pheromones
along the routes they followed. In order to differenti-
ate among the multiple possible transfers between any
debris object pair, the GIGABASE solution giving

min AtEAV

was selected, where £ is a tuning parameter and At
is the time interval between arrivals at the respec-
tive debris objects (prior to the GIGABASE, an ear-
lier database was utilized in a similar manner). Time-

varying aspects of the problem were addressed by seed-
ing objects and initial chain epochs based on debris
clustering information that created groups of common
orbital elements at differing epochs across the available
mission window. By the end of the competition, two
main variants of ACO were employed: i) a “subset”
routine that searched among a limited set of remain-
ing debris objects and available launch windows in or-
der to complete an existing set of missions, and ii) a
“full” search that began at the end of the mission win-
dow and worked forward to build mission sets eliminat-
ing as many debris objects as possible. Throughout the
competition, the “subset” approach reliably discovered
the minimal set of additional launches to remove all re-
maining objects, with the complete sets then fed into
the genetic algorithm and other refinement methods; by
the end of the competition, the “full” ACO was reliably
generating mission sets removing nearly all 123 objects
for roughly 950 MEUR using 10-13 launches.

ACM

Built upon the AV estimation capability of AF2,
ACM’s primary task was to rapidly build chains us-
ing an algorithm which preserves diversity while pre-
venting exponential increase in the number of solutions.
This was achieved by using a hash-function based chain
identification algorithm which kept equal proportions of
best-in-time and best-in-AV solutions during the chain
building process. Randomized additions were also done
with a 1% chance of being accepted to the next length
level. After tuning, ACM was able to generate hundreds
of thousands of chains of length greater than 10 and up
to 23 in a matter of few seconds.

5 Campaign Building

Campaign Beam Search

Starting with a backbone (or two), typically from
the branch-and-bound method, partial campaigns were
built using a Beam Search variant [4] with probabilistic
mixing. Every generation (or depth) adds a new mis-
sion (chain), and the starting epochs for chain building
are selected randomly from the currently valid time in-
terval sets. After each highly-parallel generation evalu-
ation, a subset of solutions are maintained for the next
generation based on minimizing the heuristic campaign
cost:

J
h=J+ha's (123~ D)
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where J is the running GTOC cost function, h,, is a
constant weight (scaling cost to go), and D is the num-
ber of de-orbited debris. Various knobs are available to
ensure diversity and to prevent an overly greedy algo-
rithm.

The chains and partial campaigns were advantageous
in seeding combinatorial algorithms (e.g. ACO and
GA), since they represent quality populations with an
inherent reduction in the degrees-of-freedom (relative
to the initial problem).

Chain Recombination

Given a database of body-to-body transfers or a
database of chains, a directed graph was created where
the nodes were defined by the debris object ID and
time, and the edges indicated a transfer to a new ob-
ject. Edges contained information like transfer time
and AV. Chains were created by traversing the graph
following different criteria: minimum AV, maximum
chain length, mission time interval, whether or not the
mission should contain a particular debris object, etc.

Given a database of chains, an undirected graph
was created where the nodes contained a mission (i.e.,
chain) and the edge indicated that two missions were
compatible. A standard algorithm was used to search
for cliques (a subset of nodes that are totally connected,
that is, a subset of chains that are compatible). Only
the cliques with the maximum number of debris were
reported.

Chains visiting the same debris object at similar
times would be connected in the directed graph, allow-
ing “mixing-up”. In this way, the graph can be traversed
following an existing chain and at the common node it
can transfer to another existing chain, creating in the
process a new chain. “Re-jiggering” was often used to
find better alternatives to a given mission: A directed
graph was created with only the given chain and then
populated with compatible transfers from the GIGA-
BASE. The graph becomes very dense, allowing several
permutations of debris objects and transfer times. Once
the directed graph is created, we can traverse it with the
above criteria.

Manual Completion of Campaigns

Two dedicated tools were implemented to insert miss-
ing bodies automatically using a AV database (nor-
mally the GIGABASE or the single-impulse database),
or AF2. The tool looks for long sitting times in a chain

AV [kmis]

FIGURE 1. Minimum body-to-body transfer AV .

(> 7 d) and time gaps between missions (> 36 d) and
computes the AV -optimal insertion point for each de-
bris.

Anchor Bodies

Late in the competition the idea of anchor bodies was
developed. These bodies are ones that will likely not
appear in the same chain with each other due to having
generally unfavourable relative geometry. For exam-
ple, bodies 74, 102, 109 have not only very high AV
to transfer between any pair of them, but also compar-
atively high AV to transfer to all of the other bodies.
This is clearly visible in Fig. 1 which shows the mini-
mum AV, over the entire 8.1-yr launch period, needed
to transfer from a body to any other body in 25 days or
less, computed by scanning the GIGABASE. Each col-
umn corresponds to a different departure body, IDs 0
through 122 left-to-right, while each row corresponds
to an arrival body, IDs 0 through 122 bottom-to-top.
The plot is nearly symmetric. The three bright stripes in
each direction correspond to bodies 74, 102, 109, whose
inclinations and node rates of 100.98°,101.07°, 96.24°,
and 1.28°/day, 1.30°day, 0.75°/day, make them outliers
by at least 0.4° and 0.06°/day (body 74), 0.01°/day
(body 109).

Converse to the idea of anchor bodies, but relevant in
that chains would have to be built around them, are the
following two observations, facilitated by the GIGA-
BASE. First, the minimum AV over all possible trans-
fers from a departure body over the whole launch pe-
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FIGURE 2. Histogram of minimum transfer AV's.

riod is less than 90 m/s for all departure bodies, and
about 40 m/s when averaged over all departure bodies.
Second, the “mode” of the distribution of the minimum
body-to-body AV's shown in the matrix plot of Fig. 1 is
about 125 — 225 m/s. This mode is seen in Fig. 2 which
provides a histogram of the AV's, binned in 25 m/s bins.

In an attempt to build chains and complete campaigns
around these anchor bodies at a suitable epoch, a tool
called AMM was created based on the tools and al-
gorithms developed in ACM and AF2. The main mo-
tivation behind AMM was to force the chain building
process to maintain long, campaign-compatible chains
with near equal lengths. The tool was developed late
in the competition and therefore did not have sufficient
time to mature to produce results that could be used.
The utility of the anchor bodies would thus have been
to reduce the dimension of the search space, allowing a
fuller search to be conducted in the same time.

Rare bodies

A variation on the Anchor Body concept was also con-
sidered late in the competition but not fully explored
due to time constraints. Using the quadratic-fit AV
estimates, the minimum AV for a given sequence of
debris objects is readily found as a quadratic program-
ming problem (almost always convex with inequality
constraints on time between manoeuvres). An attempt
at building a campaign (i.e., a complete set of missions)
begins by tallying how many times each debris occurs
in the entire pool of debris sequences. We pull out the
subset of missions that include the “rarest” debris and
permute that set with the set of missions containing the
object with the second fewest occurrences. This way
the most difficult objects are built into the mission sets
early in the design process. After each permutation, the
set is filtered by cost per unique object and number of

“difficult” objects deorbited.

6 Campaign Re-Adjustment

Genetic Algorithm

Early in the contest, campaigns were assembled by
piecing together locally-optimised missions spanning
different bodies and different epochs. About halfway
through, a need for campaign-level, global optimisation
was identified as critical to improving our score. One
approach, and the one which was ultimately used for
the remainder of the contest, was to pose the problem
as a single-traveling-salesman formulation of the cam-
paign. A customised genetic algorithm (GA), named
GIGA, was written in Matlab, based on the generic GA
of Kirk [5]. The problem was represented as a list
of nodes, visited sequentially and separated by a ma-
noeuvre time. The key breakthrough in formulating the
problem was the inclusion of both the debris objects and
launch offsets (time from end of prior mission to start
of next mission) as nodes, as opposed to keeping sepa-
rate lists of debris and absolute epochs for each launch.
This problem is similar to the Time-Dependent Travel-
ling Salesman Problem (edge costs depend on order),
but with an added dimension of an associated choice
variable (manoeuvre time) at each edge.

The problem was encoded into a genome which took
discrete values. Each genome was an ordered list of
debris and launch offsets, each of which had an asso-
ciated time code which mapped into a time-between-
nodes that considered different values for debris and
launch offsets (Fig. 3). In constructing the problem this
way, only complete and time-feasible campaigns were
modelled and produced. This eliminated the need to
have any constraints enforced numerically (the 5000 kg
propellant limit manifested itself strongly enough in
the cost function that an explicit constraint was not re-
quired), other than the total campaign time constraint
which was enforced with a barrier function of a 10%
cost increase per day above the maximum time.

The fitness of each genome was a near-instantaneous,
full evaluation of the campaign cost function using
AV's from the GIGABASE. Being able to directly and
rapidly optimise the campaign cost function was essen-
tial to this approach. The selection of which genomes
advanced to the next generation was accomplished us-
ing a deterministic tournament of size 4 and tournament
players were selected randomly. Other sizes were ex-
plored, but 4 was found to be a good balance between
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FIGURE 3. Encoding of the Campaign for the Genetic Algorithm

flexibility and selectiveness. The winner of the deter-
ministic tournament advanced without modification to
the next generation and was selected for 3 replications.
Because the node list had to be unique (non-
repeating), a simple crossover was not implemented
due to the possibility of generating infeasible genomes.
Thus mutation is the only mechanism for improving a
genome. Each mutation is constructed by first select-
ing two genes, say I and K, from each genome. A
few factors were used for selecting the genes: Random;
propellant mass fraction of that node (average of trans-
fers to and from); propellant mass fraction compared
to full mission (launch fraction of the whole mission);
distance between I and K. By the end of the contest,
there were 13 different mutations of roughly six types:
(i) Swap, switches the list position and/or time code of
node I and node K, (ii) Slide, puts node K next to
node [ and slides all the nodes and/or times between
I and K over by 1, (iii) Flip, reverses the order of all
nodes and/or times between I and K, (iv) Time Mutate,
randomises the time code of nodes I and K, (v) Net-
Zero Time Mutate, randomises the time code of node I,
then changes K by the inverse amount, and (vi) Inser-
tion (Net-zero Time Slide), puts node K between node
I and I + 1 and adjusts the times of I, I + 1, K, and
K —1 so as to minimize the perturbations of the epochs
of the rest of the campaign. The net-zero operators were
invented because, although a certain slide or mutation
would help locally, it would perturb the epochs of many
other bodies, ultimately causing the overall cost to in-
crease. Near the end of the contest, 15 heuristic combi-
nations of weighting values for gene selection and mu-
tation types were implemented, and one was selected
randomly in each run. For instance, one combination
focused on inserting high-mass-fraction nodes into low-
mass-fraction missions while others focused on opti-
mising the time only (without reordering nodes).

Random initialisation of GIGA did yield feasible
campaigns, but they were not cost-competitive with
human-generated campaigns. However, when seeded
with a human-generated campaign, GIGA was able to
significantly improve that campaign’s cost. Therefore,
initialisation was accomplished by encoding a previous
campaign, then mutating it 10-30 times to introduce
sufficient randomness in the initial population without
totally destroying the good seed campaign. One prob-
lem with this implementation was its propensity to lose
diversity. To partially correct this, if no improved cam-
paigns were found within a certain number of iterations,
an additional 10 mutation steps were introduced with-
out selection.

A single-threaded GA could run through tens of thou-
sands of iterations with a population of a few hundred
genomes in under an hour on a typical PC. In the last
days of the contest, GIGA was parallelized and running
on 12 nodes of a cluster (total of 144 threads). Each call
of GIGA would search stored solutions for the globally
best solution for initialisation and attempt to improve
it using a random heuristic setting. By the end of the
contest, approximately 6,400 full GIGA runs had been
completed, based on the initial inputs of about 30 seeds,
which means approximately 10! campaigns were eval-
uated, or approximately 10'3 body-to-body transfers.

Human-Guided Adjustments

If or when GIGA gets stuck in a local optimum, it
can be advantageous to provide new, slightly varied
initial solutions as a “kick” in hopes that subsequent
runs may find new, lower-cost solutions. To construct
new initial guesses, the cost-contour plot (Fig. 6) was
used extensively to identify AV -infeasible missions
and the worst-performing missions in terms of mission
cost. Debris involved in high-AV  transfers were typ-
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FIGURE 4. Workflow process.

ically removed from their respective chains and added
to shorter, low-scoring missions, either by prepending,
appending, or inserting. The GA could often improve
considerably on the new initial guesses even if one or
two of the new transfers had high AV,

These same techniques were also leveraged to reduce
the number of missions in a given campaign. For ex-
ample, the initial 10-mission and 9-mission solutions
provided to the GA were created by starting with 11-
and 10-mission campaigns, respectively, disbanding the
shortest mission entirely, and distributing those bodies
across the remaining missions.

7 Final Optimisation

The local optimiser used for individual missions was
based on the OPTIFOR framework [6]. The complete
trajectory is decomposed into different legs, which fa-
cilitates the modeling of rendezvous constraints and
makes the process less sensitive to the control variables
(multiple shooting formulation). A forward-backward
strategy is implemented to reduce sensitivity with re-
spect to the initial guess. Additionally, each leg is dis-
cretized into multiple segments, where a segment corre-
sponds to an impulsive AV followed by a propagation
of the full Jy-spacecraft dynamics. If no manoeuvre
is needed at the beginning of a segment, the optimiser
drives the corresponding AV to zero. The optimisation
of the number of impulses as well as their respective
locations is therefore automatically resolved. A total
of 10 manoeuvres per revolution were considered to al-
low sufficient variety in the manoeuvre locations. Ini-

tial mass was minimized, while the final mass was con-
strained to be equal to the dry mass. Initial guesses were
ballistic during the first part of the competition, then
initial guesses from the decoderRing (see Databases)
were used when available. The resulting discrete prob-
lem is solved using SNOPT [7]. Smooth convergence
after 2,000 iterations was observed for most missions
(the number of iterations can probably be decreased by
changing some step-size parameters and better scaling
of variables and constraints). The HDDP solver [8] was
also tested on long debris-to-debris transfers, but it was
found to be generally slower to converge.

8 Putting it all together

As described in this paper, the team had a variety of
methods for estimating body-body AV and creating
databases of body-body transfers and chains. Thus
the human-in-the-loop was an essential part of the
workflow and eventual finding of the winning solu-
tion (see Fig. 4). The most important contributions
to attaining competitive solutions was the use of the
branch-and-bound search, the associated beam search
and campaign-completion strategies (manual and ACO)
to feed GIGA, which in turn fed promising solutions to
the final optimisation step. After the creation of GIGA
was completed in the final week of the competition,
GIGA became the primary mechanism for global op-
timisation at the campaign level. GIGA was very good
at making large numbers of significant changes to ex-
isting solutions, but had difficulty in finding truly new
global optima due to the extremely strong local optima
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in this problem, and sometimes missed “obvious” sin-
gle changes. So, human analysts focused on: creating
qualitatively different input seeds for GIGA (including
reducing the number of launches), and could even in-
clude launches which grossly violated the propellant
mass limit (by 10,000+ kg); manually modifying GIGA
outputs to make an obvious swap or insertion, or to in-
ject some desirable features, such as trying to even out
the number of debris in each launch or “smash” smaller
chains together. Results coming out of GIGA were
either directly optimised and submitted to Kelvins, or
were further refined by human adjustment and then opt-
mised and submitted, as showing in Fig. 4.

9 Results

Figure 5 provides a summary of all the complete
missions sets submitted by JPL during the competi-
tion, including the team’s winning final submission of
731 MEUR. In general, cost decreases as the number of
missions decreases, and flattens near 10 missions. Also
depicted on this graph are 10-mission solutions found
by JPL, completed shortly after the competition ended,
costing 720 MEUR and 711 MEUR. Although a fea-
sible 9-mission campaign was found, the best cost, at
750 MEUR, was worse than the best 10-mission cam-
paigns.

Figure 6 shows cost contours for various AV's per
transfer and rendezvous per mission. Overlayed on the
contour plot is our initial 20-mission solution, the solu-
tion we submitted on April 27 when JPL occupied the
top of the leaderboard for the first time (labeled ‘Inter-
mediate Set’), and our final submitted solution (num-
bered in white by mission number). As our solutions
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FIGURE 6. Cost-contour plot with final solution, numbered
by mission,; base cost: 55 MEUR.

improved they moved from the top-left to the bottom-
right side of the contour plot. For the final submitted
solution, the smallest chain has nine rendezvous and the
largest has 21.

Complete summaries of the final submitted solution
and the 711-MEUR solution, obtained shortly after the
competition, are provided in Tables 1- 4. Every mission
ends with mg,,, = 2000 kg. With respect to the submit-
ted solution, the 711-MEUR solution shares missions 1
and 2; reshuffles some debris across missions 4, 5, and
9 (mission 4 grows in number of bodies by one, and
mission 5 shrinks by one); and makes minor timing and
mass adjustments to the remaining missions. The base
cost for the revised missions is assumed to be the max-
imal base cost of 55 MEUR, while for the unchanged
missions the base cost is kept at the value obtained in
the submitted solution.

10 Conclusions

The debris rendezvous problem posed for this edi-
tion of the GTOC series was a challenging problem
of interdependent and time-dependent combinatorics.
The insights into the problem dynamics, which read-
ily yielded a plethora of low-AV chains of trans-
fers between debris objects, coupled with a tuned
beam search to build near-complete multi-spacecraft
campaigns, fed into grid-search-based and ant-colony-
optimisation-based design phases to complete the cam-
paigns. Complete campaigns then benefited greatly
from a judiciously genomed genetic algorithm, as indi-
cated by the drop in cost annotated in Fig. 5. However
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TABLE 1. Campaign Overview of Final Submitted Solution, UTC submission times on 01 May 2017 indicated.

Start End Launch Number
Mission MID2000 MID2000 | Mass, kg of objects Debris ID UTC
1 23557.18 23821.03 5665.38 14 23,55,79,113,25,20,27,117,121,50,95,102,38,97 20:17
2 23851.08 24024.53 4666.15 12 19,115,41,26,45,82,47,85,7,2,11,77 20:17
3 24057.47 24561.49 6589.58 21 72,107,61,10,28,3,64,66,31,90,73,87,57,35,69,65,8,43,71,4,29 | 21:42
4 24637.26 24916.44 5679.10 11 108,24,104,119,22,75,63,112,37,32,114 20:18
5 24946.47 25232.94 4906.59 14 84,59,98,1,40,51,36,67,62,99,54,122,76,15 20:18
6 25262.95 25455.15 5062.74 10 101,48,53,5,12,39,58,13,60,74 20:18
7 25485.20 25682.33 4082.33 10 49,9,70,93,105,46,88,118,18,91 20:18
8 25712.38 25915.53 3725.73 9 86,34,100,30,92,6,110,96,81 20:19
9 25946.06 26237.29 4897.35 12 33,68,116,106,14,52,120,80,16,94,83,89 20:19
10 26267.80 26416.00 3438.62 10 44,111,56,78,0,17,109,103,42,21 20:19

TABLE 2. Campaign Overview of 711-MEUR Solution, Obtained Shortly after the Competition.

Start End Launch Number
Mission | MJD2000 | MJD2000 | Mass,kg | of objects | Debris ID
1 23557.18 23821.03 5665.38 14 23,55,79,113,25,20,27,117,121,50,95,102,38,97
2 23851.08 24024.53 4666.15 12 19,115,41,26,45,82,47,85,7,2,11,77
3 24057.47 24561.49 6483.75 21 72,107,61,10,28,3,64,66,31,90,73,87,57,35,69,65,8,43,71,4,29
4 24635.53 24968.66 4482.13 12 119,24,108,22,83,75,63,112,37,104,32,114
5 24998.68 25235.88 4478.11 13 84,67,51,40,36,1,62,99,54,122,98,76,15
6 25266.35 25455.14 5122.95 10 101,48,53,5,12,39,58,13,60,74
7 25485.20 25681.08 4090.80 10 49,9,70,93,105,46,88,118,18,91
8 25711.12 25916.47 3728.67 9 86,34,100,30,92,6,110,96,81
9 25947.96 26239.81 4888.26 12 33,68,116,106,14,52,120,59,16,80,94,89
10 26269.94 26413.16 3497.42 10 44,111,56,78,0,17,109,103,42,21

it must be stressed that the genetic algorithm required
very good initial-seed sets to manipulate, as well as it-
erations with human-guided searches, synergies which
were key to yielding the winning solution, and the rea-
son behind the centrality in Fig. 4 of the “Human super-
vised, aggressive chain modification” box.

The JPL team thanks the Advanced Concepts Team
of the European Space Agency, in particular the team
lead Dario 1zzo, for posing this fascinating and relevant
problem, for making the logistics of problem dissemi-
nation and solution verification almost trivial, and for
introducing the excitement of real-time solution rank-
ing.

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Ad-
ministration.
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TABLE 3. Mission Characteristics of Final Submitted Solution.

Mission

Rendezvous Duration, days

1

O 00N BN

10

5.00,5.00,5.04,5.01,5.01,5.03,5.00,5.00,5.00,5.03,5.03,5.04,5.04,5.00
5.00,5.02,5.02,5.00,5.04,5.00,5.05,5.02,5.07,5.03,5.02,5.00
5.00,5.06,5.01,5.02,5.07,5.02,5.04,5.02,5.01,5.02,5.01,5.07,5.06,5.02,5.01,5.01,5.06,5.01,5.02,5.04,5.00
5.00,6.01,6.01,6.03,6.05,6.05,6.04,6.01,6.06,6.04,5.00
5.00,5.02,5.07,5.04,5.01,5.01,5.02,5.06,5.06,5.02,5.06,5.01,5.07,5.00
5.00,5.02,5.01,5.04,5.07,5.02,5.01,5.02,5.02,5.00

5.00,5.00,5.06,5.06,5.04,5.06,5.04,5.06,5.03,5.00

5.00,5.01,5.03,5.00,5.01,5.04,5.07,5.02,5.00

5.00,5.51,5.53,5.53,5.53,5.55,5.54,5.53,5.54,5.55,5.52,5.00
5.00,5.54,5.50,5.50,5.52,5.52,5.54,5.53,5.52,5.00

Mission

Transfer Duration, days

O 00 W AW =

10

24.86,24.98,22.42,24.99,0.29,10.63,25.00,2.70,1.51,1.41,24.67,24.31,5.86
24.93,0.28,0.73,0.39,17.07,1.61,22.42,2.39,15.88,24.97,2.49
14.16,24.94,2.87,8.10,9.00,23.13,23.09,23.09,22.83,24.98,24.98,24.93,24.94,9.10,13.44,24.99,24.94,24.99,24.98,24.96
23.96,6.48,16.72,23.97,23.95,23.95,23.96,23.99,23.94,23.96
0.45,3.17,24.93,10.34,12.53,7.11,13.44,24.94,24.94,24.98,22.19,24.99,22.01
24.91,0.30,18.39,3.08,20.24,24.96,24.85,24.97,0.28

15.69,0.50,9.83,24.94,24.90,24.48,20.87,24.91,0.66

10.03,24.00,2.83,24.99,24.99,24.96,21.19,24.98

22.69,4.24,24.47,24.46,24.47,24.44,24.46,24.46,24.46,18.54,9.22

0.81,11.59,7.66,1.11,17.46,6.47,20.47,24.47,3.99

Mission

AV, m/s

E\OOO\]O\(II-PWN—

161.8,139.2,65.8,208.2,115.2,300.1,564.9,78.3,105.0,233.3,453.5,340.4,300.8
659.0,301.1,252.1,143.8,146.8,68.6,40.6,84.2,105.3,448.5,148.0
219.1,80.8,105.2,55.2,140.2,85.5,95.0,237.6,205.9,149.9,245.2,71.6,197.3,160.4,132.2,240.0,161.2,364.3,230.4,232.5
86.1,103.1,62.6,222.9,709.1,553.9,219.9,233.9,739.0,232.6
129.6,45.2,172.9,52.6,160.7,280.8,221.1,163.5,98.2,115.7,164.8,674.8,291.1
156.0,198.0,305.8,71.2,194.4,920.5,314.1,353.0,272.8

400.6,173.6,211.3,374.4,109.6,171.2,145.1,194.3,233.0

287.9,111.9,112.2,144.5,540.0,260.1,198.8,82.7

83.3,148.1,495.9,464.9,405.2,285.9,254.8,62.3,156.6,36.5,174.9
189.4,112.9,110.0,121.3,117.9,280.1,300.4,120.6,70.2

TABLE

4. Mission Characteristics of 711-MEUR Solution, Obtained Shortly after the Competition.

Mission

Rendezvous Duration, days

1

O 00N BN

10

5.00,5.00,5.04,5.01,5.01,5.03,5.00,5.00,5.00,5.03,5.03,5.04,5.04,5.00
5.00,5.02,5.02,5.00,5.04,5.00,5.05,5.02,5.07,5.03,5.02,5.00
5.00,5.06,5.01,5.02,5.07,5.01,5.04,5.01,5.00,5.01,5.01,5.07,5.06,5.02,5.02,5.01,5.06,5.01,5.03,5.04,5.00
5.00,5.03,5.03,5.06,5.00,5.01,5.02,5.01,5.06,5.04,5.00,5.00
5.00,5.07,5.07,5.05,5.01,5.03,5.03,5.04,5.03,5.04,5.01,5.04,5.00
5.00,5.03,5.03,5.02,5.03,5.04,5.02,5.03,5.02,5.00

5.00,5.03,5.04,5.04,5.07,5.07,5.06,5.04,5.02,5.00

5.00,5.02,5.03,5.01,5.06,5.05,5.04,5.04,5.00

5.00,5.00,5.02,5.07,5.04,5.02,5.06,5.02,5.04,5.05,5.04,5.00
5.00,5.01,5.00,5.05,5.02,5.06,5.05,5.04,5.03,5.00

Mission

Transfer Duration, days

e e R S

9
10

24.86,24.98,22.42,24.99,0.29,10.63,25.00,2.70,1.51,1.41,24.67,24.31,5.86
24.93,0.28,0.73,0.39,17.07,1.61,22.42,2.39,15.88,24.97,2.49
14.16,24.94,2.86,8.10,9.01,23.13,23.10,23.10,22.84,24.99,24.97,24.93,24.94,9.09,13.44,24.99,24.94,24.99,24.97,24.96
24.94,24.97,24.96,24.94,25.00,24.99,24.98,24.99,24.94,24.96,23.21
0.48,5.15,10.86,14.74,3.25,24.96,20.93,24.89,24.96,24.96,0.33,16.26
21.64,0.27,18.90,3.32,19.25,24.96,24.98,24.97,0.28

15.80,0.27,10.30,24.96,24.93,24.35,19.67,24.96,0.28

11.17,24.60,2.09,24.98,24.94,24.95,22.41,24.95

24.44,0.29,24.98,24.93,24.96,24.98,24.93,22.55,21.03,13.50,24.92

1.34,11.52,0.35,5.26,16.55,9.20,19.23,24.95,4.58

Mission

AV, m/s

O 00N W

—_
(=]

161.8,139.2,65.8,208.2,115.2,300.1,564.9,78.3,105.0,233.3,453.5,340.4,300.8
659.0,301.1,252.1,143.8,146.8,68.6,40.6,84.2,105.3,448.5,148.0
19.4,69.2,104.4,54.8,137.3,84.2,91.6,235.4,203.0,146.6,237.4,70.8,194.6,159.1,131.4,235.6,162.4,363.0,227.3,224.6
108.8,60.4,113.1,169.7,240.9,605.6,320.8,102.1,295.2,120.9,149.3
245.4,100.2,160.7,121.3,110.5,182.4,87.7,108.5,159.2,434.4,162.4,393.2
174.1,211.6,302.7,76.1,211.1,908.3,314.4,352.5,275.0

398.1,171.9,208.1,373.6,110.8,161.6,146.7,208.7,241.9

290.0,117.5,114.2,141.2,558.2,261.8,190.7,66.2

108.8,151.2,491.8,438.5,397.0,297.6,207.3,105.0,64.3,160.8,140.2
203.1,108.8,126.4,79.4,125.9,260.8,300.0,169.4,111.4
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Abstract. The ninth edition of the Global Tra-
jectory Optimization Competition (GTOC) series
was successfully organized in April 2017, wherein
the competitors were called to design a series of
missions able to remove a set of 123 orbiting de-
bris pieces while minimizing the overall cumula-
tive cost. A three-level optimization framework
of the NUDT Team is presented and an improved
Ant colony Optimization Algorithm, a hybrid-
encoding Genetic Algorithm and an improved Dif-
ferential Evolution algorithm are applied to solve
the complex problem, which combines the dy-
namic TSP, mixed-integer sequence optimization
and perturbed trajectory rendezvous optimization.
The result obtained during the competition ranked
second in the eventual leaderboard.

1 Introduction

The design of space trajectories can be profitably ap-
proached as a global optimization problem. The opti-
mal trajectory, which is significant for practical space
mission design, is usually very difficult to be ob-
tained. The Global Trajectory Optimization Compe-
tition (GTOC) series [1], was born with the objec-
tive of fostering research in this area by letting the

*Corresponding author. E-mail: luoyz@nudt.edu.cn

best aerospace engineers and mathematicians world-
wide challenge themselves to solve one, difficult, well-
defined, problem of spacecraft trajectory design.

Since the launch of the first satellite, Sputnik, in
1957, mankind has placed countless spacecraft in orbit
around the Earth. Today, less than 10% of the trackable
objects orbiting the Earth are operational satellites. The
remainder is simply junk and the space debris is becom-
ing an increasingly serious problem. Following the un-
precedented explosion of a Sun-synchronous satellite,
the Kessler effect triggered further impacts and the Sun-
synchronous orbits environment was severely compro-
mised [2]. Scientists from all main space agencies and
private space companies isolated a set of 123 orbiting
debris pieces that, if removed, would restore the pos-
sibility to operate in that precious orbital environment
and prevent the Kessler effect to permanently compro-
mise it.

For calling to protect the environment of earth orbits,
the background of GTOCY is to clean the debris to avoid
the Kessler effect. It is the first time that GTOC focuses
on the near-earth space problem. The competitors are
called to design a series of missions to remove a set of
123 orbiting debris pieces while minimizing the overall
cumulative cost.

To find the optimal solution of such a complex
problem, three sub-problems need to be extracted and
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solved. First, the set of 123 debris pieces needs to be
divided into several groups. Each group of debris is re-
moved by one mission. Optimization is performed to
minimize the overall cumulative cost. This can be ap-
proached as a dynamic TSP and solved by evolutionary
algorithms [3]. Second, given a group of the debris,
one mission is designed by mixed-integer optimization
to remove them while costing minimal velocity incre-
ment [4]. Finally, given the current and next debris as
well as the rendezvous duration, the impulsive maneu-
ver strategy is designed to produce the optimal flight
trajectory [5].

This paper presents the solving methods and results
from the National University of Defense Technology
(NUDT) for GTOC9. The remainder of the paper is or-
ganized as follows. Section 2 makes a short description
of the problem and analyzes the main challenges of this
problem. Section 3 gives the optimization framework
of the NUDT Team. The detailed solving approach and
procedure are presented in Section 4-6. Conclusions are
drawn in Section 7.

2 Problem Description and Analysis

2.1 Problem Description

The problem of GTOCY is to design n missions to
cumulatively remove all the 123 orbiting debris while
minimizing the overall cumulative cost of such an en-
deavor. The cost function is expressed as

J=>Ci=)
=1 1=1

_ tsubmission —lstart
c; = ¢ submission start (o —c
v m + tend—tstart ( M m)

[ci + a(mg, — mdry)ﬂ

6]

where C} is the cost charged by the contracted launcher
supplier for the i*" mission. At the beginning of the
it mission, mp, is the spacecraft mass and mg,., its
dry mass. Each spacecraft initial mass mg is the sum
of its dry mass, the weights of the NV > 1 de-orbit
packages to be used and the propellant mass: mg =
Mgry + NMge + myp.  « is a parameter set to be
o =20 x 1075 [MEUR/Kg?| . tsubmission is the
epoch at which the i*" mission is validated, and t.,q
and t44,,¢ are the end and the beginning epochs of the
GTOC9 competition. The minimal basic cost ¢, is 45
MEUR and the maximum cost cp; is 55 MEUR. Other
definition and constraints can be found in [2].

During each transfer between two successive debris,
the spacecraft dynamics is described by a Keplerian mo-

tion perturbed by main effects of an oblate Earth, i.e. .J5.

T =g, Y=y, Z=1,

by = - SBRL (522 )T,

ﬂy**%Jrgugff% %2*1 y+Ty @

0, = bz 4 3l (522 _3) 4T,
where r = [x,y,z]T and v = [vm,vy,vz]T are the

spacecraft’s position and velocity vector described in
the mean equator inertial coordinate system of the cen-
ter body, » = ||r||, || - || denotes the Euclidean norm
of a vector, i, R and J, are the gravitational constant,
mean equator radius and Ja-perturbation coefficient of
the central body respectively. I' is the thrust accelera-
tion.

The only maneuvers allowed to control the spacecraft
trajectory are instantaneous changes of the spacecraft
velocity (its magnitude being denoted by AV. After
each such maneuver, the spacecraft mass is to be up-
dated using Tsiolkovsky equation:

(%)
my =m;exp | —

Ve

3)

where v, = I5,g0. A maximum of 5 impulsive velocity
changes is allowed during each transfer between two
successive debris. These do not include the departure
and arrival impulse.

2.2 Analysis

The goal of this problem is to design a minimal mass ve-
hicle compliant of a series of suc-cessive removal mis-
sions. For optimization this problem, three following
sub-problems must be addressed:

1) How to plan the successive removal missions?
2) How to minimize the cost of a single mission?

3) How to minimize the trajectory between each two
debris?

The first problem is a large-scale multi-sequence
combinatorial optimization problem, which is similar
to the combination of the classic TSP (Travelling Sales-
man Problem) and BPP (Bin Packing Problem). The
TSP is to find a minimal distance closed path visiting
all the nodes once and the BPP is to find a minimal bin-
packing scheme placing all the items without omission.
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However, compared with TSP and BPP, the following
differences make this sub-problems much more difficult
to solve.

In the BPP, only the weight constraint need to be sat-
isfied. The placing sequence of each item can be ignore.
While in this problem not only the total fuel cost con-
straint should be satisfied, but also the sequence of the
visited debris must be considered. This makes the so-
lution space of this problem much larger than BPP and
increase the optimization difficulty.

In the TSP, each node has to be visited once and once
only and the path is closed. While removing the debris
can be divided into several missions in this problem,
where the number of missions are not fixed and the re-
moval paths are opened. This makes the solution space
of this problem much larger than TSP and also increase
the optimization difficulty.

In the TSP, all the nodes to be visited are fixed in
the plane and the cost of going from one node to an-
other can be easily calculated according to the Carte-
sian distance in the plane. While in this problem the
cost of going from a debris to the next one depends on
the starting date and arrival date. This makes the prob-
lem time-dependent and further increase the optimiza-
tion difficulty.

The second problem is a mixed-integer nonlinear-
programming (MINLP) problem. Not only the se-
quence of the debris (integer variables) but also the
transfer times between each debris (real variables) need
to be considered as the Design Variables, which are typ-
ically much more difficult to solve than both mixed-
integer linear-programming (MILP) and nonlinear-
programming (NLP) problems.

The third problem is an orbital transfer problem. It is
very difficult to find the optimal solution for the long-
duration (ty is up to 30 days) perturbed rendezvous
problem. A fuel-optimal orbital rendezvous problem is
to find a maneuvering plan for the spacecraft to min-
imize the total velocity increment and simultaneously
satisfy specific constraints. While the .J-perturbation
is taken in account, the well-known orbital targeting al-
gorithms such as the Lambert algorithm will be failed
in obtaining the feasible solutions, and the constrained
optimization methods which can directly corporate final
state constraints, such as SQP, will also encounter con-
vergence problems for long-duration rendezvous. From
the scope of orbital dynamics, at least two impulses are
needed to target the final position and velocity vectors.
However, the total velocity increment of the 2-impulse
maneuvers will be very large for a rendezvous mission,

especially for the long-duration, large non-coplanar ren-
dezvous. Therefore, a rendezvous mission usually uses
more than two impulses. Due to the long-duration,
multi-impulse characteristics, the design variables (e.g.
the maneuver time) will have large search space, and
many sub-optimal solutions may exist, thus it is difficult
to find the global optimal solution for this problem even
though the state-of-art optimization algorithm is used.
In addition, numerical integration of the Js-perturbed
trajectory is required in the optimization process, which
makes the optimization time-consuming.

3 Optimization framework

Based on the analysis of the problem and the opti-
mization tools we have accumulated, our optimization
framework is divided into three levels, which are illus-
trated in Fig. 1.

snalytical ACO Nuspcel GA 12 Lambert DE
Estimation o Estimation o a 5
Method Algorithm Method Algorithm Algorithm Algorithm

ld >
Divide all Reoptimize the Obtain accurate
the debris into visiting sequence and AV and AT of
several chains ﬁ time of each chais ﬁ each transfer
Global Optimizati Optimizati Ultimate Optimization

FIGURE 1. Optimization framework

The task of the global optimization is to appropri-
ately divide the debris into several chains. It is a com-
binatorial optimization problem with huge search space
that is similar to the TSP. For such NP-hard problem,
no algorithm can guarantee to the global optimum. As
an efficient optimization tool, ACO performs well on
the classic TSP and many other TSP variants. Follow-
ing the characteristic of this problem, we improve an
ACO based on the one for the extravehicular missions
packing programming (EMPP) [6] and apply it to solve
the first-level problem. In addition, compared with the
calculating of the distance between any two cities in the
TSP, the calculating of the AV from a debris to the next
one is much more time-consuming. Thus, an analytical
estimation method of the transfer AV and AT between
any two debris is employed in the global optimization.

With the completion of the global optimization for
the whole mission, the number of the chains and the
debris in each chain are determined and will not be
changed. However, since the optimal transfer AV and
AT between each debris are estimated by an analytical
model with high error (up to 30% in some conditions),
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a numerical estimation method of the transfer AV and
AT between any two debris is developed and the mixed
integer reoptimization for both the visiting sequence of
the chain and the transfer time between each debris
is necessary. An im-proved hybrid-encoding Genetic
Agorithm (HEGA) [7, 8] is applied to solve the second-
level problem.

Once the visiting sequence of each chain is deter-
mined, the optimization of the accurate transfer AV and
AT between each two debris is required. The orbital
transfer from a debris to another is a multi-impulse, per-
turbed rendezvous problem. A feasible solution can-
not be directly obtained by the orbital targeting algo-
rithms based on two-body dynamics unless some dif-
ferential corrections or simple iterations are used. In
order to efficiently obtain a near-optimal solution for
the given long-duration (up to 30 days) rendezvous

J

where the mean motion n = \/;ié, and the semilatus
rectump = a (1 - 62). Detailed procedure is described
as follows.

1) Adjustment of the RAAN difference

The RAAN of an orbital object drifts due to the Js
perturbation. The drift velocity is formulated as follow,

2
Q:—3J2<T6q) n.COS1 (®)]

2 P
where 7, is the mean radius of the earth.

As the adjustment of orbital plane costs a large ve-
locity increment, the difference of the RAAN drift ve-
locity between the spacecraft and the debris should be
fully used. If the RAAN difference cannot be remedied
naturally during the maximum rendezvous duration, an
impulse perpendicular to the orbital plane can be imple-
mented at the north or south vertex of the orbit.

na?v/1 — e2sini

problem, a feasible iteration optimization model is em-
ployed, in which the homotopic perturbed Lambert al-
gorithm [9, 10] is used as the orbital targeting algo-
rithm. An improved differential evolution (DE) algo-
rithm [11] is applied to solve the third-level problem.

4 Global Optimization for the Whole
Mission

4.1 Analytical estimation method of the transfer

AV and AT
The analytical estimation method for evalu-
ating the objective function of each transfer

and the overall cumulative cost are based on
the Gauss form of variational equations [12],

“)

(1 + %) sin f - Avt} —cosi - A}
[(26% — cos f) Av,. + (1 + }%) sin f - Avt}

Aa = n\/% [esin f - Av,. 4+ (1 + ecos f) Avy]
Ae = % [sin f - Av, + (cos f + cos E) Avy]
Ai = 77;@2%Avh

AQ = %Avh

Aw:% —cos [+ Av, +

AM =n—1=¢

(

2) Adjustment of the inclination difference

As the Jy perturbation does not change the orbital in-
clination, the inclination difference must be remedied
by maneuvers. An impulse perpendicular to the orbital
plane can be implemented at the ascending node or de-
scending node.

Av = ZESiHM
r 2

@)
where h = 20 , 0 is the argument of latitude.

3) Adjustment of the semimajor axis and eccentricity

After the spacecraft transfers to the same orbital
plane with the debris, the semimajor axis and eccen-
tricity are adjusted by two tangential impulses. For a
near circular orbit, omitting the high order terms of e?,
the impulses are formulated as follows.

If AaAe > 0, the first tangential impulse Awvy is
implemented at the perigee, where the true anomaly
f = 0, and the second tangential impulse Auv;s is im-
plemented at the apogee of f = .
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Aa+a(1 e)Ae
Aa a(1+€)A€

{ Avtl (8)
Avtg =

If AaAe < 0, the first tangential impulse Awvy is
implemented at the apogee, where the true anomaly
f = m, and the second tangential impulse Avy is im-
plemented at the perigee of f =0.

Aa—a(l4e)Ae
Ay = n=2masrene “(4+€) =
Aa+a(l—e)Ae

4

Avip =n ©)
4) Estimation of rendezvous duration
The rendezvous duration should mainly come from
the adjustment of the RAAN difference so as to make
full use of the natural RAAN drift due to .J5 perturba-
tion. The other adjustments do not need too much time.
To be conservative, the rendezvous duration is roughly
estimated as the duration for RAAN adjustment plus
one day.

4.2 ACO for Debris Grouping and Bunching

ACO algorithm was originally inspired by the ability of
biological ants to find the shortest path between their
nest and a food source [13]. The fundamental working
procedure of the ACO for debris Grouping and bunch-
ing (ACO_DGB) is similar to the classic ACO, which is
shown in Algorithm 1. The most important feature of
an ACO is the design of the heuristic, which is eventu-
ally combined with the pheromone information to build
solutions. In this part, we mainly present the heuristic
and solution construction method of the DCB_ACO.
Algorithm 1 Ant System

step 1: Pheromone trail initialization;
while termination criteria not met
do

step 2:  Solution construction;

step 3: Pheromone update;

end while

The procedure of bunching a debris chain is illus-
trated in Fig. 2. After setting the start time and select
a debris as the head of the chain, the estimation of the
optimal transfer AV and AT between the last debris of
the current chain and all remaining ones and the selec-
tion from the candidate pool are followed and cycled to
bunch the chain one by one. When the candidate pool

becomes empty, which means none of the remaining de-
bris can be added to the tail of the chain, the procedure
will be stopped and a chain will be obtained.

o
° o 0 o
o OO Estimate the optimal

o
Oo o 0000000 transfer cost and 0°.%
) collect the candidate o o
0P o oo o
o° o o o0
(e} 00 00 O Estimate the optimal
O,550C 00 transfer cost and

00 collect the candidate

eelm one from the
candidate pool

Selecn a debris as the 7 Select one from the

T
head of the chain i candidate pool
o o o o
© o Lo © o oo
o (o] (o]
Do © 5o 00° 0 509 0O
o

T T+A/‘

T=T+At,

o
O "o g 0000° 0~ 0000
%50 0 00 oo
o
Until the candidate pool is empty,

Finish bunching

FIGURE 2. Bunching procedure of the debris chain

Three remarks should be noted for this procedure:

1) In steps 3 and 6, the candidate refers to all of the
debris that satisfy the total fuel constraints for one
mission after being added to the tail of the chain.

2) In steps 4 and 7, the probability that an ant k will
choose a debris j as the next debris for the current
chain b in the partial solution s is given by

3
Toj ;"
Z -,—bg.ngﬁv
geUk (s,b)

ko j € Uk(s,b)
Do (s)=
0 otherwise

(10)

where U* (s, b) is the candidate pool and 1; = AV},

is the heuristic value. The parameter « in the clas-

sic ACO is fixed to 1 here because using the pa-

rameter 3 is sufficient to reflect the weight between

the pheromone information and heuristic informa-

tion. 7y; is the pheromone from debris / to debris j,

where debris [ is the last debris in the current chain
b.

3) Instep 5 and 8, 4t is the estimated optimal transfer
time between the last debris in the current chain and
the selected debris.

Based on the chain bunching method, building a so-
lution for each ant should take the following procedure,
which is presented as Algorithm 2.

Algorithm 2 Solution Construction Procedure of the
ACO_DGB

step 1: Determine the start time 7 (MJD)
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step 2: Produce a debris chain based on the chain
bunching method in Fig. 2

if None debris remains

Go to step 4

else

Set the current time T=T+ATy; (ATy €
rand[30day, 60day])

Return to step 2

end if

step 3:

Collect all of the debris chains and obtain a so-
lution

step 4:

The evaporation parameter p is set as 0.05 and the
increase of the pheromone ATZ-]E- is limited to the max-
imum value of 0.17;; to avoid premature convergence.
The pheromone update rule used in the ACO_DGB is
the same as the one in the ACO for the EMPP [6].

4.3 Solving Strategy

To minimize the cost function that is expressed in
Eq. (1), not only the launch times but also the total
propellant cost in each launch should be reduced. The
time-related part c¢; is set as the maximum cost (55
MEUR) in the optimization for the whole mission.

Due to the insufficient optimization performance of
the ACO_DGB, we can hardly obtain the optimal so-
lution or even a good solution if using the algorithm
to optimize 123 debris all at once and taking the solu-
tion from the result directly. In order to make the orig-
inal problem easier to be optimized and obtain better
solutions, a chain-by-chain solving strategy is applied,
which is illustrated in Fig. 3.

Use ACO_DGB

o o) o
© o oOo to obtain several o 0 Disorganize the o ooo
o 0000 009 solutions o° remaining debris ® 0000 Oooo
S o000 e E—— 030000
o°60 0 00 P ©50 0 00
© o O

Determine the se ACH
first chain Determine the
N ag:
second chain
se solutions

Obtain the final oo

Disorganize the
3~4 chains © g

©00 00O  remaining debris
FIGURE 3. Procedure of the chain-by-chain solving strategy

OOOOOO
0000
o O

The main idea of this solving strategy is to deter-
mine the debris chains of the final solution step by step.
2000 runs will be implemented for the ACO_DGB to
optimize the remaining debris each time and the first
chain of the best partial solution will be selected and

determined as the next chain of the final solution. Here
the best partial solution refers to the one that owns the
smallest objective function value excluding the deter-
mined chains. The final 3-4 chains are determined all at
once because the search space is small enough and fur-
ther disorganization and reoptimization for the remain-
ing debris will not make the final solution better.

S Sequence Optimization for the Debris
Chain

5.1 Optimization Model

1) Design variables

The solution of a debris chain Y is made up of a
group of serial integers Y; and a set of real numbers
Y.

Y = (Y1,Y5) 11

where Y; refers to the rendezvous sequence
(p1,p2,...-pg), and Yo refers to the orbital trans-
fer time (dury, durs, ...durg).

Through the sequence of its elements the serial in-
teger vector Y7 represents a rendezvous order. The
search space of Y is therefore discrete and its elements
must be manipulated in combination.

2) Objective function

The objective is to minimize the propellant consumed
by orbital maneuvers:

min f2 = (mO — Mdry — dee) (12)
where mg,., is the spacecraft’s mass after the last re-
moving mission and also denotes the spacecraft’s dry
mass(Generally, mg,, should include the propellant
used by spacecraft to deorbit, otherwise, the spacecraft
itself would be a debris now).

5.2 Numerical estimation method of the transfer
AV and AT

The state of a spacecraft can be expressed as

E = (a,u,&n,i,Q)7" (13)
where a is the semi-major axis, ¢ is the orbital in-
clination, €2 is the right ascension of ascending node
(RAAN), u is the argument of latitude, e is the eccen-
tricity, w is the argument of perigee, and £ = ecosw
and 17 = esinw are the modified orbital elements suit-
able for de-scribing near-circular orbits.
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The state variable used to express orbital differences

between the spacecraft and a debris is
X = (Aa/a,, A, AE, An, Ai, AQ)T  (14)

where the subscript r denotes the reference orbit, Aa is
the difference in semi-major axis, Af is the difference

Aa = Aag

A = Ady — [4n, 2

ar

+3520(3

Ai = Ay
AQ =A% + (]

where the subscript 0 denotes the initial state, At is
the orbital transfer time, p is the geocentric gravita-

A& = Ay cos(w g, At) — Ang sin(w g, At)
An = A& sin(wy, At) + Ang cos(w z, At)

in argument of latitude, Ai is the difference in orbital
inclination, AS? is the difference in RAAN, and A¢ and
An give the differences in eccentricity vector.

Using the first order approximations, the state
transitions of the orbital element differences
under the .Jy perturbation are given by [10]

_ 4sin2ir)} At — AC sin(2i,) AigAt

5)

Aaao COS 1, + sin iTAiO) CAt

(

_z
C = %\/ﬁar L and wy, = C(2— 3sin®,) is
the drift rate of perigee.

tion constant, a. is the mean equatorial radius of the Thus, the orbital transfer of the qth ren-
Earth, n, = /% is the mean angular motion rate, dezvous operation can be expressed as
J
2
X(tgr) = ®(Atg0)Xo + Y By (Aty), g;) Avy; (16a)
j=1
r 1 0 0 0 0 0 7
—%nrAtqo—
7 i_' . ) Atyo 1 0 0 —4C'sin(2i,)Atyo 0
®(Aty) = S 2y 16b
(Atqo) 0 0 cosTyo —sinTy 0 0 (16b)
0 0 sintyy cosTy 0 0
0 0 0 1 0
i TC cosi, At 0 0 0 Csini, Aty 1 ]
[ 0 2 0 T
73nrf
0 70( 3—. . ) Atg;  —4Csin(2i,) cosug; Aty;
48in“i,
P (Atgj ugi) = | sin(ugs + 74;) 2 cos(ug; + 7g; 0 (16¢)
—cos (Ugj + Tqj 2sin(ug; + 745 0
0 0 COS Ug;
sinug;
0 7C WA sini,
i COStratyj ( C'sin i, cos ug; Aty; ) |
[
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where 74; = Wy, Atg;, Atgo = tqr — tqo = durg is
orbital transfer time, Aty; = tqr — tq5, ug; is the ar-
gument of latitude of the j' maneuver, and Av,; =
(Avgjz, Avgjy, Avqu)T is the impulse vector. The or-
bital coordinate system used to describe the impulse is
given as follows: « is along the orbital radial direc-
tion, y is along the in-track direction and z is along
the orbital normal direction and completes the rand-
handed system. The last maneuver is executed at ¢y,
i.e. tqf = tqg.

Eq. (16) is a linear relative dynamic equation under
the J, perturbation. Only two maneuvers are consid-
ered for each orbital transfer that six unknown impulse
components correspond to six equations, and then the
solution to Eq. (16) can be easily obtained using Gaus-
sian elimination. The details of this linear dynamics
model can be found in the references [14, 15].

Long-duration rendezvous problems under the .J,
perturbation have multiple local minima both in the
duration of one orbital period and in the duration of
multiple orbital period [15]. In order to overcome the
property of multiple local minima in one orbital pe-
riod, the burn time of the first maneuver ¢, is enumer-
ated from ¢4 to ty0 + ;- with a step of 7./ Nepym,
where 7. is the reference orbital period and Neyym 1S
the number of enumerations. For each value of 741, a
group of values for Av,; and Avg, can be obtained,
and is referred to as Avyy(tg1) and Avya(te1). The
Nenum + 1 groups of Avgi(t,1) and Avge(ts) in
total are calculated and then are compared with each
other to find the group with the local minimum value
of [|Avgi(tq1)| + [|Avga(tq1)|l, and the values of the
Avg; and Avg, in this group are used as the impulses
for the orbital transfer of the ¢ rendezvous.

Based on the method provided above, the maneuver
impulses of each rendezvous orbital transfer are only
functions of the initial state, the required ending state
and the orbital transfer time, and then the propellant
cost can be evaluated with small computation cost.

6 Optimization for the Debris-to-debris
Transfer

6.1 Optimization Model

1) Design variables
4n design variables are contained in an n-impulse
maneuver plan:

D = [ti,Avm,AviwAviz], 1= 1,2, ,K (17)

where K is the total number of the maneuvers, t; is
the i*" maneuver time and Av; = [Av;,, Avy, Av;,|T
is the ' maneuver impulse vector. Herein, 4-impulse
maneuver plan is adopted.

2) Objective function

The objective is to minimize the total velocity incre-
ment:

K
minJ = Av = Z 1A ]|

i=1

(18)

3) Constraints

The duration between two adjacent maneuvers

should be larger than a given value, i.e.,
ti —ti1 > AT,

{ t; € [to,tf], 1=1,2,.., K (19)

where tg = 0, ty = 30 days, AT} = 5 days, AT can
be set as zeros for i = 2, ..., K. In addition, at the final
time, the deviation between the spacecraft’s state vector
zy = [ry,vf]” and the state vector Tpex of the next
debris should be smaller than the given tolerant error,
ie.,
{ |7 f — Text]| < 100 m, 20)
[0 — Vnextl| < 1 /s

6.2 Feasible Solution Iteration Optimization
Approach

Based on the impulsive maneuver assumption, a feasi-
ble solution iteration approach is used to solve this op-
timization problem, which can be divided into the fol-
lowing two parts.

1) Dealing with the Linear Constraints

A group of proportionality coefficients 11, - - - , i €
[0,1] is used to substitute the maneuver times
t1,--- ,tx as optimization variables. Then, the maneu-
ver times can be calculated as

ti=ti—1 +ni(ty —tio1) +AT;
ATy =5 days,
AT, =0,i=2,.., K

21

2) Dealing with the Nonlinear Constraints

The last two impulses Avg 1 and Avg are cho-
sen to satisfy the nonlinear equality constraints, and
that they are obtained by solving a perturbed two-point
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boundary value problem. Otherwise, the number of de-
sign variables in Eq. (17) is reduced to 4K — 6, and the
equation can be expressed as

X = [7717"' 777K7A1117"' 7A’UK72] (22)

After the proportionality coefficients and the first
K — 2 nominal impulses Av; (i =1,2,--- , K —2)
are provided by the optimization algorithm, the
maneuver time can be computed using Eq. (21).

(Avg 1, Avg) = Lambert p ((tx 1), x(tk), tx —tx—1)

where @ (txx) = @pext, and the position and veloc-
ity error tolerances for the perturbed Lambert algorithm
are respectively set as 100 m and 1 m/s. This perturbed
Lambert algorithm allowed the perturbed solutions that
included the successful computation of the gravitational
potential terms J> through a homotopic targeting tech-
nique in which the two-body Lambert solution is used
as an initial value and the Runge-Kutta integration is
used as a perturbed trajectory propagator. A set of mid-
dle target points along the position offset vector (i.e.,
the offset between the initial and the final perturbed tra-
jectories) is chosen to approach the final target point
iteratively so that the iteration from two-body Lam-
bert solution can converge for this long-duration, multi-
revolution Lambert problem.

7 Results

Table 1 presents the best solution we obtained during
the competition, in which the start and end epoch as
well as the sequence and the start mass of each mis-
sion are listed. It can be found that the number of the
removal debris in each mission are mainly distributed
from seven to twelve except for the first mission.

The total velocity increments for rendezvous of each
mission are presented in Fig. 4. It can be seen that the
total velocity increments of most missions are between
1500 m/s and 2500 m/s while only that of the fifth mis-
sion is beyond 3000 m/s. However, it should be no-
ticed that the first mission has also removed the most
debris. Consequently, the average velocity increments
of each mission are better indexes to evaluate the perfor-

Then the spacecraft’s trajectory is propagated to
tx—1 by substituting Awv;(i=1,2,---,K —2)
into the dynamics of Eq. (2), and the spacecraft’s
state x(tx_1) can be obtained. Following this, the
last two nominal impulses are computed by solv-
ing a two-point boundary value problem so that
the final rendezvous conditions of Eq. (20) can be
automatically satisfied. = Here the homotopic per-
turbed Lambert algorithm proposed by Yang et al. [10]
is used to calculate these two impulses as described by:

(23)

(

mance of each mission, which are shown in Fig. 5. We
find that the average velocity increments of the first four
missions are below 250 m/s while for most of other mis-
sions the average velocity increments are near 300 m/s.
It indicated that the performances of the first four mis-
sions are better than others. It is clear that the average
velocity increment of the eighth mission is the largest
with a number of near 400 m/s, which indicates that the
mission is not optimal. The minimum and maximum
velocity increments of each mission are illustrated in
Fig. 6. The smallest velocity increment of all 12 mis-
sions is 38.6 m/s while the largest one is 798.3 m/s. It
can be seen that the range of velocity increments for a
single rendezvous process of each mission is very wide.

AVimi)

9 W0 1 12

FIGURE 4. Total AV of each mission

The histories of the RAAN of the active spacecraft
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TABLE 1. Details of the best solution from NUDT

Mission  Start Epoch  End Epoch  Debris  Debris Removal Sequence Start Mass
Order (MJD) (MJD) Number (kg)

I 23517.00 23811.52 17 0, 115,12, 67, 19, 48, 122,77, 63, 5478.12
61,82,107,41, 11, 45, 85, 47

2 23893.80 24092.29 11 58, 28,90, 51, 72, 69, 10, 66, 73, 64, 52 4106.88

3 24122.30 24427.74 12 84, 86, 103, 16, 121, 92, 49, 23, 20, 54, 27,36  3809.97

4 24461.50 24660.15 10 8,43,9,55,95, 14,102, 39, 113, 110 4081.09

5 24785.00 24975.41 12 83,75, 22,35,119, 24, 108, 37, 112, 104, 32, 5782.68
114

6 25006.00 25198.32 9 118, 65, 74, 50, 94, 21, 97,79, 120 4024.43

7 25281.60 25454.87 10 62, 1, 40, 76, 89, 99, 15, 59, 98, 116 4877.61

8 25555.40 25669.64 8 117,91, 93, 70, 18, 105, 88, 46 4909.98

9 25702.40 25860.22 9 5,53, 33, 68, 71, 80, 57, 60, 106 4419.99

10 25912.74 26055.85 8 2, 81, 96, 6, 100, 30, 34, 26 3902.24

11 26087.53 26262.18 10 87,29, 101, 31, 38, 25,4,77,13,3 4267.35

12 26292.26 26381.58 7 44,111, 56, 78, 17, 109, 42 3584.37

9 0 1 12

FIGURE 5. Average AV of each mission

AV (mie)
: g 2 e 8 38

o
H

L !
10 12

=
N
-
o
o

FIGURE 6. Minimum and maximum AV of each mission

and corresponding debris removed in the last mission
are shown in Fig. 7, where the red line with circles in-
dicated the history of RAAN of the spacecraft. We can
find that the RAAN of the spacecraft increases grad-
ually as it rendezvouses the debris one by one. The
RAAN of debris #42, as shown in the figure, is not
close to others in this sequence. However, there is an
intersection of the RAAN between debris #42 and de-
bris #109 around 26377 MJD. Thus, the spacecraft can
wait to transfer from debris #42 to debris #109 until to
that epoch so as to reduce the velocity increments for
maneuvers caused by a large initial RAAN error.

L L L L L L L
2622 263 263092635 26335 26348 26377
MID (day) ]

FIGURE 7. History of the RAAN of the active spacecraft and
corresponding debris for mission #12

8 Conclusions

A three-level optimization framework is presented to
solve the problem of GTOCY, wherein the competitors
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are called to design a series of missions able to remove
a set of 123 orbiting debris pieces while minimizing the
overall cumulative cost. The top level is similar to a dy-
namic TSP, wherein the debris pieces are divided into
several groups and each group of debris is removed by
one mission. The middle level is a mixed-integer opti-
mization problem, wherein the impulses and durations
of each rendezvous in one mission are designed. And
the bottom level is the precise and detailed optimiza-
tion of the flight trajectory in one rendezvous. The re-
sult of GTOC9 obtained by this framework is then il-
lustrated. The result indicates that the three-level op-
timization framework is efficient and can obtain good
solutions in considerable time.
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Abstract. This paper describes methods used by
the team from the Xi’an Satellite Control Center
(XSCC) for solving the 9th Global Trajectory Op-
timization Competition (GTOC9) problem. The
removal of all 123 pieces of debris is accomplished
using 12 launches in about § years time span, and
the performance index finally ranked third in the
competition. We refined our results after the com-
petition, and the improved solutions are also pre-
sented.

1 Introduction

The 9th global trajectory optimization competition
(GTOC9) problem concerned the multiple debris re-
moval in low Earth orbit in order to relieve the Kessler
effect [1]. This was accomplished by multiple missions,
where each mission is a multiple-rendezvous spacecraft
trajectory where a subset of size N of the 123 orbit-
ing debris is removed by the delivery and activation of
N de-orbit packages. The goal was to rendezvous as
many debris objects as possible. A performance index,
which depended on the number of launches used penal-
ized by an added quadratic cost that including the sum
of propellant mass and de-orbiting kits, must be mini-
mized subject to a variety of constraints. Earlier sub-
missions of single missions were rewarded through a

*Corresponding author. E-mail: hongxin.shen@gmail.com

smaller base cost. The only manoeuvres allowed to con-
trol the spacecraft trajectory are instantaneous changes
of the spacecraft velocity (specific impulse was 340s);
the tour should last less than 2947 days. Details can be
found in Reference [1]. In this paper, we describe the
main design model and optimization methods for this
problem.

The complexities of this problem are to manage
multiple-missions and select suitable sequence to ren-
dezvous all debris objects from a given set of 123. Since
the overall sequence of missions / debris removed is too
large to be explored exhaustively, a global optimization
procedure based on Ant Colony Optimization (ACO) is
employed to automatically generate a near-optimal so-
lution, as a replacement of the global search [2].

2 Leg cost estimation and optimization

Optimal phasing is assumed to obtain a preliminary
estimate of the transfer velocity increment AV. The
Hohmann transfer cost for a small change of the semi-
major axis Aa reduces to AV/V = 0.5Aa/a; simi-
larly, for a small eccentricity change, the relation Ae,
AV/V = 0.5Ae holds while AV/V = 2sin (0.5A%)
applies for inclination changes. An empirical relation is
thus introduced to consider simultaneously the change
of semimajor axis Aa, to account for the additional ec-
centricity change Ae as well as for the change of incli-
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nation A7 [3]:

AV'/V =0.5y/(Aa/a)? + Ae? + 2sin (0.5A1) (1)

where AV’ is one part of the total velocity increment
AV for a body-to-body transfer. The smallest value of
semimajor axis a among the two objects involved in the
leg, and the corresponding circular velocity V" are used.

Suitable object sequences are found by estimating the
rendezvous times and cost of each leg in terms of veloc-
ity change AV. The estimation procedure assumes that
favorable opportunities occur only when the required
plane change is the smallest, and therefore when the
RAAN of the chaser is close to that of the target. To
this purpose, the mission can take advantage of the J2
perturbation, which changes the RAAN of bodies or-
biting the Earth with a rate that depends on semimajor
axis and eccentricity. Objects with different orbits will
therefore have different rates of change of €. The cost

required for a small RAAN change A() is
AV" ]V = 2sin (0.5A0) )

J

where AV is the other part composing the total veloc-
ity increment AV for a body-to-body transfer. There-
fore, one obtains the total cost of a leg as AV =
AV + AV,

The search starts from finding suitable times for the
transfer between any debris pair (objects 5 and k). Each
leg starts in rendezvous conditions with object j. It is
necessary to wait for the RAAN difference AS) between
objects j and k to become minimal in a prescribed
time range in order to perform the transfer with a small
amount of propellant consumption. Assuming 7 as
the leg starting epoch, the rendezvous time for the next
object k is denoted with t/*. According to the GTOC9
rules the transfer time for each leg ranges between
Sdays and 30days, taking servicing time into account.
Thus, #/ + 5.5 = t/F, < /% <% =17 + 30, where
we have reserved a buffer of 0.5days for the orbit trans-
fer time. Considering all possible debris pairs, the times
when this favorable condition occurs are computed as:

4 solve AQ(t) = 0,if AQ(t%ﬂm)AQ(t{;’faz) < 0,else
th =0 aE I AQ(E,)] < [AQ(HE,, )] 3)
tik  otherwise

max’

These times represent the theoretical rendezvous times
for legs connecting the two objects; they are valid both
for transfer from object j to object k and vice versa.
Multiple-leg missions can be built based on the theoret-
ical rendezvous times that have been determined with
the procedure described above. All the permutations of
m targets selected among the n possible objects should
be considered. Mission starts at ¢; from target 1; ren-
dezvous with target ¢ + 1 at the end of the ¢-th leg
(z=1,2,...,m — 1) is assumed to happen at the best
orbit alignment, that occurs after ¢;, between the orbit
planes of targets ¢ and ¢ + 1. Because the number of
targets and the dimension of the target set are relatively
large, all the sequences cannot be evaluated in reason-
able times. Pruning technique or an global optimization
strategy is required to find the best sequences when the
number of possible solutions becomes too large. In-
stead of pruning technique, an ant colony optimization
approach is used in this paper to obtain an near-optimal

solution, by solving a variant of the well-known travel-
ling salesman problem.

The actual missions are designed acounting for the
full dynamics complexity and constraints by means of
an ant colony optimization approach in continuous do-
main [4], which is used to obtain the optimal solution,
i.e., minimum AV, for each single transfer leg.

Assume the i-th leg starts at time 7, = t;, which
is known from the solution of the previous leg, tak-
ing servicing time into account. Impulses are applied
at times 79 < 73 < T4 = t;41. The rendezvous/last
impulse time 74 = t;4; is unknown and only an es-
timation is available. Each arc is described by a lim-
ited set of 6 variables. Three variables define impulse
times: py = 14 — 71, p2 = (12 — 711)/(4 — T1),
ps = (13 — 72)/(74 — T2); the time of flight p1, po
and p3 vary between 0 and 1. p4 is the impulse velocity
change AVy, which varies between 0 and 800 m/s. ps
and pg define the direction of the first impulse.
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Given the set of variables it is possible to evaluate the
arc AV. Initial time, position and velocity are known.
Once the velocity after the impulse has been evaluated
from the optimization variables, Kepler’s problem is
solved taking J2 perturbation into account, to evaluate
position and velocity just before the following impulse
(2-); again, the optimization variables provide the ve-
locity components after the impulse (2+), and position
and velocity at 3- are determined solving a perturbed
Kepler’s problem. The arc from point 3 to point 4 (the
target position at t4 is also evaluated by solving a per-
turbed Kepler’s problem) is first solved as an unper-
turbed Lambert’s problem to obtain the velocity com-
ponents after the second impulse that would allow to
intercept the target in the absence of perturbations. J2
effect would not allow the intercept with these values,
so they are corrected with an iterative scheme to nul-
lify the error between the (perturbed) positions at ¢4 of
chaser and target. The scheme is based on Newton’s
method and employs the numerical derivatives of final
position with respect to initial velocity components [5].
For the legs with relatively long transfer time, four im-
pulses may be required, and the procedure can fit this
situation easily with minor changes.

Each arc is solved in sequence, starting with the val-
ues obtained at the end of the previous one. It is im-
portant to note that the optimal strategy for favorable
opportunities is often to wait on the initial orbit for a
relatively long time, until the orbit planes have become
sufficiently close. Estimations and results of the leg op-
timization have been compared for a large number of
debris pairs. Differences in terms of rendezvous times
are typically limited at 1 or 2 days. However, opti-
mization of AV usually are remarkably smaller than
the corresponding estimations, particularly for high-
AV legs. Thus, we discount the estimation typically
by AV = 0.7(AV’' + AV"), where AV’ and AV" are
given by Eq. (1) and Eq. (2).

3 Formulation of a variant of TSP

We consider an Active Debris Removal(ADR) task with
n missions which are responsible for the removal of a
given set S = {sg,s1,...,sn}, N = 122 of 123 or-
biting debris over a time horizon [0,2947] with refer-
ence time 23467[MJD2000]. The ADR task can be rep-
resented by a graph G =< S, E > where the nodes
are defined by the debris objects. The directed edge
(si,85) € S x S,s; # s; corresponds to the orbital

Algorithm 1 ACO for the ADR problem

1: Set parameters, initialize pheromone trails

2: while The stopping criterion is not met do

3: forallantsk=1,..., K do

4 set mission index: m =1

5: while there are unselected debris do

6 Can(IIP*) is the set of all unselected de-
bris objects

7: choose a debris s; randomly from
Can(IIP*) as the start one in the m-

th mission
8: remove the forbidden debris according to
both the time constraints and tour length
limitation
9: while Can(I1P"F) # () do
10: choose a debris s; € Can(IIP*) with
probability pf;
11: add the chosen debris to the m-th sub-
path TIZ;F
12: end while
13: m=m+1
14: end while
15: employ the 2-Opt, insertion and swap oper-
ators to improve the combined sequence IT*
16: divide the combined sequence into sub-paths
{nk, 1k, ... 11X} according to either time

constraints or length limitation
17 end for
18: forallantsk=1,...,K do

19: evaluate the solution f(TI¥, TIk, ... TIF)
20: update the best-so-far solution
Iy, 105, .. I

21:  end for
22:  update pheromones on the best-so-far sub-paths
23: end while

24: return I17, 115, ... 1T

n
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transfer made by a spacecraft from object s; to object
s;. Moreover, each edge has an associated transfer cost
Aw;; in terms of velocity change as well as Amy; in
terms of fuel usage, it is characterized by a number of
factors: Awv;; = Awv;;(si, sj,t;,t;), where ¢; and ¢,
respectively, are the departure and the arrival date asso-
ciated with the transfer. Thus, a single mission can be
viewed as an open sub-path in the graph. To be feasible,
a sub-path must pass through each selected debris ob-
ject only once, the servicing time between two succes-
sive debris rendezvous within the same mission should
be greater than 5.5 days and not exceed 30 days. More-
over, the time gap of at least 30 days must be accounted
for any two missions, and all the mission events must
be finished within the allowed time horizon. The goal
is to design a series of sub-paths able to cover all the
123 nodes, while minimizing the sum of overall mis-
sion costs and the penalty term related to the possible
incomplete removals. The ADR problem is analogous
to the Traveling Salesman Problem(TSP) [6], but there
are two main differences between them:

* Instead of a single closed path visiting all the nodes
in TSP, the debris are covered by several sub-
paths(mission). The length of sub-path cannot ex-
ceed the upper limit Av,, ... Therefore, the overall
path length is measured as the sum of all sub-path

J

cn+aZ( Z Z Ty Amij)?

lengths.

» Unlike the constant distances between node pairs
in the TSP, the debris are moving with different
precession rates. Accordingly, the time varying
cost of going from one debris object to another
makes the ADR problem time-dependent.

For the sake of clarity, we present an integer pro-
gramming formulation for the ADR problem. It
is based on two sets of binary decision variables,
yir, designating the removal of debris s; to the
k-th(1 < k < n) mission by the value 1 (and 0,
otherwise), and z;;,4,j € {0,1,..., N}, determining
the debris disposal sequence in a single mission.
x;; takes the value 1 when the vehicle proceeds
from debris s; to debris s;. Clearly, the search
space defines over two finite sets of discrete deci-
sion variables {z;;,%,j € {0,1,...,N}},{yix,i €
{0,1,...,N},k € {1,2,...,n}}. A solution in the
ADR problem can be represented through a set of N
variables, each of which is associated with a debris
object. Here, solution components are debris, and they

are to be visited in the order appearing in the solution.
The decision variables x;;,1;; indicate the debris

to be removed in what order and in which mission.
Hence, the ADR problem can be stated as follows:

min 4)
k=1 VS;,GSVSJ'ES

S.t. Z Tij S 1,V8j es (5)
Vs; €S
Z Tij <1,Vs; €8 (6)
Vs;es
S mgyi= Y vi—1L,Vk<n )
Vs; €S VSJ'ES Vs; €S
S wiyinAvi; < Avpaa, Yk < n @®)
VSiGSVS]’GS
5.5 < tj —t; < 30,if dk < n,Vsi7sj S S, TijYikYjk = 1 )
ty —t; > 35,if 3k < n,Vs,, S5 € S, yir + Yjk = 1 (10)
t; < 26414,if 3k < n,Vs; € S,yjp =1 (11)
t; > 23467,if Ik < n,Vs; € S,y = 1 (12)
xij, Yix € {0,1},Vs;,55 € S,Vk <n (13)

(
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where c is the base cost of each mission ranging from
45 to 55 (increasing linearly during the competition
time frame),n is the number of missions, « is set to be
2.0x 1076 according to the GTOCO rules. Eq. (4) states
the objective function, where the fuel usage Am;; is
computed from impulsive Av;; using the Rocket equa-
tion. Egs. (5) and (6) ensure that a selected debris can-
not be removed more than once. Furthermore, Eq. (7)
signifies that the adjacent chosen debris in one mission
must be arrived by the spacecraft consecutively. From
the graph theory point of view, Eqs. (5)-(7) make the
selected edges compose a series of paths without loops.
Eq. (8) is the length limit of velocity change for a single
sub-path. Egs. (9)-(12) define all the time constraints.
Eventually, Eq. (13) imposes the restriction on the de-
cision variables.

4 Ant colony optimization

Ant colony optimization, denoted as ACO, is a meta-
heuristic framework for solving static combinatorial op-
timization problem. It takes inspiration from the fol-
lowing behavior of ant species: ants are able to find the
shortest path from their home to a food source over a
period of time [7].

ACO solves an optimization problem by a construc-
tion graph and uses K artificial ants to walk on the
graph where K is the size of ant colony. Each ant con-
structs a solution iteratively and its behavior is guided
by pheromone and heuristic information. The construc-
tion graph for the sequence optimization problem is the
static ADR mission graph, in which the nodes are de-
bris and each edge represents a transfer between two
debris objects. The ACO metaheuristic is shown in Al-
gorithm 1. Its main iterative procedure consists of three
steps. At first, each ant acts in the same manner: start-
ing from an empty solution IT? = (), the partial solu-
tion I1? is extended incrementally by adding a debris
object as a solution component from available candi-
dates C'an(IT?) C S according to a biased probabilistic
mechanism. In particular, if a debris s; has not been
previously removed, it can be selected with the proba-
bility:

[e% B

Ty, .

U if 1 € Can(TIPF)
ZLGCan(Hka) Tit M

ko
bi; = )
otherwise

)

(14)

where Can(I1P"F) is defined as the set of debris ob-
jects that can be added to a sub-path by the k-th ant
without violating either the time constraints or the lim-
itation of the sub-path length. 7;; is the pheromone
of edge (4,j) which corresponds to the transfer from
the debris s; to s;. The heuristic information is cho-
sen as 1;; = ﬁlj + A’\fij, where A1 and Ay are non-
negative real parameters that control the relative impor-
tance between transfer cost and time. Furthermore, o
and [ are positive real parameters that control the rela-
tive importance between the pheromone and the heuris-
tic information. Subsequently, a local search proce-
dure is employed to improve every constructed solu-
tion. At the last step, pheromone is updated as follows:
all pheromone trails are decreased uniformly through
pheromone evaporation as to allow ants to forget bad
solutions. Then, the pheromone deposited, the mount
of which is proportional to the quality of the solution,
guides subsequent ants to search in the promising re-
gions of the search space. In this way, edges, associ-
ated with components in promising solutions, are rein-
forced with additional pheromone gradually. The iter-
ative process terminates when a stopping condition is
satisfied. In order to improve exploitation capacity of
ACO, we use a modified version of the MAX-MIN ant
system with respect to the classic one. In our algorithm,
we propose an enhanced local search strategy by em-
ploying the 2-Opt, insertion and swap operators in
turn. Once all these operators cannot find a better so-
lution, local search stops. Otherwise, it continues until
the stopping condition is met. The illustration of these
operators is shown in Figure 1.

5 Results

A summary of the final solution submitted during the
competition timeframe and achieving an objective func-
tion of 821MEUR, is provided in Table 1. Each mission
ends with a dry mass mg,, = 2000kg. Shortly after
the competition ended, an improved solution reaching
an objective function value of 766 MEUR was obtained
refining all the body-to-body transfers, as given in Ta-
ble 2. Under the competition pressure and stimulated
by the ideas provided by the winner solution that made
use of a reduced number of launches, we experimented
with an increased weight of launches in Eq.(4). By do-
ing so, our algorithms returned got several 10-mission
solutions, among which the best oneachieving an ob-
jective function of 698MEUR is summarized in Table
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TABLE 1. Submitted solution

Number Start End AV,

Mission | of objects | Debris ID MJD2000 | MJD2000 m/s Cost™*
I 16 7,67,12,48,122,63,61,19,107,41,11,82,115,45,85,47 62.09 405.03 243344 1 T1.49
2 10 58,90, 51, 72, 69, 10, 66, 28, 52, 64 476.4 618.81 1844.81 | 62.12
3 12 86, 84, 103, 16, 121, 92, 49, 20, 27, 54, 23, 36 668.95 960.88 1758.58 | 61.95
4 11 8,43,9,55,95,73, 14, 102, 39, 113, 110 991.04 1195.71 1957.82 | 63.31
5 11 83,75, 35,119, 24,108, 37, 112, 104, 32, 114 1322.00 1506.76 3176.94 | 83.41
6 9 74,50, 94, 21,97, 79, 120, 109, 77 1603.00 1763.17 2390.13 | 67.34
7 12 62, 1, 40, 76, 89, 99, 0, 15, 87, 59, 98, 116 1793.35 2012.06 314897 | 82.79
8 9 93,70, 31, 105, 46, 88, 118, 18, 117 2079.42 2227.17 2667.12 | 71.07
9 9 5, 106, 53, 33, 17, 60, 68, 80, 71 2257.17 2409.36 2371.04 | 67.33
10 10 6, 2, 65, 81, 96, 100, 30, 4, 34, 26 2439.36 2588.5 2608.18 | 70.97
11 6 3,42,44,56,78, 111 2619.67 2701.14 1264.68 | 57.63
12 8 101, 22, 29, 38, 25,91, 13,57 2731.98 2833.56 2186.65 | 64.66

*Base cost: 55 MEUR.

TABLE 2. Improved submitted solution

Number Start End AV
Mission | of objects | Debris ID MID2000 | MJD2000 m/s Cost
I 16 67,12,48,122,7,63,61,19,107,41, T1,82,115,45,85,47 73.06 393.40 1803.65 | 65.78
2 10 90,58,51,72,69,10,66,28,52,64 431.67 642.00 1147.32 | 59.16
3 12 86,84,103,16,121,92,49,23,20,54,27,36 672.00 969.09 1278.77 | 59.31
4 11 8,43,9,55,95,73,14,102,39,113,110 1000.00 1195.89 1885.13 | 64.75
5 11 83,75,35,119,24,108,37,112,104,114,32 1302.45 1530.06 2368.30 | 71.02
6 9 94,74,21,79,50,120,97,109,77 1580.41 1764.24 1883.52 | 64.37
7 12 1,62,40,76,89,99,0,15,87,59,98,116 1794.24 2017.40 2128.08 | 66.77
8 9 93,70,31,105,46,88,118,18,117 2047.40 2227.40 2015.48 | 64.61
9 9 5,53,106,17,60,80,33,68,71 2257.40 2405.00 1877.61 | 65.50
10 10 4,2,65,81,96,6,100,30,34,26 2436.58 2590.00 2186.32 | 68.22
11 6 3,42,44,56,78,111 2620.00 2697.00 927.96 | 57.23
12 8 101,22,91,13,57,25,38,29 2733.19 2937.13 1331.01 | 59.46
TABLE 3. 10-mission solution
Number Start End AV

Mission | of objects | Debris ID MJD2000 | MJD2000 m/s Cost
I 14 38,103,95,57,16,118,50,23,117,55,113,20,79,27 0 281.73 27132 | 74.99
2 17 88,77,31,104,48,39,91,21,11,70,63,47,8,82,45,7,41 311.73 705.50 27273 | 77.29
3 13 94,75,0,18,2,6,108,24,44,120,26,67,119 735.50 955.00 2195.6 | 66.61
4 9 13,114,96,74,46,32,105,83,89 985.00 1090.28 23740 | 67.16
5 10 64,30,66,28,69,14,93,90,19,9 1127.19 1274.32 22412 | 66.31
6 12 107,61,5,4,78,92,53,25,111,109,56,42 1304.32 1500.00 25283 | 70.81
7 17 84,51,36,1,40,62,54,99,122,35,76,85,98,59,15,121,112 1530.00 1899.74 24739 | 72.79
8 11 97,115,22,102,86,110,65,10,100,34,73 2067.92 2285.00 1967.0 | 63.53
9 16 3,17,43,60,80,106,12,52,71,116,68,33,58,72,37,49 2315.00 2662.36 2909.5 | 80.76
10 4 29,101,87,81 2692.36 2787.02 1501.5 | 58.33
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FIGURE 1. The illustration of the local search operators,
each of which transforms the left into the right. (a) 2-opt op-
erator, (b) insertion operator, (c)swap operator.

3. All the mission times in these tables refer to the per-
mitted mission starting time i.e., 23467[MJD2000]. For
fairness in the comparison, the maximum base cost, i.e.,
55MEUR, is used for the above solutions.

6 Conclusions

The multiple debris rendezvous problem posed for
the 9th edition of the GTOC is, essentially, a time-
dependent combinatorial problem, and thus it can be
casted into a dynamic variant to the standard Travelling
Salesman Problem. Fortunately, multiple-revolutions
transfers together with the time constraints considered
in this particular competition allows for an accurate es-
timation of the single transfer cost and time, therefore
the resulting dynamic TSP degenerates into a simpler
version. As ant colony optimization ACO is one of
the most acclaimed algorithms able tackle TSP prob-
lems [8], it was also implemented by the XSCC-ADL
team to find near-optimal rendezvous sequences. An
efficient local optimizer is also important to improve
the overall search strategy adopted, as can be seen from
the fact that we refined our submitted solution and got

about 60MEUR performance index improvement only
through local optimization. Finally, when we focused
on the number of launches by adjusting the weight in

the performance index, 10-mission solutions with re-
markable performance improvement also can be found.
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Abstract. The design and planning of space tra-
jectories is a challenging problem in mission anal-
ysis. In the last years global optimisation tech-
niques have proven to be a valuable tool for au-
tomating the design process that otherwise would
mostly rely on engineers’ expertise. The pa-
per presents the optimisation approach and prob-
lem formulation proposed by the team Strath-
clyde++ to address the problem of the 9°" edi-
tion of the Global Trajectory Optimisation Com-
petition. While the solution approach is introduced
for the design of a set of multiple debris removal
missions, the solution idea can be generalised to a
wider set of trajectory design problems that have a
similar structure.

1 Introduction

The Global Trajectory Optimisation Competition
(GTOC) [1] is a yearly worldwide challenge that was
initiated by the European Space Agency in 2005 with
the aim of advancing the field of research on global op-
timisation techniques for space mission design. During
the years the challenge has been the breeding ground for

*Corresponding author. E-mail: annalisa.riccardi @strath.ac.uk

the testing and development of new computational intel-
ligence techniques for the design of a variety of trajec-
tory design problems. This year challenge, The Kessler
run [2], has been to design a set of non-concurrent mis-
sions to deorbit 123 debris on Low Earth Orbit (LEO),
requiring multiple launches within an available mission
time frame. The only manoeuvres allowed to control
the spacecraft trajectory are instantaneous changes of
the spacecraft velocity. The problem objective function
J is the sum over all missions of a constant term, the
launch cost, and a quadratic term on the sum of propel-
lant mass and de-orbiting kits required for the mission.
Nevertheless, during the competition, the constant term
was increasing linearly with submission time. More-
over constraints on propellant mass, minimum pericen-
tre of all trajectory arcs, time between rendezvous and
time between active missions have to be considered in
the problem formulation.

The paper presents the optimisation techniques and
the solution approach adopted by the team Strath-
clyde++ that ranked 6! over the 69 teams that regis-
tered to the competition (see Table 1, where Ny, is the
number of launches and Ny the number of debris re-
moved). Section 2 is dedicated to present an overview
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Team Ny Nga score

JPL 10 123 731.2756
NUDT Team 12 123 786.2145
XSCC-ADL 12 123 821.3796
Tsinghua-LAD 12 123 829.5798
NPU 13 123 878.9982
Strathclyde++ 14 123 918.9808

TABLE 1. Final rank GTOC9

on the overall problem solving methodology designed
for the problem, Section 3 presents the different fidelity
dynamical models used for the combinatorial search
strategies, presented in Section 4, as well as final solu-
tion optimisation/local refinement, presented in Section
6. Section 5 presents an evolutionary approach adopted
to recombine and improve solutions. Section 7 and 8
present results and conclusions.

2 Solution approach

The solution to the problem was found by using a three-
step process that included both low fidelity and high
fidelity models, as well as global and local optimisa-
tion solvers to converge to an optimal and feasible so-
lution. As a first step, a Beam Search algorithm and
a sequence patching method have been used to gen-
erate initial guesses (debris sequences and the initial
guesses for the departure time from each debris) for
multi-launch debris removal campaigns. The combina-
torial algorithms used a low fidelity model to calculate
the required AV for each transfer and estimate the final
mission cost. A set of these solutions have been used as
initial population for an evolutionary optimisation ap-
proach that, by optimising the times of transfers, was
able to modify the order of the debris in the sequences
themselves as well as to improve the distribution of ini-
tial mass among the launches. After the generation of
these first-guess campaigns, a second step was used to
obtain the solution in the required format, i.e. specify-
ing every AV impulse required. In this step, for each
debris-to-debris transfer returned by the combinatorial
search, the time of application of each impulse as well
as their magnitude and direction has been obtained by
means of global and local optimisation algorithms us-
ing different fidelity models. The bounds on departure
time from each debris and AV components have been
set based on the values returned by the combinatorial
search, and constraints applied in a strict sense regard-
ing mission time, position and mass. These sets of mis-

sion trajectories constituted final solutions to the prob-
lem. As a third step, the entire launch sequence has

Launches and
mission sequences

finder
Global Local
l optimisation of [—> optimisation of
single transfers the full mission

Evolution of the
campaigns

FIGURE 1. Flowchart of the solution approach.

been optimised locally with the high fidelity dynami-
cal model to exploit the correlation between subsequent
transfers and reduce the propellant consumption further
while ensuring that the constraint tolerances were met.

A flowchart of the solution approach is shown in Fig-
ure 1. In the following sections, the various components
of this approach are described in detail.

3 Impulsive models

Low Fidelity estimation

In order to have a good but fast approximation of the
cost of a transfer between pairs of debris, a low fidelity
model, neglecting the J» perturbation, was used. For
the sake of simplicity, the transfer was divided into two
parts: an in-plane part with associated cost AV;, mod-
ifying only the shape of the orbit, and an out-of-plane
part, changing only the direction of the angular momen-
tum for a cost of AV,,. The phasing was not included as
it comes with no extra cost under Keplerian dynamics
assuming there is no time constraint on the rendezvous.
Given the low eccentricity of all the debris, the depar-
ture and target orbits were approximated to be circular.
Thus the cost of the in-plane part can be obtained from
a classic Hohmann transfer:

2 2
AV, — ‘ i
1 1+ T2 r1
2 2
N ’ [ 22
T2 Ty T1+T2
where p is the Earth gravitational constant, while 1 and
ro denote the radius of respectively the initial and final

orbits. As for the change of plane, it was computed as
a single manoeuvre modifying both the inclination and

)
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the right ascension of the ascending node at the same

time [3]:
AV, =2,/ E sin (@) ,
Ty 2

cos(©) = cos? (i) + sin? (i, ) cos(Qa — Qy),

with

where the starred variables are determined between 1
and 2 according to the minimal cost.

High fidelity computation

A high fidelity estimation of the cost of the trans-
fer between pairs of debris was obtained by solving a
constrained global optimisation problem using Multi-
Population Adaptive Inflationary Differential Evolution
Algorithm (MP-AIDEA) [4]. In order to reduce the
number of variables and, therefore, facilitate conver-
gence to the global optimum, the maximum number of
allowed manoeuvres was set to nay = 5 (despite the
rules of the competition allowed a maximum number
of impulses for transfers between debris was 7). It was
proved empirically, on a subset of significative trans-
fers, that such assumption was not deteriorating, but
rather improving, the quality of the optimal solution
found for same number of functions evaluations.

The vector y of optimisation variables for the global
optimisation problem includes the time of applications
of each impulsive manoeuvre and the three components
of the AV vector, for a total of n = 4- nay = 20 vari-
ables for each debris to debris transfer. The constrained
optimisation problem was formulated as:

nAvV
L2y FOY) = 2 AV)
st. x=1(x) (1)
(1—6) 6600 km Z'ZI,...,TLAV
x(tf) = xp(ty)

where y is the vector encoding the 20 optimisation vari-
ables, x is the state vector of the spacecraft, xp is the
state vector of the targeted debris and ¢y is the time at
the end of the transfer. The second constraint imposes
the perigee of the orbit of the spacecraft after each im-
pulse to be higher than 6600 km. MP-AIDEA is run
for a total of npg, = 10° function evaluations for
each transfer. One function evaluation consists in the

propagation from the initial time to the time of the first
impulsive manuever, the application of the maneuver,
a propagation until the time of the second manuever,
and so on, until the final time ¢;. For the first 7e5
function evaluations a non-expensive dynamical model
was used, in which it was assumed that the spacecraft’s
mean orbital elements a, e and 7 remain constant be-
tween two impulses, {2 and w change according to their
secular variations due to Jy [3], while M changes ac-
cording to M = My + 7 (t — tp) where 7 is the mean
motion perturbed by Js [5]:

2
n{l—i—ng (%@) 1— e (1— 3sin?i)

Rg is the Earth’s radius and p = a(1 — e2). The best
solutions obtained at the end of this stage were then
used to initialise the population for the next phase of
the optimisation process, where the complete high fi-
delity dynamics, including osculating Jy effects, was
considered. In this phase, the dynamic equations were
integrated with an 8-th order Adam-Bashforth-Moulton
algorithm with a fixed step-size. At the end of the global
optimisation, a local search was run from the best solu-
tion obtained; the Matlab solver finincon with active-set
algorithm was applied to problem 1.

Figure 2 shows a comparison between outputs of the
low and high fidelity models for a large number of dif-
ferent sets of inputs. On average, the former tends to
overestimate the total AV for a transfer. However, there
is still a number of outliers whose cost is significantly
more expensive than predicted, motivating for a safety
margin to be used in the broad combinatorial searches.

4 Combinatorial search

Full campaign

This section presents the algorithms used in the first step
of the solution process to focus on the combinatorial
component of the problem. At this stage, a solution
is considered to be a list of couples {(D;,t;)} defin-
ing the itinerary in terms of debris to visit and time of
transfer, and with a predicted cost J. If it contains all
the target debris, this is referred to as a first-guess cam-
paign. By considering a new launch as a particular case
of transfer, a complete first-guess campaign can be built
incrementally in a tree-like fashion.

The approach presented in this section was used to
generate first-guess campaigns that eventually consti-
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FIGURE 2. Cost comparison (in meters per second) on 44683 cases between guess from Keplerian model and value from Ja

dynamics.

tuted individuals in the population of the method pre-
sented in section 5, in some cases before and in some
cases after refinement with the high fidelity models in
Section 3 and the procedure in Section 6. This popula-
tion contained the best first-guess campaigns found, but
it contained as well sub-optimal and mass-infeasible so-
lutions that presented remarkable features with respect
to the best. Namely reduced number of launches, better
homogeneity mass per launch, or overall longer mis-
sions. These were obtained with modifications on the
baseline approach, that will be mentioned along the sec-
tion.

Construction of the tree

A node S encodes a partial itinerary {(D;,t;), j < n},
the estimated AV cost of each transfer that is not a
launch, a set of non-visited target debris NV and a set
of available time instants for a new launch 7L, where
with n is noted the number of debris already visited in
the partial itinerary. Branching of a node consists in ap-
pending to the itinerary the couple (D, 11, t,+1), With
either

* a transfer to a debris D,,y; € NV, satisfying the
time and mass constraints associated to a transfer
from (D,, , t,),

e or a new launch to a debris D,,; € NV, with
tnt1 € TL,

and consequent update of NV and T'L. Note this
methodology advances chronologically in building the
sequence of each single launch mission, but can de-
cide to place a launch at ¢, < t, if TL allows it.
This is for example the case in which the sequences are
wrapped in time as will be discussed in the next subsec-
tions

Beam Search

The base tree exploration heuristic of choice was the
Beam Search (BS). Methodologies based on BS have
been successfully applied in other GTOCs [6] [7]. This
baseline was selected primarily due to the fact that up-
per bounds on its time and space complexity are easily
controlled.

The Beam Search is a non-exhaustive search that is
derived from the textbook implementation of Breadth-
First Search (BFS) [8] by considering a fixed maximum
number of nodes for branching at each level of depth.
This number corresponds to the beaming factor Be, a
hyperparameter of the process. Figure 3 illustrates a
comparison of BS with BFS and Depth-First Search
(DFS).

In addition to pruning at each level of depth, a pre-
pruning at the parent level is also conducted, i.e. the
number of branches of each node is limited by the
branching factor Br. Br can be used to bound further
the complexities of the search. Besides, this practice
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(a) Breadth-first-search (BES)

(b) Depth-first-search (DFS)

(¢) Beam-search (BS)

FIGURE 3. Different tree search strategies in comparison. Dotted nodes are yet to be explored. Crossed out nodes are pruned

and will not be branched [7].

enforces that the offspring of at least Be/Br distinct
nodes is represented in the next depth level.

Node fitness

Pruning requires definition of a sorting criterion for the
nodes as a mean of prioritisation, i.e. a fitness function.
This might or might not be the same for beaming and for
branching, and might or might not involve a stochastic
process. The definition of these criteria will condition
deeply the performance of the search.

The baseline approach used a single fitness function,
the quantity Jp, that represents the estimated cost of
a hypothetical launch campaign that complies with the
itinerary and needs an extra launch for each target de-
bris of N'V. This quantity was derived from the AV of
each transfer as predicted by the Low Fidelity model in
section 3.

Nevertheless, first-guess campaigns obtained with
modified cost functions proved to be of special inter-
est for the seeding of the approach presented in Section
5. Some examples of modified cost functions that found
representation in the population that evolved into the fi-
nal submission are listed below:

* Adding a penalisation on the standard deviation of
the mass budget per launch, or of the AV budget
per transfer.

Sorting the nodes alphanumerically: first by the
number of targets visited in the partial itinerary
(decreasingly), then by the minimum number of
targets visited in a single launch (decreasingly),
and only then by J}, (increasingly).

* Considering several definitions of a per-debris
rarity bonus: according to its appearance in a

database of long single launch missions that ex-
ploit only close-to-optimal transfers, or according
to its appearance in large clusters in a time-series
clustering of the target debris RAAN.

e Computing J;, with an increased cost per launch
(tripled).

Additional heuristics

In the Kessler run problem, a solution needs to visit all
the target debris. This fact poses an issue for incremen-
tal approaches such as the ones described hereby; dif-
ferent launch missions will be in competition for a frac-
tion of the reachable targets, hence greedy approaches
risk to exhaust the search space in early iterations, lead-
ing to unexpensive single launch missions that cannot
be aggregated to form complete campaigns. This effect
was mitigated using heuristics that enforce some kind
of diversity amongst the itineraries represented by the
nodes branched at a given depth level, namely:

e Pruning of twin transfers: a limited number of
transfers n; to the same target debris is appended
to node .S during its branching. Also a minimum
time separation At; is enforced between each of
them. This avoids an overpopulation of slight time
variations of the same debris sequence. All results
were obtained with 1 < n; < 4.

* Pruning of twin campaigns: a maximum number
of nodes ns > n; visiting the same subset of de-
bris is branched at each depth level. ng is au-
tomatically increased in case this criterion leaves
less than Be candidates in the level, to avoid over-
pruning in single-root searches. This controls the

DOI: 10.5281/zenodo.1139246

61



Acta Futura 11 (2018) / 57-70

Absil, C.O. et al.

population of permutations of the same debris se-
quence. ng has to be set in relation to Be, a typical
value is ng = 20.

Variations

Upon this baseline, a family of problem-specific tech-
niques was conceived. These can be classified in two
conceptual variations:

— Cyclic Beam Search: this variation considers, for
the itinerary {(Dj,t;), j < n)}, that T'L only contains
the first launch date available as imposed by ¢,, and the
problem constraints. When this is unfeasible, T'L is re-
stored to contain the first available launch date in the
mission timeline. In other words, if the Cyclic Beam
Search is fed as root the itinerary {(Dy, o)}, the leaves
will be first-guess campaigns that start at ¢ty and wrap
around time in a ring permutation of their chronologi-
cal order.

— Concurrent Beam Search: a meta-algorithm on the
method above, consists in a scheduler that manages the
branching of N Cyclic Beam Searches. Each N-tuple
of nodes shares NV in a competitive fashion, and each
of them is assigned a segment of the mission timeline
where it can search for transfers or launches. At each
level of depth of the meta-algorithm, one of them is al-
lowed to append a couple (D, t) to its itinerary.

Note these methods can be applied to either the com-
putation of single launch sequences or complete cam-
paigns, as well as to the expansion of partial itineraries
if these are fed as roots. Few runs of the Concurrent
Beam Search found solutions of better overall quality
than few runs of the Cyclic Beam Search. However the
increased computational cost of a single run and sensi-
bility to inisialisation of the former translated into the
team producing a larger variety of high-quality solu-
tions with the latter. Over 90% of the first-guess solu-
tions eventually used to seed the approach presented in
section 5 were generated with the Cyclic Beam Search.
Attempts at improving the launch heuristics were con-
ducted, by selecting for T'L values inferred from a
database of very unexpensive transfers, and resulted in
a drop of performance.

Initialisation

For the Cyclic Beam Search, the properties of the search
space and algorithm allowed for a brute-force initiali-
sation approach; a search was initialised with roots in
the form {(Doy, t9)}, with as many Dy as target debris

but a single ¢y for them all. This was repeated with
to in a monthly discretisation of the available mission
timespan. This practice was found to give better results
than initialising each search with various values of ;.
Furthermore, as data was gathered, heavier searches in
terms of computational resources were conducted by in-
creasing Be and Br, and priority of execution given to
the searches with promising values of ¢3. Some individ-
uals were obtained by means of a set of light single-root
searches.

For the concurrent beam search, even for moder-
ate values of [V, naive initialisation of all sub-searches
from all debris results impractical, since the possibili-
ties grow combinatorially. To overcome this limitation,
a multi-variate time-series clustering was conducted
in the features z; = cos(;(t)), y; = sin(;(¢)),
where €2;(¢) is the RAAN of debris j at time ¢, and
pre-pruning conducted in terms of size of the clus-
ter. The clustering algorithm of choice was Partition
Around Medioids, using segments of 75 days, Eu-
clidean and Penrose distances and number of clusters
selected by means of Silhouette Width in each segment.
Searches were initialised randomly from N = 3 clus-
ters. Yet other options considered for the Concurrent
Beam Search but not explored in depth during the com-
petition timeframe are its initialisation by means of N
non-intersecting itineraries corresponding to indepen-
dent launches, and solution of a single-objective opti-
misation problem for the designation of N launch sites
in terms of RAAN and time of launch, maximising the
total number of reachable debris.

Precomputations

All searches operated on a memory-loaded time-
discretised precomputation of the AV cost of all debris-
to-debris transfers, as predicted by the Low-Fidelity
Model in Section 3. The resolution of the snapshots was
of 0.6 days. With this modelling that does not take phas-
ing into account, analysis pointed towards the under-
estimation of the time of flight as an important source
of error, primarily in relation to the J» drift. Hence, a
zero-order approximation of the time of flight was used
as correction in the computation of the ephemerides of
arrival. This time offset was set to 1.0 days. Further-
more, margins on the AV prediction and transfer win-
dows were considered for seamless interaction with the
subsequent of the solution pipeline; these safety param-
eters were tuned until the proportion of valid solutions
after refinement was satisfactory.
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FIGURE 4. Velocity required to reach a destination debris
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FIGURE 5. Velocity required to transfer between debris at a
reference time point.

Sequence patching

The goal of a sequence patching is to assemble a launch
campaign out of feasible sequences built from cheap
debris to debris transfers. Such transfers occur peri-
odically within certain windows over the course of a
mission time schedule. For example, the figure 4 plots
AV required to transfer from debris 1 to another de-
bris considered in the competition. For readiness of the
plot, every 10th target debris is reported in the figure.
Moreover, as the figure 5 suggests, cheap transfers can
be dispatched from other debris too. Therefore, all pos-
sible transfers below a predefined AV threshold were
precomputed and aggregated into sequences. The oc-
currence of each debris in the database is sensitive to

the choice of the threshold. Small treshold values can
prevent certain debris to debris transfer to appear in the
database, given the campaign time limits.

A sequence is described by time windows within its
transfers occur and debris intended for removal. The
order in which debris are visited is not relevant for the
patching algorithm and can be established later using a
cost optimiser.

Building a launch campaign can be modelled as find-
ing a clique in an unidirectional graph G(V, E') where
V' is the set of sequences and E the set of edges. Two
sequences are connected by an edge if they target dis-
tinct subsets of debris and do not overlap in time. Find-
ing a maximum clique is a well known NP-hard prob-
lem [9] with efficient solvers available open source [10].
With this approach we found that no full campaign can
be patched using the data set of 85e4 sequences. Larger
datasets can be obtained by increasing the AV param-
eter. It has to be noted that, the clique construction ap-
proach can become impractical for datasets containing
more sequences due to memory considerations. Such
datasets were processed using a depth-first search.

To accelerate the patching algorithm sequences were
sorted according to an index function that took into ac-
count a relative cost of a debris removal and its fre-
quency among all sequences. Furthermore, the depth-
first search was started from sequences that remove the
rarest debris first to significantly reduce the number of
sequences that later can be added to a partial campaign.

The results obtained from the sequence patching al-
gorithm heavily depend on the quality of the initial data
set. Final campaigns obtained from patching a data
set containing 2.2e6 elements covered up to 116 debris
without launches dedicated for a single debris removal.

5 Evolution of solutions

Limitations of Beam Search and Sequence Patch-
ing. In the last few days of the competition generating
a more competitive campaign became extremely chal-
lenging. In the last few days of the competition gener-
ating a more competitive campaign became extremely
challenging. The best submission so far, Solution 4 (2),
was using too many launches, thus penalising the final
score. Using different heuristics and heavier searches
with the Beam Search allowed to generate heteroge-
neous campaigns of similar cost, but none of them was
better than Solution 4, even though a number of them
presented lower number of launches. Attempts at reduc-
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ing the overconstrained combinatorial search resulted
in first-guess solutions that did not respected the maxi-
mum mass constraints and the detailed trajectory opti-
misers weren’t able to restore mass feasibility without
a heavy increase in cost. Manually fixing those trajec-
tories was time consuming and sometimes simply not
possible, while using larger datasets for the Sequence
Patching algorithm was becoming computationally in-
tractable, even employing pruning strategies. At that
point, as a last resort, an entirely different campaign
generation approach was conceived taking into consid-
eration the limitations of the other two and the difficul-
ties encountered when further refining those solutions.
Since all the debris had to be visited, a strategy able
to generate full campaigns was sought. This is because
such approach had no embedded mechanism that was
greedily promoting sequences of easy to reach debris at
the expense of leaving out a few scattered and expensive
ones. While a grid of 0.6 days, for the Beam Search, at
start, was considered sufficiently fine yet not too much
to be a problem, later the need to operate on a pre spec-
ified time grid seemed too restrictive. Hence an algo-
rithm able to continuously optimise the times and deal
with also a set of discrete optimisation variables (debris
ID) was considered highly desirable, if at all possible.

Reformulation of the problem. To accommodate all
these requirements, the low fidelity campaign building
problem was reformulated as a constrained multi objec-
tive optimisation problem operating only on real vari-
ables:

min _ J*(ts(t)),

t = (£, ..
L <t<U, (s,

.,tj, ...,t123)

S.t.

ts = sort(t)

tsl c M,

Mi = {tsj+1|tsj+1 — tsj < 3O7tsj S Mz}

5 < tsj+1 — tsj < 30 VSj € M;,VM,;

ts, — ts, > 43 VlEMi7VkEMZ‘+1
where t; is the departure time from debris 4, J* is the
bi-objective function that has as first objective the origi-
nal objective function and as second objective the max-
imum mass constraint violation; M; is the ¢—th mission

and ls, is the jth sorted time of transfer, coming from
the transformation t; = sort(t).

2

Sk

Advantages of this formulation With this encoding,
internally called Time Shuffler, each debris could be
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FIGURE 6. Scheme of the Time Shuffler encoding and a pos-
sible time feasible solution

freely associated to a time between the minimum and
maximum epoch allowed for the mission (L and Uy).
Sorting of the vector t allowed to automatically and
implicitly define the overall sequence of debris visited
(by storing the sort index vector), while the constraints
allowed to automatically distinguish between different
missions. In facts, once the times were sorted, mis-
sions M; automatically emerged from the differences
between consecutive times: sequences of debris sepa-
rated each by less than 30 days defined a mission, while
the union of missions defined a full campaign. As a re-
sult, all possible campaigns could be uniquely defined
by the vector of times t, without needing to explicitly
track the debris IDs and thus no discrete variable at all.
This also halved the number of optimisation variables,
with a drastic reduction of the size of the search space.

Once the structure of the campaign was decoded, all
time values could be simultaneously changed to satisfy
the debris to debris and mission time constraints, pro-
vided no change in debris order was allowed. The 43
days of margin between missions included 5 days for
the removal of the first debris of a mission (¢; represents
the departure time, so the spacecraft has to arrive there
5 days before to apply the deorbiting kit) and 8 days
of safety margin, as the transfers were considered in-
stantaneous at this level but not with the full dynamics
employed in the refinement stage. A graphical repre-
sentation of the Time Shuffler encoding, together with
a time feasible solution, is given in Figure 6.

Once the structure of a campaign was given and the
time constraints were satisfied, it was possible to com-
pute the resulting AV of each debris to debris transfer
with the low fidelity estimation. Mass constraints were
not directly imposed. Instead, the maximum mass vi-
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Solution ID  Submission  N. Launches J Relevant improvements in solution process
1 10 April 26 1713.07  Beam Search in the first 100 mission days.
No thorough trajectory refinement.
2 20 April 18 1133.94  Cyclic Beam Search.
Improved high fidelity model.
Added single and multiple-shooting refinement.
3 24 April 16 1059.54  Improved Cyclic Beam Search heuristics.
Improved low fidelity model.
Improved global optimisation on high fidelity model.
4 26 April 16 1028.72  Further relaxation of search overconstraints.
5 30 April 14 967.49  Added evolution algorithm to solution process,
Small population of best submitted solutions.
6 30 April 14 945.15  Multi-objective formulation of evolution
7 1 May 14 918.98  Larger population including diverse features.

TABLE 2. Evolution of the solution process and quality of some of the submissions. Column J computed with Cy = 54.945
as if submitted at the time of submission of solution 7 (best submitted).
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FIGURE 7. Launches and debris removal epochs of the solutions in Table 2. Colour relates to initial mass of each of the

launches.
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FIGURE 8. Difference in time at debris between individuals in the initial population and final solution obtained after evolution.

Most similar individuals on top.
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olation was considered as a second objective. The rea-
son for this multi-objective approach was that this way
a single run of the optimiser could return both the best
mass feasible campaign, and a number of mass unfeasi-
ble campaigns with even better score, thus allowing us
to choose which campaign to refine (i.e. improving an
already mass and time feasible solution or attempting to
make mass feasible a promising time feasible solution).
Moreover, this was thought to have beneficial effects in
the overall search, because promising search areas with
temporarily mass unfeasible solutions were not getting
outright discarded. Note that the multi-objective formu-
lation was introduced only after a previous single objec-
tive approach managed to provide improved campaigns.

Implementation details Problem 2 was tackled with
the MACS algorithm [11] with a bi-level approach: on
the upper level, the evolutionary heuristics of MACS
generated possible solutions t, which were sorted, de-
coded and made feasible by a lower level simply en-
forcing the constraints and returning to the outer level
feasible solutions with the original ordering, similarly
to what was done in [12, 13, 14]. Initial trials were per-
formed with totally random initial guesses for t, and re-
sulted in mass and time feasible campaigns with values
of J ~ 1900, rivalling submitted Solution 1 of Table
2 in just a couple of hours of runtime and no thorough
trajectory refinement. MACS was then seeded with the
best 14 solutions coming from the combinatorial search,
including previously submitted solutions and promising
mass unfeasible solutions, and was run for 107 function
evaluations and standard parameters (for a runtime of
approximately 6 hours). To get even better results, ev-
ery 100 iterations of the outer level, the inner level did
not just enforce time constraints but also performed a
gradient based optimisation of the campaign cost func-
tion. Note that this gradient based refinement, with the
low fidelity model but on the whole campaign simul-
taneously was only made possible by the Time Shuf-
fler encoding. The fact that this reformulation of the
original problem allowed us to evolve better solutions
from those found by the Beam Search and that the de-
tailed trajectory optimisers were then able to further re-
fine those solution, confirmed that the whole approach
was effective and solid. Unfortunately, this whole ap-
proach arrived too late in the competition, and since the
trajectory refinement pipeline took approximately 6 to
8 hours of computational time, it wasn’t possible to run
it more extensively. Moreover, the generic metaheuris-

tics employed in MACS were probably not particularly
suited for this specific problem, so better performance
could be expected with problem specific metaheuristics.

6 Solution refinement

As last step, the solutions of the single transfers be-
tween debris computed by the high fidelity model pre-
sented in Section 3 are refined by a local optimiser
handling an entire mission of multiple transfers in or-
der to meet the constraint tolerances and further reduce
the propellant consumption. Two steps are employed
for this process. In the first one the mission is opti-
mised using a single-shooting method. For each trans-
fer, the optimisation variables are the same ones defined
in Section 3, but the total number of variables is now
n = 4 N nay where N is the number of transfers in
the mission. The problem is solved using Matlab finin-
con with the active-set algorithm.

In the second step, the solution obtained by the
single-shooting is used as first-guess for a direct
multiple-shooting algorithm, using WORHP as sparse
nonlinear programming (NLP) solver [15], employed to
reduce the numerical integration error and improve the
convergence performance.

Each transfer between two debris objects is modelled
as a multi-phase problem with discontinuous linking
conditions, i.e. the instantaneous velocity change AV'.
In a single phase, there is no continuous control to op-
timise and also a single discretisation interval could be
used. Nonetheless, m sub-intervals are introduced to
reduce the integration errors and to enhance the numer-
ical solution of the boundary value problem, restoring
the original purpose of shooting techniques. In par-
ticular, this precaution was necessary because of long
time-scale trajectories subject to a sensitive dynamics.
Indeed, a single transfer could last up to 25 days, which
translates in hundreds of revolutions in the fast LEO
dynamics under the effect of the full J5 disturbance.
Hence, the number of free parameters per transfer sums
up ton = 4nay + G(HAV — 1)(m — 1) + 3(TLAV — 2),
where the first term describes the time and three vector
components of the impulsive manoeuvres, the second
one concerns the initial condition of each sub-interval
within a single phase, while the latter deals with the
position variables after each AV, i.e. the linking con-
ditions on position. Successively, each transfer is con-
nected to the next one by means of a coasting phase,
i.e. the de-orbit phase at the debris, with continuous
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FIGURE 9. Individual sequence similarity. Each row represents an individual’s debris rendez-vous sequence, dots represent
new mission launch. Colour details how many positions the rendez-vous with that debris ID is shifted in the sequence of the

final submission. Individual 15 is the final submission.

full linking conditions. In order to enhance the com-
putational efficiency, the sparsity patterns of the asso-
ciated Jacobian and Hessian matrices, resulting from
the multiple-shooting transcription scheme, have been
derived and exploited in the NLP step. The employed
settings result in about 400 free variables per transfer,
about 5% as percentage of non-zero elements for the
objective’s gradient, and lower than 0.1% for the con-
straint’s Jacobian and Hessian matrices. Furthermore,
the full-J2 dynamical model has been augmented with
the associated variational dynamics, and the system of
equations numerically propagated using a Runge-Kutta
4 integrator, to compute the gradient information. This
approach resulted in a decreased computational load
and a more accurate derivative computation with re-
spect to the finite-difference approach [16].

7 Results

Table 2 details the number of launches and cost of sev-
eral of the solutions submitted ordered by submission
date, together with the associated relevant improve-
ments on the solution process. For fairness in the com-
parison, the cost is computed as if they had all been

submitted at the time of the last submission.

Figure 7 details the mission timeline for the solutions
in Table 2 as well as the initial mass of the spacecraft
in each of the launches. It can be observed how an in-
crease in the quality of the solution is associated to an
increase in homogeneity in the mass of each of the inde-
pendent launches and to better coverage of the mission
time frame — note the gaps in the timelines of solutions 1
to 4. These two features derive from using incremental
combinatorial approaches too greedy in terms of AV of
each transfer, that lead to inexpensive missions that can-
not be aggregated into competent campaigns. The gaps
are caused by the search exhausting the available debris
before exhausting the available mission time, thus fail-
ing to explore a region of the search space. Whereas so-
lutions were generated using some of the heuristics de-
tailed in Section 4 that mitigated this effect, this was al-
ways at the expense of the final objective function value.
A similar phenomenon was encountered regarding the
number of launches — solutions of as few as 13 launches
yet suboptimal to Solution 4 were generated before So-
lution 5. This tendency ends with the introduction of
the evolution of solutions in the pipeline, in Solutions
5 to 7. Besides a reduced number of launches and the
lack of the aforementioned gaps in the mission timeline,
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Mission  Start date End date Number of debris  Debris IDs
1 08/04/2064 18/04/2064 2 97, 44
2 20/05/2064 06/09/2064 8 109, 66, 28, 42, 102, 5, 72, 110
3 21/10/2064 14/04/2065 9 115,7,63, 67,70, 48,37, 104, 31
4 02/07/2065 02/08/2065 5 76,52, 64, 53,74
5 03/09/2065 02/11/2065 4 50, 118, 35, 113
6 09/12/2065 05/03/2066 5 114, 80, 116, 49, 117
7 11/04/2066 04/07/2066 7 34, 106, 26, 33,2, 108, 6
8 16/11/2066 07/12/2067 17 4,8,43,73,55,10,9,95, 65, 14
93,19, 90, 21, 100, 69, 30
9 03/03/2068 26/11/2068 15 81,75, 87, 3,45, 86, 105, 96, 46

10 01/01/2069  15/09/2069 16

11 04/01/2070 17/07/2070 10
12 24/08/2070
13 28/04/2071
14 21/11/2071

10/02/2071
30/09/2071
31/03/2072 7

O \©

82,41, 119, 57,24, 32

1,54, 62, 40, 89, 0,99, 112, 15
121, 59, 98, 27, 107, 20, 61
58,23,39,122,17, 12,71, 16

60, 68

13, 111, 120, 103, 94, 78, 85, 56, 83
25,38,77,47,11, 29, 101, 22,91
18, 88, 36,92, 51, 79, 84

TABLE 3. Details of the final submitted campaign: start and end date, number of debris removed and debris’ IDs.

these campaigns also show an increased homogeneity
in terms of initial mass of each of the launches. This
proves the synergy obtained between the first and sec-
ond stages of the solution process described in Section
2.

Figure 8 shows the difference in time of arrival at de-
bris between the 14 individuals used by MACS as initial
population for the evolution process, and the final solu-
tion submitted, Solution 7. Figure 10 presents the same
information in terms of shifted positions by consider-
ing the debris rendez-vous sequence of each individual
in chronological order. Bands of a similar colour indi-
cate sections of the sequence that have been translated
and/or permuted. Figure 9 details the zeroes of Figure
10, i.e. when the ¢-th rendez-vous in chronological or-
der of a seed campaign matches with the final one. Note
that many individuals are not mass-feasible initially, but
present large similarity with the final submission, that
was mass-feasible after applying the high fidelity mod-
els.

The time shifts in Figure 8 will alone define the
itinerary of a campaign, hence these differences can be
taken as a first indicator of the similarity of the chromo-
somes of different campaigns. It can be observed that
there is mainly one individual that serves as backbone
for Solution 7, although some other individuals present

high similarity. Further analysis, as in Figure 10, con-
firms that a large part of the final submission itinerary
can be traced back to a single individual by means of
small shifts and permutations. This backbone individ-
ual is number 1 in Figure 8, number 8 in Figures 10 and
9.

The algorithm manages nevertheless to enhance the
quality of the backbone individual, presumably by ex-
tracting information from other individuals in the pop-
ulation. For instance, the algorithm extracts several de-
bris rendez-vous from the beginning of missions (new
launches), and places them elsewhere in Solution 7. It
also manages to insert a debris visit that required a ded-
icated launch within a short sequence. In a number of
cases, the largest changes with respect to the backbone
individual, can be traced back to smaller shifts and/or
permutations with respect to other individuals. In other
cases, the information flow is not apparent, as Solution
7 exploits some debris-to-debris transfers that are not
represented in any individual of the initial population.

Figure 11 is a representation of the evolution in time
of the RAAN of the final submitted campaign. It can be
observed that the solution generally follows the natural
Jo drift as expected. Table 3 reports details of the 14
missions of the final submitted campaign. The final re-
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FIGURE 11. Evolution in time of the RAAN of the final sub-
mitted solution.

sults' and the complete seeding population debris IDs?
can be downloaded from the provided links.

8 Conclusions

The paper presents the approach developed by team
Strathclyde++ for the solution of the 9" GTOC prob-
lem. The proposed methodology separates the com-
binatorial component of finding the optimal sequence
of debris removals within the mission timeline, from
the continuous problem of finding the best set of ma-
noeuvres for each transfer and assuring feasibility. In

lhttp: //icelab.uk/wp-content/uploads/2017/05/
FinalSubmission.zip

thtp: //icelab.uk/wp-content/uploads/2017/10/
debris_order_evolutionary.xlsx

particular, it introduces a continuous formulation of the
combinatorial problem that allowed a population-based
global algorithm to evolve a set of first-guess solutions
and generate new ones, thus overcoming the manifest
limitations of incremental combinatorial approaches.
The fundamentals of the proposed methodology can be
generalised to a family of multiple rendezvous prob-
lems, and are of special interest for the design of mis-
sions in which the set of available targets needs to be
exhausted.
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Abstract.  This paper discusses the methods
used by the team from the German Aerospace
Center (DLR) for solving the 9th Global Tra-
jectory Optimization Competition (GTOC) prob-
lem. The GTOC is an event taking place ev-
ery year lasting roughly one month during which
the best aerospace engineers and mathematicians
world wide challenge themselves to solve a nearly-
impossible problem of interplenatery trajectory
design.

1 Introduction

The paper is organized as follows: section 2 summa-
rizes briefly the problem statement; section 3 points out
how the overall strategy was developed; section 4 fo-
cuses on the combinatorial part of the problem and 5 on
the transfer between two debris. Finally, in sections 6
and 7 we discuss the results and draw some conclusions.

2 Problem Statement

The task was to design a scenario with n missions
which collect a given set of 123 space debris on Sun-
synchronous Low Earth Orbits. The following cost

*Corresponding author. E-mail: Marcus.Hallmann@dlr.de

function has to be minimized:

n

J = Zci 4+ a(moi — mdry)Q

i=1

D

where c; is the base cost (increasing linearly during the
competition time frame from 45 MEUR to 55 MEUR).
Each spacecraft initial mass my is the sum of dry mass,
propellant mass and IV times the deorbit package mass:
moy = Mgyry + My + Nmyge, with mge = 30kg. The o
parameter is set to be 2.0 - 10~2 MEUR/kg?.

In order to control the spacecraft, five impulsive ma-
noeuvres are allowed during the debris to debris trans-
fer in addition to an impulsive manoeuvre at departure
and at arrival. The overall time between two succes-
sive debris rendezvous, within the same mission, must
not exceed 30 days. The deorbit package deployment
takes 5 days. That results in a maximum transfer time
of 25 days. The time between two missions must be
at least 30 days. And the mission must take place be-
tween 23467 MJD2000 and 26419 MJD2000. The ra-
dius of pericenter 7, is constrained to be smaller than
Tm = 6600 km.

The spacecraft dynamics is described by the follow-

71



Acta Futura 11 (2018) / 71-77

Hallmann, M. et al.

ing set of Ordinary Differential Equations (ODE):

) (1-5()%))
j=—1 (14 320)" (1-5()7))

) (3-5(2)))
which describes a Keplerian motion perturbed by an
oblate Earth. The orbital elements of the space debris

are given for a certain epoch and are propagated via a
more simplified model than equation (2):

" (1 4 37 (e
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w= %Jg(ff) n (500522' — 1)

It can be seen that the ascending node {2 is the orbital
element which encounters the most variations caused
by Jo. That will have an impact on the overall strat-
egy. For more details on the problem statement re-
fer to the GTOC 9 problem statement [1] or visit
https://kelvins.esa.int/gtoc9-kessler-run/.

3 Overall Strategy

The problem to be solved can be classified as Time De-
pendent Traveling Salesman Problem, with a nested op-
timal control problem for each transfer. One way to
solve the combinatorial part would be to explicitly eval-
uate all possible combinations. That approach is only
applicable for small dimensions. In this case there are
123 debris to be sorted for the best sequence (which
gives 123! permutations). In addition they have to be
chopped into n missions, which increases the dimen-
sion of the problem even more. Even with the most
powerful computers and the smartest approach to cal-
culate the AV for transfer from one debris to the next
one it would take years to determine the entire tree. Sec-
tion 4 deals about the solution of the combinatorial part
of the problem.

Before looking into the transfer it makes sense to ana-
lyze the design space to get some reasonable boundaries
for design variables like transfer time, delta v range,
needed number of missions and so on. The first im-
portant question to answer is how are the debris pieces
spread out regarding inclination %, eccentricity e and

semi major axis a. Figure 1 shows the range of the or-
bital elements for the debris pieces. It can be seen that
the orbits are nearly circular, inclination ranges from
96 deg to 102deg and the orbital height (or a — req)
goes from 600 km to 900 km. These elements do not
change over time for the dynamic model which is used
for the debris.

If we only consider the change in inclination and
semimajor axis during a transfer, the problem can be
treated as a simple Traveling Salesman Problem (TSP).
The AV which is needed to travel from debris A to de-
bris B is the sum of the inclination change AV}, plus
the AV, for the Hohmann transfer:

AVipe =2V sin((ia —ip)/2)
AVima = V11 (V/2k/(1 + k) — 1) + ...

v/ (rik) (1= v2/(1+ k)

A‘/AB = Av;nc + AVvsmaa

where Kk is the ratio between a 4 and ap, assuming cir-
cular orbits. With that equations it is possible to set up
a cost matrix showing the cost for the transfer from one
debris to the next debris, ignoring the phasing in true
anomaly and right ascension. With these assumptions
it is possible to apply a genetic algorithm implemented
in Matlab to find the optimal route. Figure 2 shows the
result of one run with 500 populations and 1 - 10 it-
erations. The total distance is around 2654 m/s, so an
average AV of 21.7 m/s is needed for one transfer. In
theory and with no constraints on the mission time, this
result would equal to J < 100 MEUR. In practice the
8 years mission time constraint and the 25 day transfer
time constraint has to be fulfilled.

So some reasonable AV has to be invested for chang-
ing the right ascension. That can be done in two ways:

* adirect plane change,

* an indirect plane change via a change in semi ma-
jor axis.

Assuming that all other elements besides () are the
same, one can compare the AV for both cases. With
this assumption the equation for the direct plane change
is similar to the one used for the inclination change.

AVq =2V sin((Qa — Qp)/2) 4

Like the inclination change it is quite a cost intensive
maneuver. If there is enough time available, an indirect
transfer is cheaper. An important figure to look at is the
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change in right ascension for the debris which is plot-
ted in Figure 3 over height (with an inclination equal
to 98 deg). Out of that one can see that the orbits are
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FIGURE 3. Q over height

drifting between 1.2 deg/day and 0.2 deg/day. Depend-
ing on the initial height the differential drift is around
0.5 deg/day. Assuming a 20 day transfer time it is pos-
sible to overcome a delta of 10deg in 2. For the in-
direct change two Hohmann like transfers are needed.

The first one to reach the desired drift orbit, the second
one to get the semi major axis of the arrival debris.
Assuming the same orbital elements for both debris
as: a = 600km+ 7.4, e = 0, ¢ = 98 deg, only a change
in () needs to be considered. On Figure 4 one can see
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FIGURE 4. AV over AQ

that the AV needed for a direct change increases nearly
linear with AS) (dashed line). The other curves in the
figure represent an indirect transfer for different transfer
times (5:5:25 days). One can see that for transfer times
larger than 15 days it is always better to make an indi-
rect transfer. And that does even not take into account
that it is possible to save some AV because of differ-
ent semi major axis and inclination of the departing and
arrival debris. The inclination change can either be per-
formed before or after the drift change maneuvers. This
choice also has an impact on the required AV, as it is
a function of the inclination (see equation 3). With that
thoughts one has a good set up for the combinatorial
problem, which will be discussed later.

The next interesting question to look at is how many
missions one may need (does it make sense to stack
one launcher as full as possible) and what does the cost
function look like. Assuming a range of different av-
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erage transfer AV's and number of missions (n) one
gets Figure 5, which shows the J function in MEUR. It
can be seen that it is not advisable to use the maximum
propulsion available. For an average AV of 300 m/s,
J is 904.1 MEUR for 9 starts, while for 12 starts it is
827.6 MEUR and for a larger number of starts J in-
creases again. Although one would have to add 12 times
the base cost for the launcher instead of only 9 times,
the used propellant mass goes in quadratic. So using
the total allowed 5000 kg is not optimal. It is better to
reduce the total allowed fuel or AV per mission by 10%
to 20%, depending on how many missions are needed.
The issue is that this number is not known before hand.

4 Combinatorial Problem

In section 3 basic figures have been derived to narrow
down the problem. With these figures it is possible to
estimate the cost or AV to perform a debris to debris
transfer. The issue is, the problem is time variant, be-
cause the cost matrix depends on the epoch of the trans-
fer. Or using the TSP syntax it is not a city to city rout-
ing problem, it is a boat to boat one, where the boats are
sailing around.

Before going into detail of the graph implementation
a deeper look into the handling of the transfer time is
needed. As derived in section 3, for the drift change ma-
neuver, it would be better to have a large transfer time
available. At a first guess it might make sense to use
the maximum allowed 25 days. But using that for all
of the transfers, the total mission time would be larger
than the allowed 8 years. And that even depends on the
number of needed missions. Figure 6 shows the maxi-
mum allowed transfer times over the number of needed
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FIGURE 6. Maximum transfer time over n

missions, which is again not known before solving the
graph problem. In fact it is only possible to use av-
erage transfer times between 15 and 19 days. In that
case the next question is, if it would make sense to have
the transfer time as a design variable in the combina-
torial problem or to keep it fixed to an average value.
To not further increase the permutation space it was de-
cided to keep it fixed. That approach also allows to use
a look up table for all possible transfers with a 1 day
grid size. This table is precalculated and loaded into the
graph algorithm. In the cost matrix it is also possible to
handle the radius of periapsis constraint, by setting the
AV = oo for all transfers where r, < 7, .

For solving the routing of the time dependent prob-
lem the same genetic algorithm has been used, which
already delivered good results for the inclination-sma
routing problem. But it didn’t brought any good results.
Instead a graph algorithm which uses a certain beam
width has been developed.

Each mission can be represented as a graph or tree
(see Figure 7). For the first mission there are 123 nodes
or debris as an option to start from. Keeping in mind
that the cost function doesn’t give any penalty at which
debris the mission starts, it’s a free design parameter. So
the initial beam width would be 123. Using that one can
calculate 122 possible debris transfers for each of that
123 debris. Because each debris should be only visited
ones. This results in 123 times 122 possible options.
There are many methods to explore such kind of trees
or graphs:

* Depth First Search
¢ Breadth First Search

e Beam Search
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FIGURE 7. Mission Graph

* Greedy Search

The Depth First Algorithm travels along the left or right
side of the tree. In this case it would just visit the debris
either in the sequence 1:1:123 or 123:-1:1. It would
be possible to add some backtracking if the algorithms
gets stuck somewhere or to apply some heuristic, like
the average AV is getting too large along the current
path.

Breadth First in the opposite explores the tree first
horizontal and than continues to the next level with all
possible permutations. In this case like mentioned al-
ready a full breadth first search would not be possible
cause the permutation would be to large.

Greedy search is like depth first, but it makes a de-
cision on some heuristic which path to take. The easi-
est implementation is to make the decision on the next
shortest (lowest AV) path. That was the first method
used to find a proper sequence and it brought results for
J around 2500. The Greedy search has the typical tree
drawback that the best cookies are eaten first and the
bad ones are left over in the end, and one still has to
eat them, cause the entire set has to be collected and not
only a subset. And that’s something that has been ob-
served when running a greedy search on the tree. The
last transfers had a quite high AV and that caused a
high number of missions and a resulting high J value.

In order to overcome that issue a beam search has
been applied. Instead of only travelling along one path,
k best options are selected. Depending on the beam
width k the computational time of course grows in that
case. For this problem an initial beam width of 123 has
been selected for the first mission. On the next level the
maximum beam width is already 123 - 122 = 15006
and so on. Limiting the beam width for the first runs
to 2000 already gave good results for J around 1000.
The entire idea behind that method is, that it is possible

to look into the future by taking also some bad paths
hopping they turn into golden paths in the end.

At each level each possible solution has been checked
for uniqueness. That can also be explained when look-
ing again at Figure 7. The sequence 1-3-2 is equal to 3-
1-2, because for the next level the start node (in that case
node 2) as well as the left over debris-set is the same.
So the algorithm only takes the best sequence out of that
two, because the beam width is limited and many dif-
ferent permutations are needed to find the golden path.

The graph algorithm has been implemented in Mat-
lab and took roughly 1hr computation time on a In-
tel Xeon CPU E3 3.50GHz, with a beam width set to
20000. Running the tree after the first mission the left
nodes are getting less and the computation time goes
down.

With the 5000kg propellant a maximum AV of
5000 m/s can be achieved. But with the results from the
qualitative J-function analysis the maximum has been
set to 4500 m/s and also runs with lower values have
been performed. For the first mission it was possible to
perform 23 transfers. But the beam width at that point
was only around 10 to 20. So in that case there are not
enough permutations for the next missions. Instead of
taking the maximum transfer solution one with a higher
beam width has been taken. The algorithm has been set
up in a way that the number of transfers is the same for
all beams. That may not be the optimal choice and some
further investigation may be performed to see if a free
number of transfers brings a significant improvement.

The final sequence will be discussed in the Results
section 6

5 Transfer Problem

Before solving the debris to debris final transfer the se-
quence coming out of the beam search algorithm needs
to be re-optimized. As already discussed in section 4,
the transfer time for all transfers has been kept to a fixed
value. That has been re-optimized using the local opti-
mizer fmincon in Matlab. The cost function in that case
is the sum of the AV's for all transfers in that particu-
lar mission. The design variables are the transfer times.
The upper bound has been set to 25 days, constrained
by the problem statement. The lower bound was set to
1 day, cause some time for the final phasing of the true
anomaly may be needed, which has been ignored com-
pletely so far. In the combinatorial part a fixed grid size
for the transfer time has been used (e.g. always 17 days
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FIGURE 8. Evolution of orbital elements for mission 1

for the first 6 missions and than 19 or 20 for the re-
maining, depending how many debris is left to collect).
An inequality constraint had to be introduced that the
sum of the transfer times is not larger than the old sum
of the fixed transfer times (That means one can only
shift some transfer time from one transfer to the other).
For the re-optimizer the look up table for the AV was
not used. Instead it was calculated during the fmincon
call. That has the advantage of getting a real value for
the transfer time. With that approach between 10% and
25% AV per mission has been saved.

For each transfer the following information is known:

¢ departure epoch
e arrival epoch

¢ transfer time

e estimated AV

To solve that problem again Matlab fmincon with
an interior point method has been used. The control
parameters are the times between maneuvers and the
thrust of 5 maneuvers itself in cartesian form. The cost
function is quite easy in that case, it’s just the sum of all
5 AV's we applied. There are 3 deep space maneuvers
in addition to one at departure and one at arrival. The
more demanding part is the constraint function passed
to fmincon. Here the equations of motion are integrated
between the maneuvers until we reach our final state.
Than the final state should equal the arrival debris state
at that time. There is a global parameter in order to
activate or deactivate the constraints, and it is possible
to choose between the cartesian state vector, Keplerian
elements, or a mixture, or a subset. Another inequality
constraint had to be introduced, taking care that the sum
off all transfer times between maneuvers is not larger
than the transfer time from the tree, otherwise the fol-
lowing transfers are messed up.

When using an ODE-solver in fmincon, the integra-
tion errors from the ODE solver may disturb the Jaco-
bian or Hessian. That was the case for the first runs.
An investigation has been performed which ODE solver
brings reasonable results. The conclusion was that a
fixed step size is more stable than a variable step size
solver. In the end a RK8 has been used, implemented
in C++ with a step size of 50 s (the RK4 needed 1 s step
size), cause the Matlab implementation was to slow. An
interesting observation was also that when using the de-
bris dynamic model first and rerunning the optimizer
with the spacecraft ODE, faster and better results have
been achieved.

For the initial guess the first and last two maneuvers
have been set to the Hohmann like maneuvers coming
out of the drift strategy. The maneuver in the middle is
set to 0. The inclination and phasing change has been
solved by the optimizer. The first and last transfer times
where set to a half orbital period. And the remaining
two transfer times where chopped up equally (kind of
mid course maneuver).

One result is that scaling the state vector x, the con-
straints and the cost function all close to 1 is crucial
for success. Although one would assume that this tech-
niques should be handled by optimizers automatically,
that seems not to be the case.

With the RKS, the algorithm took roughly 5 minutes
on a Intel Xeon CPU E3 3.50GHz. And all transfers
converged proper. The achieved AV was even lower
than the estimated one out of the tree search, cause in
the tree search the AV for the inclination change and
the drift maneuver has been added separately. In prac-
tice they can be combined and the optimizer seems to
have taken care of that.
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6 Results

The solution submitted by the DLR team had a total
of n = 14 missions and a performance index J =
949.85 MEUR. Figure 9 shows the number of trans-
fers per mission. For the first mission the evolution of
Q, a and i are plotted over time (see Figure 8). It can
be seen that mainly the inclination and semi major axis
was changed by the AV and the right ascension just
drifts along to the next target.

7 Conclusion

For the combinatorial part genetic algorithms are suit-
able when the problem is time invariant. But for time
variant problems graph algorithms seem to be the bet-
ter choice. The Beam search algorithm brought reason-
able results, but still suffers a bit from the greedy ef-
fect: there are good sequences in the beginning but bad
ones in the end. One option to improve that may be to
select some feasible continuation beams randomly. In
the transfer problem one may use a multiple shooting
method to get rid off the ODE-integration issue.
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Abstract. The GTOC9 competition requires
the design of a sequence of missions to remove
debris from the LEO orbit. A mission is a se-
quence of transfer of the spacecraft from one de-
bris to another. Both missions and transfer must
fulfill a set of constraints. The work presents the
procedures to develop a solution for the GTOC9
problem (i.e the mission sequence) that does not
violates constraints.

The solution is obtained through an evolution-
ary algorithm that combines pre-computed basic
missions stored in a database. The main objective
of the algorithm is to minimize the overall cost of
the solution, in order to maximize the competition
score.

The database of pre-computed missions is de-
rived by connecting trasfers stored in a database
of transfers, through a combinatorial approach that
considers the problem constraints.

The database of transfer is formulated through
the solution of a constrained minimization prob-
lem upon the control action (the magnitude of the
overall impulsive velocity changes AV’). Only a
subset of all possible transfers (selected on the ba-
sis of acceptable AV), enters in the database.

Introduction

The 9" Global Optimization Competition (GTOC9) re-
quires the design of a sequence of missions—i.e. the

*Corresponding author. E-mail: enrico.bertolazzi @unitn.it

solution—in order to cumulative clean up the Sun-
synchronous Low-Earth-Orbit from 123 debris that may
trigger the Kessler effect, while minimizing an overall
cost.

A single mission is characterized by a sequence of
rendezvous spacecraft trajectories between debris. The
spacecraft is controlled with impulsive changes in ve-
locity. For each debris, the spacecraft activates a de-
orbit package that removes the debris from the LEO or-
bit.

Each mission starts from a debris—i.e. it is not nec-
essary to design the launch from the Earth—and contin-
ues for an arbitrary number of transfers, limited only by
the fuel consumption. Each mission has to comply with
some rules:

* the spacecraft has to wait 5 days to activate the de-
orbit package;

¢ the time between two rendezvous must not exceed
30 days;

¢ amaximum of 5 velocity impulses are allowed;

* the spacecraft may never reach an orbital periapsis
lower than 6600 km.

At least 30 days must be accounted between two subse-
quent missions. The performance index is:

N
J = (ci+ almo; — mary)?) (1)

i=1
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where c; is a submission cost that is proportional to sub-
mission time (favoring earlier submission), mg_; is the
initial mass of the spacecraft at mission ¢, and mg,y is
its dry mass (favoring lighter mission). « is a constant
scaling factor.

The fuel consumption of a single change in velocity
is calculated by the Tsiolkovsky equation:

Am = <1 —exp(— Iigo)>mi

During the transfer between two successive debris,
the spacecraft trajectory is approximated with a Keple-
rian motion perturbed by the effect of an oblate Earth—
i.e. Jo factor—and it is modeled by the ODE:

2

r = v
v = —%r—l—J(r),
T
2 z—5z(z/r) 3)
3 Teq:u 2
J) = Sl | y—5y(z/r)

3z—5z (z/r)2

wherer = (2 y z)T is the position vector, 7 = ||r||
and v is the velocity vector. For more details, con-
stants definitions and constraints, refer to problem de-
scription [1].

Sec. 2 explores the complex procedures to obtain a
solution that fulfill problem statement constraints. The
Section is divided in three major parts. Sec. 2.1 ex-
plores the formulation of the minimization problem to
formulate a transfer between debris, leveraging the dy-
namical system of the spacecraft. The final result of the
section is the database of transfers. Sec. 2.2 focuses
on the exploration of a database of transfers in order to
build chains of transfer that constitute a single mission,
through combinatorial based approach, that creates the
database of missions. Sec. 2.3 concatenates the mis-
sions in order to develop a final solution that becomes
the actual submission to the authorities.

2 Implemented solution

At the core of the problem there is the transfer of the
spacecraft from one debris to another. The transfer im-
plies a loss in mass, due to the control action of the
spacecraft AV, thus the evaluation of the control action
is fundamental for the solution of the problem. The key
of the proposed solution lays in the separation between
mass loss evaluation and visited debris sequence in a

single mission. The mass loss is treated as an indepen-
dent problem with respect to the sequence.

The mission sequences result from a searching
problem in a very large graph. The graph is explored by
means of queries to a database of trajectories and mean
mass losses for transfer from one debris to another.

The solving algorithm is divided in three logical
steps:

* the first part identifies all maneuvers between two
orbiting debris at a defined departure epoch, with
an acceptable loss due to AV: only a subset of
transfer is considered since the whole set of tra-
jectory would be too large to handle, as detailed
in Section 2.1. The trajectories are saved in a
database for the following solution step.

the second step connects maneuvers saved in the
previous database to obtain a subset of all mis-
sions: also in this case there is a pruning policy to
reduce the total size of the database that will con-
tain all acceptable missions. This step is described
in Section 2.2.

as a third step, the missions are combined together,
in such a way the total cost is minimized, as de-
scribed in Section 2.3

2.1 Database of Transfers (DBT)

A database is filled with the transfer maneuvers that ap-
proximate the minimum fuel consumption. Virtually,
the database contains an infinite number of transfers,
thus, some heuristic criteria are used to group maneu-
vers into equivalence classes and store only one ren-
dezvous maneuver for each class.

Let’s consider d; as the current debris, while d;,
with @ # j, is the arrival debris. The starting and arrival
epochs of each transfer belong to a prescribed domain.

The maneuvers may differ in terms of total transfer
time and starting epoch. Heuristically, the longer the
traveling time, the lower the fuel required to perform
the transfer. To generate trajectories with both short
and long traveling time, an optimization problem is per-
formed on several time windows—e.g. time intervals of
[0,1] days, [0, 5] days and [0, 15] days are used.

The resolution for starting epoch is one day. For ma-
neuvers with starting and ending time that differs less
than 1 day, only the most proficient ones are stored in
the database.
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The evaluation of the transfer that minimizes the
mass loss is a result of a complex optimization problem
that is formulated in order to reduce the computational
resources required. The large number of trajectories to
be generated, for the whole set of debris combination
and starting epoch, makes the approach costly so that a
number of speed-up strategy are used.

For a limited amount of time, the debris orbit can
be well approximated as a Keplerian orbit. The theo-
retical minimum AV to transfer from one orbit to an-
other can be computed semi-analytically (see [2]) with
a very fast procedure based on the computation of the
roots of an 8 order real polynomial. Only the maneu-
vers with a theoretical AV below a reasonable thresh-
old are considered for further computations. The details
of the approach and its implementations are described
in Section 2.1. The minimum AV is attained consid-
ering only a departing and an arriving point on the Ke-
plerian orbits, disregarding the actual positions of the
debris. The spacecraft transfer is approximated with a
Keplerian trajectory obtained by a Lambert maneuver.

It is easy to find the starting epoch when the debris
d; is in the right departing position for the Lambert ma-
neuver. The real challenge is the synchronization with
the arrival debris d;. An integer optimization problem
is solved in order to minimize the distance between the
arrival debris d; and the spacecraft, which is approach-
ing the target orbit—cfr. Section 2.1. The result of the
integer optimization is the number of complete revolu-
tion that must be performed by the rocket on the Kep-
lerian transfer orbit, the initial, and final time necessary
to reach the debris d;.

This transfer still approaches only approximatively
the target debris d;, thus, a new Lambert maneuver us-
ing initial and final time with initial and final position
is computed. This second maneuver, in general, applies
AV that is not too far from the theoretical minimum
AV.

The rocket dynamics is not Keplerian, consequently
the Lambert transfer is only an approximation of the
required trajectory, that is the solution of a two-burns
optimal variational problem (2B-OVP). The 2B-OVP is
described in detail in Section 2.1 where the Lambert
transfer is adopted as initial guess.

An high quality solution is evaluated only when
a submission to the authorities is required—cfr. Sec-
tion 2.3.

The trajectories are inserted in a database, where
each record contains:

* starting and final epoch

e starting and arrival debris

* intermediate burn event time (if present)
¢ AV initial, final, intermediate (if present)

Those information are enough to reconstruct the trans-
fer trajectory.

Minimum AV Transfer

The work of Zhang, Zou and Mortari [2] is the corner-
stone for the minimum AV estimation. In this work,
the authors derive a semi-analytical procedure that com-
putes the travel time t,, which minimize the AV (¢,,)
required to transfer from one Keplerian orbit to another
with initial and final position fixed.

The minimum is computed searching the points
where derivatives of AV'(¢,,) is zeroed. This AV (¢,,)
is the sum of two norms ||dvq(t,,)|| and ||6v1 (£,,)]] that
are not differentiable near zero so that the derivative is
computed formally as

d d
0= @ (AV (ty)) = a i§1 [|6vi(tw)l|
_ Z d (||5V’i(tw)”2) /dtw
2 Tl

“4)
so that the relation
d ([lovo(tw)ll?) /dtw _ d ([l0va(tw)|[?) /dtw
[[6vo(tw)l] [[6v1 (tw)]]

is squared on both sides and an 8*" degree polynomial
in t,, is obtained. The positive real roots are the can-
didates for t,, and the minima are discriminated by a
simple procedure (see [2]). The roots are calculated
through the fast Jenkins—Traub algorithm [3].

This procedure is extremely fast and is the core
of the computation of the optimal debris transfer, and
works as follows:

e The two orbits are sampled with e.g. nearly
equally spaced points and all the combinations of
pairs of starting and arrival points are evaluated for
searching minimum AV. The minima are refined
applying a re-sampling with points near the best
candidates. This procedure is repeated a couple of
time. At the end of this procedure the initial and
final point ry and r; with the transfer time ¢,, are
set.
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e Let ty the time at which the initial debris
reaches point ro—i.e. the initial point of Lambert
trajectory—and ¢; the time at which the arrival de-
bris intercepts point r;. Let T' the period of the
Lambert trajectory and 77 the period of the target
debris Keplerian orbit. A rendezvous satisfies the
following equation

to+ty +nT =t +m1y (6)
—_—— ——

travel time intercept time

where n is the number of revolutions the Lambert
trajectory should complete, such that the target de-
bris reaches the arrival point, at the same time, af-
ter m revolutions. Since there is no perfect match
in practice, the previous equation is transformed
in:

arg min|(tp + ty +nT) — (t1 + mTy)|

m,n

)

where m and n belongs to a limited range, such
that

tw+nT

os{ AT }sAtmx ®)

where At ax i8S the maximum travel time consid-
ered.

* Once n is evaluated, the arrival time t; = ¢y +
tw + nT is used to compute the true position of
the arrival debris. With this data—i.e. initial time
and position, final time and position, and number
of revolutions—a new Lambert problem is solved
and used as initial guess for the 2B-OVP of Sec-
tion 2.1.

The Lambert solver is a C++ routine based upon a MAT-
LAB script written by Dario 1zzo which implements an
efficient and fast algorithm [4, 5, 6]

Equinoctial Coordinates and Integration

The rocket model proposed in (3) is an approximation
of a LEO orbit, which contains a perturbation term due
to oblate Earth, which makes numerical integration us-
ing Cartesian coordinates impractical. In fact, an high
order numerical integration scheme is required to keep
the prescribed tolerance with a reasonable time step.
To avoid the usage of an highly accurate numeri-
cal scheme, the ODE (3) is reformulated in terms of
equinoctial coordinates, where the oblate perturbation

is modeled as a low thrust action. This permits to in-
tegrate through low order numerical methods [7] that
maintains the required accuracy. Equinoctial coordi-
nates and the disturbances vector, due to oblate Earth,
are:

0 f g h kL)
(FT‘ Ft Fn)T

y:
F:

and equations of motion for the spacecraft can be stated
as:

y=A{y)'(y) +b(y)

The equinoctial dynamic is well known, but for com-
pleteness is hereby reported:

0 2p 0
qsr a2 —4gdaes
1 [p|—qcr a3z fass
A(Y) = /= 1 9
q\ p 0 0 58°cr
0 0 %SQSL
0 0 ae,3
_ T
bly) = ¢ *?yu(0 0 0 0 0 1)
with:
cr, =cos(L) aso=(qg+1l)cc+f
sp =sin(L) az2=(¢+1)sp+g
CfZCL+f a673:hsL—kcL
Sg=sr+g g=1+fcr+gsc

a?=h?—k?> s2=1+h2+k?

The equinoctial coordinates y are related to the state
(r,v) expressed in Cartesian coordinates according to
the following identities:

cr (14 a?) + 2hk st

r(y) = q]% st (1—a?) +2hkcey
2a6,3
7 9
2k Cy — (1+02) S, ®
v(y) = = (1—a?) Cy —2hk S,

2(u/p)? (hCy + k Sy)

The vector I'(y), in equinoctial reference frame, is the
matrix vector product Q(y)7J(r), where Q(y) is the
orthogonal matrix:

Q) = (&

(rxv)xr rxv ) (10)

Texvilell Texoll
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line of apsis

FIGURE 1. Equinoctial coordinates for Sun-synchronous LEO orbits

with r and v as defined in (9). The use of equinoctial
coordinates permits to integrate a trajectory through a
second order numerical method with a fixed time step of
6's, maintaining the required accuracy for a integration
domain of 30 day.

The forward integration is the classical second order
Runge-Kutta (Heun scheme), while the discretization
for the OVP is based upon Crank-Nicolson scheme [8,
9].

Optimal Two-Burn Variational Problem

Lets formulate the problem with cartesian coordinates
for the sake of clarity.

Minimize:
AV = |[v(y(to)) = voll + [[v(y(ts)) = vall (A1)
subject to
y =A(y)T +b(y), (12)
r(y(to)) = ro, r(y(ty)) =r1, (13)
ey (I = 7p,., € [to, ty] (14)

Yy
+— y
rticending node ~
line of nodes
notice that in cartesian coordinates AV = ||dvol| +

[|0v1|| and ro and ry are the initial and final point of
the trajectory transfer defined in Section 2.1. Moreover,
r(y) and v(y) are given in (9) and the value of r,, , is
given in [1].

The problem is solved by the custom made PINS
solver used in other contexts [10, 11, 12, 13], an indirect
problem solver for optimal control problem. PINS is
able to solve OCP in the form:

Minimize:

b

Bx(0).x(0) + [ Tl u.p0dt (5)

subject to
M(x(t), p, k(1) = £(x(t),u(t).p,t),  (16)
b(x(a). x(8). p) = 0. a7

where u is the control action, p is a parameter vector,
and M(x, p,t) is a nonsingular mass matrix. Prob-
lem (11)—(14) fits PINS formulation with M(x, p,t) =
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I and empty u and p. Bound (14) is well approximated
in J(x,u,p,t) = J(x,t) using a barrier function.

PINS transforms the variational problem (15)—(17)
in a two point boundary value problem that is solved
as a non-linear system with a Newton-like iterative
method. For the solution of the OVP problem (11)—(14)
the initial guess required for the Newton-like method
is based upon the Lambert trajectory, built in Sec-
tion 2.1. The problem has a quite coarse time discretiza-
tion (600s), that brings to a very low precision solu-
tions for the trajectory. With this mesh the computa-
tional time is very short, and the trajectory is roughly
approximated, but still the estimate of the AV is good.
The computational mean time for problem (11)—(14) on
a MacBookPro with 2.9GHz Intel Core i7 is less than
one second.

If a specific trajectory is selected as candidate for
the final submission, is then re-calculated upon a mesh
with a finer time discretization (6 s) that fulfils the tol-
erance requirements. This new problem uses as initial
guess the solution found using the coarser mesh and the
mean time on the same hardware is less than ten sec-
onds.

Considering the solution of the integer problem,
if the number of estimated revolution is too high—
i.e. more than 100 revolutions—computing the solution
of 2B-OVP is too costly. To reduce the computational
effort, a first part of the trajectory, after the first burn—
i.e. the one estimated through the Lambert problem—is
integrated forward (see Section 2.1), and only the very
few last revolutions of the trajectory—i.e. almost 10—
are evaluated through the 2B-OVP, making the whole
maneuver a three burns transfer (3B-OVP).

2.2 Database of Missions (DBM)

The second database contains sequences of maneu-
vres that form a mission. The exploration of database
of transfers (DBT), to build the database of missions
(DBM), considers the limitations proposed in the prob-
lem statement. The sequences are also limited implic-
itly by the available fuel mass, that is used to generate
the pulses. Each time a mission is completed, the se-
quence is inserted into the mission database.

Even in this case, the number of mission that may
be generated is huge, thus some pruning policy must be
adopted.

The average cost

In the selection of the better candidate missions the av-
erage removal cost is taken into account. This cost is
defined as the cost of the mission divided by the num-
ber of debris removed:

cp + aAm?
ng

Cave = (18)
where ¢y, is the time dependent base cost of the mission
and Am is the fuel consumed in the mission. For sim-
plicity ¢y, is set to the maximum [1].

The average cost is a projection of the overall cost
of the debris removal, and allows to forecast the perfor-
mances of the solution proposed.

The mean cost has a trend similar to the one de-
picted in Fig. 2. When the number of debris removed is
increasing, the mean cost tends to decrease. This trend
is inverted after a certain number of debris removed,
when the additional mass Am required for the mission
inverts the cost trend.

Mean cost

Number of removed debris

FIGURE 2. Given a sequence of debris removal the average
cost (18) decreases initially, reach a minimum, and then in-
creases. The minimum is an indicator of the optimal number
of debris to be removed and of the final cost of the solution
The mean cost also permits to compare the solution with the
performance of the other competitors.

The mean cost depends on the length of the mission
and it is re-evaluated every time a new transfer is added
to the sequence.

Database creation policy

To generate the DBM, the total possible time for per-
forming the debris removal is take into account and
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FIGURE 3. A representation of the graph for the transfer combination

sliced in time windows [tp, t.| where:

t, € {0,100,...,2900}

(19)
te—t, € {100,150,...,400}
Time windows may overlap. For each time window the
N best missions, in term of average cost, are evaluated
and stored in DBM.
The construction of missions to be inserted in
database is performed in two steps:

¢ seeds initialization: a seed is the first transfer be-
tween two debris in a mission, that determines the
starting debris;

* sequences exploration: starting from the seeds,
continues the sequences of removal until the max-
imum fuel consumption limit is satisfied.

The seeds are initialized as follow:

1. from the manouver database (DBM), all the trans-
fers with starting time in a limited initial time
frame of the window are selected;

2. for each transfer from debris i to debris j of the
previous selection, only the one with minimal av-
erage cost is kept;

3. the remaining selection is sorted with respect to
the average cost, and only the first N are used as
starting seed for the sequence search.

Starting at level 0—i.e. the seed—the exploration
continues and at each new level the average cost of the
mission is computed. Then, for each level pruning is
applied:

* topologically equivalent missions—i.e. with the
same set of debris removed and the same arrival
debris—are pruned, and only the one with lowest
average cost is kept;

* the remaining missions are furthemore pruned and
only the N best mission are kept.

Then the exploration continues with the next level.
At each level the best N missions are stored in the
database.
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Each record of the DBM is stored as a sequence of
pointers, where each pointer points at a manouveur that
is stored in the DBT.

2.3 Missions combination

A series of mathematical objects are defined to formal-
ize the GTOC problem as a minimization problem.

Definition 1 The set T is the collection of all possible
time intervals for the GTOC problem:

T :={[to,t1] CR : 0 <ty < t1 < tmax}U{0} (20)
Definition 2 Define with M the following set:

M= {[w,7,c] € {0,1}' x T x R} 1)
it represents a minimal encoding of all possible mis-
sions. The vector w marks all visited debris during the
mission, the interval T represents the initial and final
time of the mission, which also considers the dead time
for the deorbit package release, and c represents the
overall cost of the mission.

The null mission, i.e. the mission that does not remove
any debris is encoded with mg = [{0}'23,(), 0], while
M denotes a subset of M that contains all the possible
queries of the computed DBM. The set M denotes a
subset of M of all the missions that fulfill the GTOC
problem requirements.

Definition 3 The operators W, T and C

W M - {0,1}128

T: M - T 22)
c: M = R
are defined for m = [w,n,£] € M and returns
W(m)=w, T(m)=n, C(m)=E¢. (23)

The set M*23 contains all the possible sequence of mis-
sions for the GTOC problem. For example a sequence
of only 5 removal missions can be fit in M!%? by ap-
pending 118 null mission my.

Definition 4 Let s = [my,..
mission in M3 the operator

.,M123] a sequence of

Z: M* 5N (24)

is the number of debris not removed, i.e.

123
u= VvV W(m;)

Z(s) =123 —u-u, v

where the \V operator is the element-wise or.

Definition 5 The overall cost of a (possibly unfeasible)
set of missions is:

C: M2 R (25)

which is the sum of the cost of each mission plus the
cost of the n,. debris not removed:

123

C(s) = Z C(m;) + Z(s)cw,

i=1

(26)
for s = [ma,...,mi23] and ¢, the maximum submis-
sion cost (cfr. equation (18)).

The set M*23 permits to define the set of admissible
solutions:

Definition 6 The set S(N) is:

[m1,...,mya3) € N2 :
fori#j
S = 27
N) W (m {0}123 27

i) AW (my) =
where the N operator is the element-wise and, and the
set N C M.

Remark 1 Notice that the set S(N') can be extracted
from N easily so that the set is never explicitly con-
structed.

With the previously defined mathematical objects, it
is easy to state the minimization problem at the core of
GTOC.

Find s € S(M) which minimize C(s). (28)
Remark 2 The problem (28) is a mixed integer mini-
mization problem. Thus, gradient based minimization
cannot be used. Moreover; the set S(M) is uncount-
able. Thus, combinatorial based minimization cannot
be used. In this form, the problem (28) is not numeri-

cally computable.
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The problem (28) becomes numerically tractable

when the set S(M) is reduced to the subset S(M)
which has finite cardinality:

Find s € S(M) which minimize C(s).

(29)

Remark 3 The problem (29) is a integer minimiza-
tion problem defined on a finite cardinality discrete set
S(M) that rules out the use of algorithms based upon
gradient or other analytical tools. However, a combi-
natorial approach is impractical due to the large cardi-
nality, thus evolutionary approach must be preferred.

‘The bigger the set M, the higher the chances that
S(M) contains a good minimum. Nevertheless, since
evolutionary methods have extremely slow convergence
rates, a bigger cardinality of such set reduce the chances
to find a good approximation of this minimum in the
time frame of the GTOC competition.

The pruning policy of section 2.2 is essential to
reduce the density of set M eliminating solutions in
S (M ) that expose nearly the same structure, retaining
only the best one.

2.4 Evolutionary minimization

The mimization of (29) is done through an evolution-
ary algorithm [14, 15, 16] that is a search technique
based on the principles of evolution and natural selec-
tion. Schematically, an evolutionary algorithm requires
a population of agents—i.e. a solution candidate—with
a genomics that encodes a possible solution. An agent
is an element of the set P

} (30)

p={ .

The set P is larger of the set S(M) and an element
s € P is also an element of S(M) it is a solution of the
GTOC problem. A population of agents:

[ml, . 7m123] € M/123 :

T(m;)NT(m;) =0 fori#j

P =(s1,...,5q), s; €P 31

is evolved to become elements of S(M). The fitness
function of one agent is the the overall cost (26). It is
also useful to introduce a function G : P — N that mea-
sures the gap of an element in P from the set S(M).
The gap is the number of multiple removed debris:
G(s) = #{k

v > 1) (32)

where vy, is the number of times the kth debris is re-
moved and is computed as v = W (m). The
evolutionary algorithm guides the genomic mutation of
the population to minimize the fitness and to nullify
the gap by cyclic on:

1. augment the population by adding random agents;
2. augment the population by cloning with mutation;
3. remove the worst agents with respect to gap;

4. select the next generation with respect to fitness.

In step 1 the population is increased by 10% by select-
ing randomly from S (MV ). In step 2 the population is
increased by 50% through cloning of randomly chosen
agents. The cloned agents are then muted accordingly
to the rules described in section 2.4. In step 3 the pop-
ulation has more than ¢ agents and it is clustered and
sorted in classes with increasing gap. The next popula-
tion is obtained by the union of the first £ classes such
that the number of agents in the union is greater or equal
to ¢ and minimized—cfr. Figure 4. In this way the evo-
lution rewards a population with smaller gap.

In step 4 the population is sorted by fitness and the
first g agents are selected for the next generation.

Mutation rules

Given the agent s the mutation rules change an element
my, of s where k is chosen randomly. The mutated agent
is denoted with s’ and the mutated mission with mj_. Let
be g the minimum value of G(s’) for all the possible
mutations mj, € /W, then, the set G contains all m} €
M such that the gap G (s") = g. If the set G is too small
it is enlarged considering elements with such that the
gap G(s’) = g + 1 or more.

M1 Within the set G select the element that minimizes
the cost C'(s’). It is extremely unlikely to find
more than one minima, but in case of duplicates
the first found is chosen.

M2 Within the set G select m/, randomly with uniform
probability.

M3 Within the set G select m) randomly from a condi-
tional probability with respect to the binary vector
of the mission. In particular, an higher probability
is associated with missions that cross debris that
are rarely removed. The rarity of a debris is easily
deduced from the database M.
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Only one of the mutations M1-M2-M3 is applied, and
it is randomly selected.

3 Conclusions

The work presented a strategy to solve the GTOC9
problem, that guarantees a complete compliance with
all the constrained provided in the problem statement,
and it is a cleaner formulation of the actual strategy
used during the competition by the authors. In particu-
lar, evolutionary minimization was introduced when it
became clear that a simple combinatorial approach was
unpractical.

The first step was the construction of a database of
transfers, from one debris to another, without consider-
ing the removal, upon the whole window allowed for
missions in the problem statement. This database is
based upon a AV minimization. The trajectories in
the database where used to build a second database,
the database of missions, through combinatorial algo-
rithms. The final step was to chain the different mis-
sions in a single solution to be submitted for evaluation.
This final solution was identified by a evolutionary ap-
proach.

Due to the limited time span for the competition,
the very last component of the puzzle, the evolution-
ary minimization, was not completely developed. Thus
an incomplete version of the algorithm was used to ex-
plore the solution of (28). Moreover, very few transfers
between debris were added to the solution provided by
the genetic minimization, using other forms of heuristic
approach.

Whit this strategies the ELFMAN team ranked
13th removing 119 debris with a final score of
1107.69367526485.
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Abstract. This paper describes the strategies
and results of the GTOC9 competition for the team
from the University of Colorado, Boulder. The
goal of the competition was to remove 123 pieces
of space debris for the lowest cost, with cost de-
fined in Euros as a function of fuel mass, number
of launches, and time into the competition window.
The overall strategy for this team was: 1) Find the
set of all possible low-cost chains of debris to visit,
2) Pick from those to define a series of missions
that visit most of the debris, 3) Stitch the remain-
ing 20-30 debris onto the existing chains, 4) Add
1-4 more launches to reach the 5-10 debris that re-
main after stitching, 5) Adjust the dates of each
mission slightly to minimize AV, and 6) Find a
series of four maneuvers to transfer from each de-
bris to the next in the fully-integrated dynamics.
The final solution removed all 123 pieces of debris
with 17 launches for a cost of 1150.8 MEUR.

1 Introduction

The GTOCY competition defines a set of 123 pieces of
debris that are in approximately sun-synchronous or-
bits, with inclination near 98°and semimajor axis near

*Corresponding author, napa0706 @colorado.edu

7,000 km. The motion of spacecraft is defined by
numerically integrating Earth point mass gravity per-
turbed by the Jo effect. The dynamics of debris are
the analytical approximation of Jo dynamics, with the
state at any time given by analytically propagating mean
motion, and constant secular drift rates of Right Ascen-
sion of the Ascending Node (RAAN) and argument of
perigee.

We find that the secular drift of the RAAN due to
Earth’s Js is a primary driver for solutions. The node
drift rate is given by

6]

with semilatus rectum p = a(1 — ¢?) and mean motion
n= \/aﬂi3 . Since the eccentricity of all the debris pieces
is nearly zero, the node drift rate Qs mostly driven
by inclination and semimajor axis. For initial searches
to find chains of debris that can be efficiently visited
by a single spacecraft, we choose to ignore the drift of
argument of perigee. The small eccentricity means that
the cost of changing argument of perigee with fuel is
very small compared to the cost of changing RAAN.
The goal of the competition is to remove all of the
debris for the minimum cost, where cost in MEUR is
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FIGURE 1. The synodic periods (in years) of the RAAN of
each debris object relative to all other debris objects. The de-
bris are sorted by inclination from low to high. Debris that
differ significantly in inclination have opportunities for trans-
fers as frequently as every 1-3 years. Debris with very similar
inclinations have synodic periods much longer than the 8 year
time limit for the competition.

given by the sum of each launch:
N
J = Z [ci + 2% 10*6(m0i - mdry)z].

i=1

@)

The launch vehicle cost ¢; grew linearly from 45 to
55 MEUR over the contest month. The term (mg, —
mdry)2 favors lower AV per mission. More details on
the competition rules are given in [1].

We found that the greatest constraint on the search
space is on time of flight between debris, as this limits
the feasible transfers to debris with similar RAAN. Fig-
ure 1 shows the synodic periods of the RAAN of all the
debris. Most pairs of debris have long synodic periods
relative to the 8 year time limit of the competition, so
transfers are largely limited to rare natural opportuni-
ties.

2 Analytical AV

Our first approach to finding low cost transfers between
debris objects was to look at the natural crossings of
debris RAAN. The RAAN drift rate 2 varies per de-

bris object due to variations in semimajor axis and in-
clination. The differential drift rate between two debris
objects causes natural node crossings, which are oppor-
tunities for low AV transfers between the two objects at
a particular time. The initial goal in exploring the prob-
lem was to solely use these natural node crossings to
build all missions. However, it soon became clear that
this approach was too limiting — there are not enough
natural node crossings to solve the problem in a small
number of launches, again due to time constraints for
the competition. To find more options for cheap trans-
fers, we developed analytical approximations for the
cost to transfer between any two debris, then surveyed
the available transfers. Transfer AV's were approxi-
mated by computing three terms: the cost of matching
RAAN, the cost of matching inclination and semimajor
axis, and the cost of matching the orbit phase (defined
as argument of latitude).

The change in RAAN rate AS) required to force the
nodes to cross was calculated by setting a fixed transfer
time (in most cases, 20 days) and calculating the dif-
ference in RAAN between the two debris objects at the
fixed rendezvous time. The AV required to achieve the
desired AS was approximated by assuming circular or-
bits and small changes in either inclination or semima-
jor axis. Under these assumptions, we get the follow-
ing expressions for change of the node rate correspond-
ing to a change in inclination (A;Q) and to a change in
semimajor axis (A ).

AQ = @Ai 3
01
= —QtaniAi 4)
A = @Aa (5)
Oa
_ TR ©)
2 a

We can then write a simple relationship between orbit
element change and its corresponding AV as follows:

\/EAV

L

2a gAV
\

(M

Ao = (®)
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Combining these last equations gives us final relation-
ships between a desired A2 and its corresponding AV,

AV, = AQLLS 9)
v """3J,R2 sin
) 3

AV, = AO— 2 ° (10)

21J9R2 cos 1

Interestingly, comparing the efficiency of changing AQ
with an inclination change vs with a semimajor axis
change by taking the ratio r; /, = A2/ A, shows that
they are equally efficient at tans = —7, or ¢ = 98.13°.
For inclinations greater than 98.13°, a semimajor axis
change is more efficient, while for inclinations less than
98.13°, an inclination change is more efficient. One im-
portant caveat here is that for more aggressive maneu-
vers such as those used in “stitching” (see section 4),
the assumptions made here break down. In these cases,
a less efficient (but more accurate) approximation was
used.

For large maneuvers, AV was instead approximated
by solving Eqn 1 for either semimajor axis or inclina-
tion. The AV is then computed as the minimum re-
quired to change either semimajor axis or inclination.
We did not consider cases where both semimajor axis
and inclination were changed. If semimajor axis is
used to change RAAN, the AV comes from the vis-
viva equation. If inclination is used, then the maneuver
cost is given by AV; ~ 2V sin(4). Both AV's were
calculated, and the smaller of the two was selected as
the optimal transfer.

The cost to match inclination and semimajor axis
of the target debris was approximated with a Hohmann
transfer. The inclination change maneuver is combined
with one of the semimajor axis maneuvers, and is cho-
sen to occur at the radius of apogee of the orbit with the
larger semimajor axis.

The final term of the AV approximation is the cost
of matching the target debris’ argument of latitude. This
term was considered separate from the others and was
approximated assuming circular orbits and ignoring the
precession of the argument of perigee. Two phasing
maneuvers are performed: one at the very start of the
transfer time, and one at the very end. This approxima-
tion is the least accurate of the three terms, but it is also
the smallest component. Adding this term effectively
penalized shorter transfers, and it brought the total ap-
proximate cost closer to the truth.

Overall, we found that the approximate AV was ac-
curate to within +30% of the final integrated transfer.

3 Building Blocks

With the analytical estimate for AV described above,
we then pre-computed all the possible chains of debris
with an efficient algorithm, subject to the following cri-
teria: Transfer time is exactly 20 days, the AV for each
debris-to-debris transfer is < 500m/s, and the average
AV of all the transfers in a chain is < 200m/s. This
resulted in approximately 500,000 chains of debris with
between 5-10 debris per chain.

Every chain was sorted by the rarity of the debris it
contains, so that the debris that appear least frequently
in all of the pre-computed chains are more likely to be
selected early in the algorithm, while the debris that ap-
pear most frequently are left to the end. This was guided
by the intuition that frequently-appearing debris will be
easier to stitch on to existing chains later.

A randomized greedy search was then used to com-
bine pre-computed chains together to find campaigns of
missions that each visit unique debris at unique times.
By randomizing the search, many possible campaigns
of missions were generated, and the most promising
were passed on to the next step.

After seeing the success other teams had with vari-
ous genetic algorithms for this step, we recognize that
the greatest improvement in score could be made by
choosing a better set of initial chains.

4 The Stitcher

The building blocks algorithm was run several thousand
times, and it would typically find 10-15 sets of chains
that visit 75-95 of the 123 debris. The remaining debris
were then left to the “stitcher” to attach to these chains,
one by one.

4.1 The stitcher toolset

The stitcher toolset consisted of many routines, from
computation of a single stitching action at the lowest
level, to updating an entire campaign at its highest level.
At this level, it would take as input a campaign, defined
as a set of IV missions visiting K debris. The algorithm
would then proceed to attach the remaining debris to
any of the missions. The stitcher would end with two
exit conditions: if all debris were successfully attached,
or if it was impossible to stitch some last debris to the
already existing missions.

We will describe two important aspects of the
stitcher: first how we optimized the low-level stitching
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of a single debris attached to a single mission, then how
the high-level algorithms handled these possible stitch-
ings into a sorting tree to output the best result that we
could find.

4.2 Optimizing the stitching of a single debris to a
single mission

At the lowest level, one of the stitcher routines consisted
in optimizing the stitching of single given debris to a
single given mission. The goal was to minimize the to-
tal AV for the mission.

Two options were possible. The first one, simple fit,
consisted in keeping the original sequence of debris as-
is, and simply finding where the debris would fit best.
The initial order of the mission was conserved, and the
additional debris simply inserted between any two other
debris. The complexity of this algorithm was linear of
the number of debris already attached to the chain, and
made for a very fast computation (usually on the order
of a few milliseconds).

The second option was much more powerful but re-
quired factorially more time. It would fit the debris any-
where in the chain, but also reorder the chain. Because
of the complexity of the constraints between debris, we
adopted a brute force method for testing the reordering
of the chain: in practice, all possible arrangements of
the debris were tested. The second option would thus
call the “simple fit” function K! times for a mission vis-
iting K debris. The algorithmic complexity was then
quite punitive for long missions. In effect, this option
was instantaneous for missions shorter than 6 debris,
and would have taken more than a year for missions
longer than 13 debris. For this reason, this option was
never used until the very end of the competition: if the
numerical integrator failed to realize a planned mission,
this problematic mission was given back to the stitcher.
We would remove a debris and try to stitch it back, with
instructions to reorder the mission. The result would
generally lower the required AV by a few hundreds of
meters per second and allow the numerical integrator to
make it into a real mission.

4.3 Finding the best stitching

The hard part of the stitching operation was to decide
what to stitch where. At this higher level, the algorithm
had a campaign of N missions, visiting K debris. Usu-
ally N was between 10 and 15 while the K would range

between 75 and 95. Among the remaining 30-50 debris,
which one would be best to stitch where and when?

Over the last two weeks of GTOC, several versions
of the algorithm were created, each attempting to re-
spond to the increasing leaderboard competition. The
final version used involved a tree search with partial
randomization. Instead of looking at a single cam-
paign, we would create alternate scenarios, depending
on which debris was stitched to which mission. The
algorithm would be manipulating a number of scenar-
ios (10-20) at any given step. From each of these, it
would create many more (20-50) for the next genera-
tion by trying out tens of different stitchings to each
of the manipulated scenarios. Finally, it would select
which scenarios to keep among the best ones with an
element of randomness. The best scenarios were deter-
mined as the ones with the lowest added AV (some-
times this AV would even be negative), as it usually
output the longest chains and lowest numbers of debris
left after the algorithm had run. Finally, at each step,
the algorithm would check that all considered scenarios
were indeed different from each other, as it was com-
mon for multiple scenarios to arrive at the same “best”
solutions.

Since there were many scenarios coexisting at a
given step in the search, we needed to quicken our com-
putation of the stitching of each debris to each mission.
To do so, we would create a stitching matrix that would
follow a scenario and its children if they got selected,
meaning that many scenarios could be explored at the
same time for very little added computation time. This
matrix had 123 rows and N columns, where N was the
number of missions (from 12 to 15 usually). Each cell
(k,n) of this matrix contained the information on the
stitching of debris k to mission n. A stitching (cell) was
recomputed if and only if a modification to the other
missions, through a previous stitching, affected its fea-
sibility.

Although the algorithm certainly dismissed many
good solutions too early, it still allowed reaching unex-
pected solutions that would prove beneficial in the long
term. It was however our impression that this explo-
ration was only as good as the criterion used to rank the
scenarios: “lowest added AV was a good enough mea-
sure of optimality initially but it appeared quite clearly
that it was too greedy an approach to capture the best so-
lutions available. We were however unable to find a bet-
ter measure of optimality. It is likely that, given a subset
of each mission of the winning solution and only 40 de-
bris left to place, this algorithm would still have missed
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the full winning solution unless massive amounts of
computation time, unrealistic for GTOC, had been ded-
icated to it.

In the end, this tree search with randomization
would output nearly-complete campaigns. Usually
there would still be 2-8 debris remaining. Although it
may have been possible to stitch them through reorder-
ing, we did not have the computational capabilities to
perform this operation for most missions. There was
therefore the need to “finish” the campaign with addi-
tional missions.

The final solution submitted is shown in Figure 3.
We see that, as expected, each mission is largely chosen
based on the RAAN of each debris.

5 The Finisher

The algorithm known as the “finisher” aims to obtain
a 123 debris campaign given the previously stitched
chains and the remaining 2-8 pieces of debris. In a cer-
tain way, it repeats the first steps of computation using
computational brute force; i.e., considering a big por-
tion of the possible combinations between spares.

First, we find the remaining time gaps in which
there are no missions scheduled. Then, applying the
time margins to be held due to operational constraints,
we now have the time windows to compute transfer ma-
neuvers between spare debris.

We compute links between each pair of sp are de-
bris. This AV is computed for varying transfer times,
initial times, debris objects and time gaps. The AV is
then stored and sorted to find the maximum number of
possible pairs of single launches that can be combined
to launch together.

We sort the sets of debris pairs by total AV of the
respective maneuvers between the pairs found. The
next step is to use the “stitcher” [4] again to reduce the
number of missions of every set of pairs of debris by
stitching the remaining spare debris to these pairs. The
combination of missions that minimizes the total cost
of the campaign is chosen.

As an example, a campaign of missions may have
7 spare debris after running the “stitcher” algorithm.
Without further work, each of those 7 debris will re-
quire separate launches, which is very expensive. The
cost of the spare debris can be reduced significantly by
combining the debris into fewer launches. The first pass
through the “finisher”” may find 3 pairs of debris that can
be launched together, bringing the number of launches

down from 7 to 4 (3 launches which each visit two de-
bris, and 1 single launch). The second pass through the
“finisher” will reduce these 4 launches into perhaps 2 or
3 launches. While the cost of removing these debris is
still high, it is greatly reduced from the cost of 7 single
launches.

6 The Wiggler

After creating full campaigns of missions, the “wiggler”
tool was used to slightly adjust the date at which each
debris was visited. A nonlinear programming (NLP)
problem was defined with the times between each de-
bris rendezvous as the optimization variables. The ana-
lytical approximate AV of the whole mission was mini-
mized, subject to operational constraints from the prob-
lem statement. This NLP was solved with MATLAB’s
fmincon solver, using the Interior Point method. The
debris at the beginning of the mission and at the end of
a mission were held constant to avoid inadvertently in-
validating other missions, while the times between de-
bris within the mission were allowed to vary between 7
and 29 days. Typically, the “wiggler” tool would adjust
each date by a fraction of a day, and it would reduce the
AV of each mission by 2-10%.

7 Final Optimization & Integration

A two-step algorithm was developed to transition from
the approximate, analytical model described above to
the fully-integrated solution for submission. During the
final optimization and integration, the arrival times at
each debris were held fixed, and the transfer between
each pair of debris was considered separately. The al-
gorithm, variables, and series of maneuvers are shown
graphically in Figure 2.

The first step of the algorithm is to choose maneu-
ver A‘71 at time ¢; so that the RAAN (2 and argument
of latitude u of the spacecraft match the corresponding
elements of debris ¢ + 1 at time o (approximately 20
days later). Time ¢; is chosen to be the time when the
spacecraft’s argument of latitude is equal to zero. We
never use the propulsion system to directly change {2 —
rather, we change semimajor axis a, eccentricity e, and
inclination ¢ to indirectly change €2 by leveraging the
natural dynamics. Maneuver AV} is defined in a VNC
(velocity, normal, co-normal) frame, with components
in the V and N directions. The component in the V
direction immediately changes the semimajor axis and
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FIGURE 2. Schematic showing the four maneuvers used in the final integration step to transfer from one debris to another. The
dates of arrival at debris i and i + 1 are held fixed. Black, straight lines indicate motion according to the debris’ approximate
equations of motion, while blue, curved lines indicate motion according to numerically propagating the Earth J> equations of
motion. The times to through ts are indicated, with typical values given of each relative to the previous time. The horizontal
arrows indicate whether a segment was propagated forward or backward.

eccentricity of the spacecraft’s orbit, while the compo-
nent in the N direction immediately changes the incli-
nation. Only the V component affects the argument of
latitude target, while both components have an indirect
effect over time on the RAAN target because of the .J,
dynamics. For a given number of orbital revolutions,
there is an exact solution for the V and N components
of the maneuver that satisfy the constraints on {2 and u.
After performing AV, the spacecraft coasts for up to
approximately 25 days to state )?2 at time to (exactly
three hours before the nominal rendezvous with debris
1 4+ 1), which can be up to approximately 400 orbital
revolutions. The number of orbital revolutions was cho-
sen to minimize the magnitude of AV;. Later insights
revealed that it would be more optimal to choose the
number of orbital revolutions to minimize the total AV,
but it was not possible to implement this given the time
constraints of the competition.

The second step of the algorithm is to choose ma-
neuvers AVQ, AVg, and AV4 to adjust the spacecraft or-
bit’s inclination, semimajor axis, argument of perigee,
and true anomaly to rendezvous with debris 2+ 1. To do
this, we defined an optimization problem with 8 vari-
ables: to3 (the forward propagation time after ¢ un-
til performing maneuver AV}), t45 (the backward ex-
tra time from the nominal arrival time at debris ¢ + 1),
the vector elements of A‘72, and the vector elements
of AV,. We propagate forward (with numerical inte-
gration) from time ¢» to time ¢3 and perform maneuver
AV at time t3. We also propagate backward (accord-
ing to the debris dynamics) from t5 to time ¢4 and per-
form maneuver A‘7’4 at time t4. We then shoot forward

from time t3 and backward from time ¢4, constraining
the position discontinuity §Rs4 to be 0 and defining the
velocity discontinuity to be AV;. MATLAB’s fmincon
optimizer is used with the Interior Point algorithm to
minimize the total AV for maneuvers 2, 3, and 4 and
remove the discontinuity at the midpoint of times 3 and
4.

It was found that the AV for the integrated solution
and for the analytical estimate agreed well for transfers
under 1 km/s. However, the algorithm had difficulty
converging to an optimal solution when the total AV
exceeded 1 km/s. We expect that further refinements to
the final optimization algorithm could have improved
the cost of these high-AV transfers, but we also ac-
knowledge that these high-cost transfers could be re-
moved entirely by better pruning techniques in the ana-
lytical search.

8 Discussion & Conclusions

Although the problem was definitely very hard to solve,
we think that many constraints actually narrowed the
strategy possibilities. For instance, by limiting the num-
ber of days between debris to 30, it was not possible
to have a single mission waiting for an extended pe-
riod of time. The total duration and the number of de-
bris already imposed a fast rhythm of encounters (24
days on average), hence allowing to wait between de-
bris would have added an interesting element or risk-
reward: maybe a mission can get one more debris if it
waits for 60 days, but is the time wasted really worth it?
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Spacecraft/Debris RAAN at Rendezvous Time
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Spacecraft RAAN (rad)

Time (years)

FIGURE 3. The final solution of team CU Boulder. Each line
series is a separate launch, with 17 total. The clear trend
apparent in the RAAN of debris visited captures the driving
dynamic of the problem.

The real-time variation of the costs of each mission
was an interesting element of the competition, but we
feel it was ultimately a distraction that, if anything, only
benefited those teams whose time availability happened
to coincide with the competition. In the end, almost
every team’s best solution was submitted in the final
hours, so there was no tangible advantage to submit-
ting earlier. In a complete solution, all the missions are
tightly related to each other, so it is not practical to sub-
mit one single mission early. Future competitions could
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Abstract.  This paper presents the methods
developed by the Michigan Tech Univeristy and
University of Michigan (MTU-UoM) team in the
9t" GTOC along with the obtained results. Sev-
eral concepts were investigated, specially regard-
ing the selection of the sequence of debris to be
removed in each mission. These concepts will be
briefed in this paper and the concept that produced
this team’s best solution is presented in detail. A
genetic algorithm is used as an outer loop opti-
mization tool to determine the sequence of debris
to be removed. An inner loop optimizer is used to
tune the individual transfers in each mission. This
team’s best solution consists of 16 missions that re-
moves 122 debris with a cost of 1192.74 MEURs.

1 Introduction

The GTOCY problem description is detailed in refer-
ence [1], and it is not presented here to avoid duplica-
tion with other papers in this special issue of the jour-
nal. The overall goal is to remove 123 debris in a Low-
earth orbit (LEO); to avoid the Kessler effect [2]. Some
of the orbital elements of the debris are very close to

*Corresponding author. E-mail: ooabdelk @mtu.edu

each other, whereas the introduction of the .J5 perturba-
tion changes the right ascension of the ascending node
(RAAN) and argument of perigee of the orbits (see Ap-
pendix).

For two-body Kepler orbits, it is possible to use the
well known Lambert solver to compute the impulsive
maneuver needed to rendezvous with a debris, given the
initial position of the spacecraft, the final rendezvous
position, and the time of flight of the maneuver. Due
to the J, effect included in this competition, this tool
cannot be used to compute an exact transfer. As a re-
sult, this team has developed a modified Lambert solver
during this competition that results in solutions that
are closer to the exact solution compared to the two-
body Lambert solver. As a result this modified Lam-
bert solver enabled the optimizer to find better solu-
tions. This modified Lambert approach is described in
the Appendix. The search for the best combination of
missions resulting in the lowest value of the cost func-
tion was performed in two main steps. The first step
is a global search among the 123 debris to generate in-
dividual missions in a sequential manner. The number
of the remaining debris gets smaller as more missions
are constructed. Each mission consists of a number of
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legs; each leg defines a trajectory between two debris.
Few different strategies were investigated in this mis-
sions construction step.

In the strategy used in the submitted solution, the
launch date and flight times of all legs, for each mission,
are the design variables of an optimization problem, in
which the goal was to minimize the the total impulse
value. Later the goal was to find the most efficient mis-
sions defined by the ratio of the number of visited debris
to the consumed propellant. The optimization problem
exploits solutions to multi-revolution modified Lambert
problem.

The second step involves a local optimization which
is performed over the missions obtained in the first step.
Assuming a fixed sequence of debris, the design vari-
ables of the local optimization are the launch date and
the flight times of all legs of an individual mission.

%1077
261 ° o ]
o
2.4+ o e 1
o o® o ©
o o
—22r ° ° o ° 00 % o 8 b
~ &
2 ° 8 ? Poo o & °
E 5L °80 3 % o0 ® 4 @ % ° i
o (o2} (o) o
N 020 % QD ©
) o o® o ) ° %o
18F o %W, o ¥
)
o oo o °

16 - o° o |

. . o

1.4 ‘ ‘ ‘ J

0 100 200 300
) (deg)

FIGURE 1. Plot of Q versus Q for the respective epoch time
of each debri.

2 Sequence of Debris

Given the large number of permutations of the sequence
of debris (large design space), it is vital to exploit very
rapid measures for conducting a broad search to find the
sequence of debris in each mission. Several concepts
were investigated; here the most significant of them are
briefed and the concept used to generate this team’s best
solution is detailed at the end.

Semi-Free Rides

Generally speaking, plane-change maneuvers are more
expensive compared to in-plane maneuvers. Two angles
determine the plane: the inclination and the RAAN. The
inclinations of the debris do not change due to the de-
bris motion while the RAAN changes due to the J; ef-
fect. So, the concept presented in this section utilizes
this change in the RAAN due to the J5 effect, to sched-
ule rendezvous times when the values of RAANs of
two debris are very close; hence the spacecraft can wait
with one debris until a good time (when another debris
has the same RAAN) and then start a maneuver to ren-
dezvous with the new debris. The spacecraft will then
wait with the new debris until a new debris achieves a
RAAN that is close to the spacecraft’s RAAN, and so
on.

This concept generated a nice sequence of debris
with very low cost maneuvers; however the time of
flight in each maneuver is significantly high violating
the 30 days constraint defined in the problem descrip-
tion. As a result the sequences generated using this ap-
proach were not submitted.

The planes of all the debris are changing over time.
We can compute the date at which two arbitrary planes
would have equal RAAN as follows:

Q) = Qo+ (T - Tepo1)s
QQ = QQO + Q2(T - Tepo2)a

(D
2
where T,,; is the epoch date of debris 7 and 7" is the

current time. If we solve for Q1 = Q9 + 2nm, we will
have:

Qo0 — Qo + N Topor — QTopon + 207

T - . 3
o — 0, 3)

The feasible range for the MJD of this problem is
from 23467 to 26419. For the cases when the date of
the intersection is out of the feasible range, the data is
overwritten by a big number.

Although we have the best date to maneuver be-
tween the two planes, we still cannot guarantee the
spacecraft is exactly at the intersection point. In this
work, it is decided that a plane-change maneuver will
only be conducted when the spacecraft is close to the
intersection point of the two planes so that the cost of
the maneuver is lower. So then we compute the time of
wait unit the spacecraft can reach the intersection point.
The argument of latitude of the intersection and the ar-
gument of the spacecraft are computed:
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Ase = wset s, 4)

N = Qp —Q, (5)
COSQ = COSi;COSif

+sin¢; sin iy cos 6€2, (6)

sinA4;, = sinifsindQ/sine, @)

where Ag. is the argument of the position of the space-
craft, the A;, is the argument of latitude of the inter-
section. {1; and €Q; are the right ascension of the initial
plane and the final plane, respectively. 4; and ¢ ¢ are the
inclination of the initial plane and the final plane. « is
the angle of the plane change. When we find A;, = A,
we can start the maneuver. First a single-impulse plane
change maneuver is computed. Then an in-plane ma-
neuver is computed to rendezvous the spacecraft with
the debris. The combination of the previous two maneu-
vers is a two-impulse maneuver that will rendezvous the
spacecraft with the debris. The cost of the plane-change
maneuver can be computed as:

AV = 2V;sin(Aa/2), (8)
where Vj is the velocity of the spacecraft on the initial
orbit and A« is the difference in the inclination of the
orbits. The cost of the in-plane transfer can be com-
puted by solving Lambert problem. To have an ini-
tial guess for the real cost of the in-plane transfer, we
will hold the plane still, and assume the spacecraft has
the unperturbed Keplerian motion. Finally, the plane-
change maneuver and the departure cost of the in-plane
transfer will be combined. This combined maneuver
can also be obtained using the modified Lambert algo-
rithm presented in the Appendix.

Hidden Genes Genetic Algorithms

In this approach, a hidden genes genetic algorithm
(HGGA) was implemented to carry out a global search
as opposed to a sequential search. Details of the HGGA
can be found in [3, 4, 5].

To solve the problem, it can be divided into several
missions (m;) and in each mission some debris (/Ng;)
can be captured by a spacecraft. In general, m; and Ny,
are not known a priori. If we assume that each mis-
sion is solved at a time, the only variable that makes the
problem a Variable Size Design Space (VSDS) prob-
lem is the number of debris at each mission. The de-
sign variables in each mission are launch time, arrival

time, number of debris (/Vy;), debris IDs (debris that
are captured in the mission), wait time, and Deep Space
Maneuvers (DSMs) direction and magnitude.

The problem is solved in two phases. In the first
phase, the Js effect is ignored and launch/arrival time,
time of flight, number of debris, and debris IDs are op-
timized, and in the second step, the effect of J; is cor-
rected by adding a DSM in each leg. It is assumed that
there is no DSM in the first phase and there is only one
DSM in each leg in the second phase. In the first phase,
the Lambert problem is solved to find the trajectory be-
tween each two debris.

Assume that the current debris is D; and the next
debris is D;; ;. At the end of the wait time at D; and
before the departure impulse, the position of the space-
craft is known (similar to the position of debris D).
Since the time of flight is known, the Lambert problem
can be solved to find the departure and arrival impulses.
This can be done for all the legs until the last debris of
the mission. After the first phase, the effect of the J5 is
corrected by assuming a DSM in each leg. In this algo-
rithm, debris selection is done automatically and there
is no need to categorize them into groups. The solution
generated using HGGA was not competitive due to the
large design space that the HGGA needs to work with.

Sequential Search

Our broad search strategy uses the remaining fuel,
where trajectories are built in a sequential manner by
adding new legs. The maneuvers are already impulsive
for which Lambert problem with a bi-impulsive transfer
is considered in the preliminary phase. In the final step,
the missions are optimized individually using a local
optimizer while taking into account the J, perturbation
into the governing equations of the spacecraft motion.

Some of the orbital elements of the debris are very
close to each other, whereas the introduction of the
Jo perturbation varies the RAAN and the argument of
perigee of the orbits (see Appendix). Therefore, the de-
bris have different values for 2.

Figure 1 depicts the distribution of the data points
on the Q — Q plot. A more important factor, though,
is the evolution of the RAAN over certain time inter-
vals for it is possible to glean closeness information (in
terms of RAAN) in order to form clusters of debris. The

evolution of the RAAN is a linear relation,
Q=00+ Q x (t—to), ©)

where () is the value of the RAAN at the epoch time
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(to). This linear relation can be utilized to construct a
closeness criterion to be used for clustering debris. On
the other hand, the number of debris considered in this
problem is significantly smaller than the involved bod-
ies of the previous GTOC problems. While the RAAN
has a significant effect on the value of the impulses,
initially, we decided to look for generating a series of
missions that has the lowest value of cost. Then, we
would perform a post-analysis to switch the debris be-
tween missions based on the closeness of the RAAN.

Our primary broad search method was to construct
individual missions, in a sequential manner, by using a
branch-and-prune tree search algorithm. Each mission
is built by connecting a series of legs. The building up
of sequential legs consists of two main loops: the first
loop iterates over the departure debri ID and the second
loop iterates over the arrival debri ID.

To find an optimal solution between each pair of de-
bris, a hybrid optimization method is devised. First,
a standard genetic algorithm (GA) performs a broad
search over the departure time (MJDge,) and time
of flight (I'OF') within their defined ranges. The
departure time is defined in the range MJDg., €
[MJDpp, MJDyg] where the lower bound and up-
per bounds of the departure time are M JDrp =
MJIDgrrival + Staytime and MJDyp = MJDpp +
29, respectively. The Stayiime of 5 days is one of
the constraints necessary for deploying the de-orbiting
package. In addition, the transfer time between any two
debris should not take more than 30 days.

The time of flight of each leg is also defined in
the range of TOF € [TOFLp,TOFyp] where the
lower bound and upper bounds of the time of flight are
0.1 X Ty and 5 X Tpp. Semi-major axis of the debris
are relatively close to each other and the period of their
orbit is approximately the same. Therefore, we defined
the limits of the TOF in terms of the average orbital
period T,,4;; and its value is set to 100 minutes. Two
important parameters of a GA are the number of gener-
ations and populations. We set those parameters to 20
and 50, respectively.

Eventually, the solution of the GA is used as an ini-
tial guess for a local optimizer to further reduce the cost
function. For each leg, the departure time (M J D))
and time of flight (TOF) are the two design variables,
and the optimization objective was to minimize the sum
of the two impulses,

Avl + A’Ug, (10)

J = min
MJDygep, TOF

where Av; and Awv, are the magnitude for impulses at
departure and arrival instances, respectively. For the
hybrid optimization we did not define any constraint
mainly due the fact that the constraint handling is dealt
with at the final verification stage in which we use
a local optimizer. Each individual execution of GA-
Fmincon hybrid optimization takes on average 0.2 sec-
onds (running on 8-cores).

The solution to the Lambert problem is used exten-
sively in the hybrid optimization method, for which we
used a multiple-revolution Lambert solver [6] and set
the maximum number of revolutions to 5. In addition,
we used a compiled Mex file C++ implementation of
the Lambert solver. Note that the actual transfer occurs
during a short interval. This will simplify the local op-
timization step during which the accumulative effect of
Jo perturbation becomes small.

Once a solution, which consists of individual mis-
sions, was generated through the broad search algo-
rithm, we performed a post-analysis to modify the mis-
sions by performing two major changes. The first
change was to remove the last missions that may con-
sist of only one leg, i.e., single-leg missions and to re-
assign their debris to the previous missions. The second
change was to inspect all of the missions and remove
those legs that required significantly greater values of
impulse compared to the other legs, and re-assign those
debris to other missions.

Debris Re-assignment

The re-assigning strategy that we considered exploits
the RAAN closeness which is explained in this section.
For any debri which is to be re-assigned, we calculated
the closeness criterion

= Do (Ui (ti) — Qaevra(t)?
n )

an

where Q7. denotes the RAAN of the debri, which
is going to be re-assigned (evaluated at the descretized
points), and t; € [MJDpg, MJDyg]. Note that
MJDyp and MJDyp correspond to the lower and
upper bounds of the mission MJD time interval and are
known values. We adopted a simple equi-distant dis-
cretization of the mission time interval. n is the num-
ber of dicretization points (that depends on the step size
used for discretization) and €24.p,; is the RAAN of one
of the debri to which we compare the relative differ-
ences. The minimum value of the closeness criterion

102

DOI: 10.5281/zenodo.1139284



GTOC 9: Results from Michigan Technical Univeristy and University of Michigan (team MTU-UoM)

gives us a measure to assign any new debri to a particu-
lar mission.

For instance, if there is a mission which already
contains 10 debris, we calculate the above parameter
by comparing the closeness criterion between the new
debri and each of the 10 debris, and take the low-
est value. Then, we would repeat the same procedure
for the other missions and store the respective RAAN
closeness value, 7). Finally, the minimum value of n de-
termines the mission to which we should assign the new
debri. The above steps are followed for the other debris
until all of them are re-assigned. In addition, we can
avoid re-assigning new debris to the original missions
from which we picked them. This will ensure that the
debris are assigned to new missions.

After performing the above steps, some of the mis-
sions will be modified and a new tree-search optimiza-
tion is performed to achieve a minimum-cost mission
that visits all of the debris within each mission. Another
consideration is to modify the allowed duration interval
of a mission to make sure that there is enough time to
visit all of the derbi within each mission. The task of
modifying time is the tricky part of the re-assignment.
However, the optimization has to be performed over a
reduced number of debris within a mission (usually on
the order of 25 or less).

3 Results

The final solution consists of 16 missions that deorbits
122 debris with a total cost of 1192.743 MEURs.

Tables 1 to 16 summarizes the individual missions
of the submitted solution. Note that each row of the ta-
ble only reports the dates corresponding to the departure
and arrival impulse dates, M JD e, and M JDgprival
respectively, between the departure debri ID and the ar-
rival debri ID. The spacecraft de-orbits a considerable
number of debris during the first three missions. De-
spite our efforts to remove the last two missions and
to re-assign their debris into the previous missions, our
tree-search algorithm was not capable of finding feasi-
ble missions after re-assigning them to other missions.

Figure 3 depicts the variation of the RAAN of the
debris visited in the first mission. Note that the apparent
separation of bands of lines with similar slope is due to
the fact that the angles are not brought into the interval
of [0, 27]

TABLE 1. Summary of mission #1

MIDgep MIDgrrivar  Dept. Deb#  Arri. Deb #
23680.147 23680.175 19 61
23704.058 23704.303 61 107
23727.367 23727.547 107 30
23736.618 23736.734 30 85
23764.976  23765.083 85 41
23782.362  23782.529 41 45
23789.213 23789.415 45 11
23801.012  23801.203 11 82
23816.460  23816.490 82 71
23844.768 23844.932 71 115
23867.137 23867.386 115 43
23873.892  23874.146 43 47
23900.408 23900.656 47 26
23918.438 23918.679 26 109
23929.680  23929.868 109 7
23958.427 23958.531 7 2

TABLE 2. Summary of mission #2

MIDgep MJDgrrivar  Dept. Deb#  Arri. Deb #
24007.834  24008.027 72 51
24014.289  24014.398 51 10
24020.713 24020.965 10 69
24037.514  24037.657 69 66
24046.992  24047.242 66 73
24074.129  24074.159 73 28
24099.494  24099.639 28 64
24115.494  24115.684 64 52
24144.436  24144.732 52 12
24166.146  24166.399 12 3
24193416  24193.677 3 31
24202.086  24202.332 31 65
24227.436  24227.702 65 91

TABLE 3. Summary of mission #3

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
24279.950  24279.998 81 13
24288.991  24289.174 13 32
24315.744  24316.037 32 22
24331.734  24331.777 22 17
24352.800  24353.076 17 105
24381.354  24381.452 105 59
24404.094  24404.245 59 98
24426367  24426.654 98 46
24444178 24444216 46 83
24467.346  24467.380 83 48
24495328  24495.623 48 99
24504.925  24505.101 99 96
24533.435  24533.635 96 114
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TABLE 8. Summary of mission #8

TABLE 4. Summary of mission #4 MIDgep  MIDgurrivar  Dept. Deb#  Arri. Deb #

MJD4ep  MIDurrivar  Dept. Deb#  Arri. Deb # 25327.371  25327.669 60 103
24593.279 24593.535 0 122 25341.232 25341.436 103 39
24622.047 24622337 122 74 25346.811  25347.072 39 5
24640.378  24640.552 74 119 25371.826  25372.103 5 53
24667.886  24668.010 119 104 25377.357  25377.602 53 101
24674.232  24674.284 104 24 25400.698  25400.955 101 78
24680.834  24681.046 24 108
24707.583  24707.619 108 37

TABLE 9. Summary of mission #9

TABLE 5. Summary of mission #5

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
24769.598  24769.714 55 93
24779.413  24779.534 93 100
24801.111 24801.140 100 90
24807.694  24807.994 90 9
24815556  24815.841 9 33
24842.602  24842.728 33 21
24853.887  24854.082 21 106
24871.127  24871.394 106 68
24893.691 24893.833 68 118
24917.925  24918.101 118 113

MIJDgep MJDgrrivar Dept. Deb#  Arri. Deb #
25447.187  25447.477 110 79
25473.209  25473.464 79 34
25485.266  25485.520 34 97
25510.400  25510.575 97 50
25535.869  25536.150 50 86
25542.053 25542.285 86 6

TABLE 10. Summary of mission #10

TABLE 6. Summary of mission #6

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
25584.694  25584.991 25 94
25594.707  25594.828 94 120
25618.420  25618.691 120 38
25623.691 25623.839 38 42
25641.463 25641.636 42 56
25653.755 25653.820 56 111

TABLE 11. Summary of mission #11

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
24966.805  24967.058 76 27
24974.934  24975.190 27 20
24996.868  24997.089 20 102
25021.045  25021.332 102 80
25033.293  25033.326 80 121
25062.310  25062.567 121 116
25087.865  25088.165 116 4
25115.532  25115.757 4 15

MIDgep MIDgrrivat Dept. Deb#  Arri. Deb #
25710.022  25710.291 95 8
25734.377  25734.542 8 49
25739.921  25740.060 49 84
25746.989  25747.024 84 36
25769.358  25769.460 36 75

TABLE 12. Summary of mission #12

TABLE 7. Summary of mission #7

MIDgep MIDgrrivat Dept. Deb#  Arri. Deb #
25871.606  25871.896 88 117
25877.672  25877.972 117 18
25884.791  25885.050 18 70

TABLE 13. Summary of mission #13

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
25159.145  25159.411 35 1
25167.633  25167.878 1 40
25173.101  25173.358 40 62
25187.643  25187.861 62 54
25212934  25213.041 54 89
25239.149  25239.255 89 112
25263.523  25263.714 112 87

MIJDgep MJDgrrivar  Dept. Deb#  Arri. Deb #
25933.550  25933.729 14 58
25962.043 25962.246 58 63

TABLE 14. Summary of mission #14

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
26098.760  26099.087 57 67
26107.636  26107.911 67 44
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TABLE 15. Summary of mission #15

MIJDgrrivar  Dept. Deb#  Arri. Deb #
26151.788 77 29

MIDc,
26151.463

TABLE 16. Summary of mission #16

MJDgrrivar  Dept. Deb#  Arri. Deb #
26206.085 23 16

MIDc,
26205.748
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FIGURE 2. Evolution of the RAAN of the debris in the first
mission M JD2000 € [23672.248, 23963.531].
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4 Conclusion

Team MTU-UoM employed a set of tools which were
sufficient to find a good solution to GTOC9 problem.
A major enhancement would have been to utilize an ef-
ficient tree-search algorithm. In addition, it would be
ideal to perform, early on, a clustering strategy in terms
of the right-ascension of the ascending node, and then
focus on visiting the debris within each cluster. In ad-
dition, for each mission, plot of € — € is helpful in fix-
ing the sequence of debris (transfers) and consider only
the stay time and the time of transfer as design vari-
ables. The debri re-assignment strategy that we con-
sidered during the competition time can be performed
more efficiently.

Although we made progress in GTOCY, there is a
considerable gap between our solution and the solutions
submitted by the top-rank teams. There are still a lot of
works for us to do in trajectory design and optimiza-
tion. We have only used personal desktop computers
and exploited parallel capability of MATLAB running
our codes on eight cores. It is reasonable to run our
codes on clusters with access to a greater number of
cores. We should also consider developing our codes
on compiled programming languages, such as C or For-
tran. In addition, developing a capable local optimizer
(other than MATLAB?’s fmincon is quite important for
achieving improved solutions.

Appendix: Modified Lambert Solver

The Lambert solver finds the bi-impulse maneuver nec-
essary to rendezvous with a debris given the initial
spacecraft position, the final rendezvous position, and
the time of flight of the maneuver, assuming Keplerian
motion. Due to the oblateness of the Earth, the keple-
rian motion will be perturbed by the J, effect. The J,
effect will influence the right ascension, the argument
of the perigee and the mean anomaly. The latter was
neglected in GTOC 9.

0= %JQ(%)%COSL (12)

Jz(%)%@ cos?i — 1). (13)
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The change rate of () and w is linear.

Q- Qo = Qt — to), (14)

W — Wy :L:J(tfto). (15)

To solve the two-body transfer problem with the J, ef-
fect, the following strategy is developed. For a two-
body transfer problem without J» effect and with the
date of the departure, the arrival and the fixed time of
flight (TOF), usually Lambert problem is used to find
the transfer orbit. The required impulse for the depar-
ture Av? and the arrival Av® can be calculated. How-
ever, the problem under study takes into account the .J,
effect. Here, the solution obtained from Lambert is used
as initial guess. An optimization algorithm will be in-
troduced here for solving the perturbed transfer orbit.
The objective function is constructed as:

J = H,Fgc - %ebris”7 (16)
where 72, is the position vector of the spacecraft at the
final time which is also the arrival time. 7, is the
position vector of the debris at the arrival time. The goal
of the optimization is to minimize the objective function
which means we want to satisfy the rendezvous condi-
tion. The variables to be optimized is 7%, the velocity
of the spacecraft at departure time. The optimization
algorithm is setup as:

Min J = 75 = Thebrisll;

s.t

R )}
o= Masinlepa sy,
o ey g sh)

||F?c - ’F%ebris” < 017

where the first three constraints represent the perturbed
Keplerian motion. The last constraint is for the ren-
dezvous condition - the difference between the position
of the spacecraft and the position of the debris cannot
be bigger than 0.1 km. Due to the J, effect, if we
propagate the perturbed trajectory with the 7%, obtained
from original Lambert solution, the final position of the
spacecraft does not reach %,_,,,,. To take advantage
of J, effect, the Lambert problem can be used to solve
the transfer orbit between 7%, and Tiemp- A temporary

position 77,,,,, is computed from a modified set of or-
bital elements. Assume the orbital elements at the ar-
rival time are [a?, €2, i%, Q% w? M. The modi-
fied orbital elements are computed from:
Qiemp = Q% — QT

a .
Wtemp = W~ — wT,

A7)
(18)

where 7' is the time of flight. So the temporary posi-
tion is computed from the modified orbital elements:
[a®, €, i% Qiemp, Wiemp, M7, In this competition,
) is always a positive number while & is always neg-
ative. If Q% is greater than Q¢ which is the right as-
cension of the orbit before we apply the departure im-
pulse which means we have the possibility to take ad-
vantage of Jp effect. After we compute Qyepnyp, if
we found Qyermp > Q9 then we are able to apply
the modification for the orbital elements, otherwise we
will apply Qiemp = Q4. If Q2 is smaller than Q9,
which means we are moving against Jy effect, the
modification for the orbital elements would not be ap-
plied, we will have e, > 2. Since w is nega-
tive, so the opposite algorithm will be applied to com-
pute Weemp. The description above can be summarized
as
if Q% < Q7 then
Qtemp =0
else
if Qiemp > Q7 then
Qiemp = Eq. (17)
else
Qtemp =
end if
end if
if w* > w then
Wtemp = w*

else
if Wiemp > w? then
Wtemp = wd
else
Weemp = Eq. (18)
end if
end if

So the above logic along with the Eqs. (17) and (18)
will be applied to compute the temporary position. The
Lambert problem will be solved between the initial po-
sition and the temporary position. The solution from
Lambert problem will be taken as the initial condition
of the optimization. Finally, we can use Eq. ((17)) to
optimize the velocity of the spacecraft at the departure
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point to reach the final position. The solution will be the
real cost of the perturbed transfer between two points.

References

(1]

(2]

(3]

(4]

D. Izzo and M. Mirtens. The Kessler Run: On
the Design of the GTOC9 Challenge. Acta Futura,
11:11-24, 2018.

Donald J Kessler and Burton G Cour-Palais. Col-
lision frequency of artificial satellites: The creation
of a debris belt. Journal of Geophysical Research:
Space Physics, 83(A6):2637-2646, 1978.

Ossama Abdelkhalik. Hidden Genes Genetic Opti-
mization for Variable-Size Design Space Problems.
Journal of Optimization Theory and Applications,
156(2):450-468, 2013.

Ossama Abdelkhalik and Shadi Darani. Hidden
Genes Genetic Algorithms for Systems Architec-

(5]

(6]

ture Optimization. In Genetic and Evolutionary
Computation Conference, Denever, CO, July, 20—
24 2016. Association for Computing Machinery
Special Interest Group on Genetic and Evolution-
ary Computation, Advancing Computing Machi-
nary (ACM).

Ahmed Gad and Ossama Abdelkhalik. Hidden
Genes Genetic Algorithm for Multi-Gravity-Assist
Trajectories Optimization. AIAA Journal of Space-
craft and Rockets, 48(4):629-641, July-August
2011.

RH Gooding. A procedure for the solution of Lam-
bert’s orbital boundary-value problem. Celestial
Mechanics and Dynamical Astronomy, 48(2):145—
165, 1990.

DOI: 10.5281/zenodo.1139284

107



108



Acta Futura 11 (2018) 109-115

DOI: 10.5281/zenodo.1139384

Acta
Futura

GTOC 9: Results from the Astrodynamics Research Group of
Penn State (team ARGoPS)

DAVIDE CONTE; ANDREW GOODYEAR, JASON REITER, GHANGHOON PAIK,
GUANWEI HE, MOLLIK NAYYAR, MATTHEW SHAW, JEFFREY SMALL, AND JASON EVERETT

ASTRODYNAMICS RESEARCH GROUP OF PENN STATE, THE PENNSYLVANIA STATE UNIVERSITY
229 HAMMOND BUILDING, UNIVERSITY PARK, PA 16802

Abstract.  Presented in this paper are meth-
ods and results of the Astrodynamics Research
Group of Penn State (ARGoPS) for the 9™ Global
Trajectory Optimization Competition. The opti-
mization strategy utilized a beam search method
to determine the optimal sequence of missions and
transfers between debris, including the order in
which to visit each group, the timing of each visit
throughout the mission window in order to mini-
mize the number of missions, and the total cost per
transfer. Particle Swarm Optimization (PSO) was
applied to the optimized ordering of debris visits
in order to determine the departure date and time-
of-flight combination which best minimize the fuel
required for each transfer. This method led to a so-
lution that collected all 123 pieces of debris from
their Sun-sychronous orbits in 20 total missions.

1 Introduction

The 9" edition of the Global Trajectory Optimization
Competition (GTOC 9) was organized by The European
Space Agencys Advanced Concepts Team in the spring
of 2017. In this paper, the optimal strategy developed
by team ARGoPs (Astrodynamics Research Group of

*Corresponding author. E-mail: davide.conte90@ gmail.com

Penn State University) is described. The problem pre-
sented for GTOC 9, named the “Kessler Run”, suggests
a spacecraft mission design in which a set of 123 pieces
of debris are removed from orbit in order to prevent the
”Kessler effect”, a scenario in which the explosion of a
satellite leads to cascading collisions of resident space
objects. The detailed problem description and equations
can be read in the problem description of the 9" GTOC,
written by Dr. Dario Izzo [1]. Presented here is the
approach and all formal details on the space debris re-
moval mission design that was created during the month
of April, 2017 by team ARGoPs.

The solution was developed by writing and run-
ning an optimization procedure in both MATLAB and
the C++ programming languages. The procedure con-
sists of three steps: Phase I (Raiden), Phase II (which
is comprised of both The Butcher (of Groznyj Grad)
and Sniper Wolf), and Phase III. Phase I of the pro-
gram determines the order in which the individual de-
bris pieces are visited and takes the first steps to nar-
row the search space for each transfer by using what
is referred to as a beam search clustering method, as
explained in Section 2. Phase II of the program takes
the transfer sequence output from Phase I and further
refines the search space for individual transfers via a
function referred to as The Butcher (of Groznyj Grad),
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or simply The Butcher, which uses a Lambert solver
within a Particle Swarm Optimization scheme to search
for useful solutions within the time bounds determined
by Raiden. Once The Butcher refines each search space
even further, Sniper Wolf takes over and implements
another search for transfer trajectories using Particle
Swarm Optimization to find and calculate the transfers
between debris objects using the full Js-affected dy-
namics to ensure that the transfer will converge to a
valid and sub-optimal solution (see Section 3 for further
details on The Butcher and Sniper Wolf). The results
from Sniper Wolf are checked for mass feasibility be-
fore any final solution is deemed appropriate. Phase III
is then initiated, where the verified results are saved in
the correct output format necessary for upload to the on-
line submission system. The program structure is sum-
marized in Figure 1.

A. Raiden
A mission sequence optimizer for preliminary
estimate of solution to the problem with debris
visitation ordering.

4

B. The Butcher
A function narrowing the design space for the
transfer solutions between debris.

3
D. Sniper Wolf

This function takes the already narrowed design
space from The Butcher and calculates detailed av
for a mission.

C. Mass Calculator
A function determining the feasibility of the
solutions compared to the mass requirements.

E. Submission File Creator
This function takes the results from previous
functions and compiles it into the desired format for
the GTOC 9 submission.

FIGURE 1. Program Flowchart.

Each function used is shown in Figure 1. as an in-
dividual block. The red colored function blocks indi-
cate lower-fidelity solutions to the problem, whereas the
blue colored function block is the higher-fidelity solu-
tion. The lavender colored function block represents a
final mass check and then the green colored function
block indicates the final submission file creator func-

tion. The search space is progressively narrowed as
more fidelity is determined for the solution. A visual
representation of this search space is captured in Figure
2.

Search Space

Sniper Wolf

Time of arrival (MJD2000)

Time of departure (MJD2000)

FIGURE 2. A visual representation of the solution search
space for transfers between debris.

2 The Beam Search Clustering Method

Beam search is a heuristic algorithm that builds search
trees with a restricted number of states at each level,
referred to as beam width. By limiting beam width,
beam search can minimize complexity and memory us-
age, which is beneficial for problems with a large search
space. A basic understanding of this algorithm is shown
in Figure 3.

A fast-paced beam search method capable of
dividing the given timeline into a sequence of missions
was used. This method, referred to as Raiden, was
implemented to define the sequence by linking together
debris based on the right ascension of ascending node
(RAAN) and inclination of each orbit. Each mission
was constructed such that no individual transfer ex-
ceeded a maximum plane change magnitude while
attempting to distribute the required propellant mass
evenly between missions. Raiden is structured to
contine to link pieces of debris together until either a
maximum amount of objects per mission is achieved,
or the estimated propellant usage exceeds the allowable
estimated propellant usage per mission. The departure
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L. Initialization

(a) Let w be the beam width.

(b) Set B={By} and B, =0, where B is the set of nodes to be investigated, and B,
the set of nodes branched out of the nodes in B
(e) If an initial feasible solution is available, set :* to its objective function value;
otherwise, set " = oc.
2. Iterative step
(a) Choose the first node p € B; Out of pu, create as many branches as the problem
allows with each branch obtained by appending to the partial solution associated
with jt the variable corresponding to the next level of the tree, and insert the created
nodes (i.e., the off: s of u) into B,,.

(b) If a node p of B, is a leaf, then

i. compute its objective function value z,;

il if z, < 2*, update z* and the incumbent solution;

fii. remove p from B,

(e) Assess the potential of each node ¢’ of B,, using an evaluation operator (which yields
an upper bound on the value of the objective function for any solution containing
the partial solution associated with u').

(d) Rank the nodes of By, in a non-increasing order of their values.

(e) Insert the min{w, |B,|} best nodes of B, into B; and set B, =)

3. Stopping condition

If B =, stop: otherwise, goto the iterative step

FIGURE 3. Standard beam search algorithm. [2]

and arrival epochs in between each piece of debris were
chosen such that the transfer is performed when the
two debris pieces are near their closest approach and
the transfer could be completed with plenty of time to
spare given the required plane change.

The beam search algorithm was applied on both
the debris-to-debris scope, and the mission-to-mission
scope. The starting epoch of each mission was probed
randomly throughout the allowable mission timeline for
a set amount of iterations and, at each probed starting
epoch, Raiden was used to find the locally next best
missions and store them in a custom beam search map
structure designed to branch from in future iterations.
After the stopping criteria is met that terminates the
debris-level beam search algorithm, the mission-level
algorithm branches from all locally optimal missions
to find the next best set of missions. Each branch of the
mission-level beam search algorithm is partnered with
a custom time cell structure that contains information
about available time intervals for future missions based
on the previous missions in that specific branch. The
only stopping criteria of the mission-level beam search
algorithm is the remaining number of debris available
to be linked in a mission, based on the locations of the
debris throughout the allowable time intervals. The
various mission sequences that were developed using
Raiden were named as follows (in order of increasing
optimality, and amount of debris captured): The Pain,
The Fear, The End, and The Fury. The Fury is the
mission sequence that was ultimately chosen.

3 Trajectory Optimization

In this section, the trajectory optimization methods
used to compute the individual orbital transfers be-
tween debris pieces, referred to as The Butcher and
Sniper Wolf, are presented. A Keplerian approximation
(solution to Lambert’s problem) was used with a par-
ticle swarm algorithm to narrow the search space and
give Sniper Wolf better initial guesses (The Butcher).
The particle swarm algorithm is then given the derived
departures and time-of-flights from the Keplerian
approximation as intial guesses to find the optimal time
of flight and corresponding transfer velocity in the Js
dynamical model (Sniper Wolf).

Given the computationally expensive process
involved in optimizing trajectories where .J, per-
turbations are considered, it was necessary to find
a way to decrease the search space by utilizing a
lower-fidelity approximation to each orbital transfer.
In fact, this lowers computational time while giving
the high-fidelity optimizer a better initial guess used
to eventually minimize propellant consumption. It
was determined that the solution to the Keplerian
Lambert’s problem was a “good enough” estimate
to pass to the optimizer that would take into account
Jo effects. Oblateness effects the spacecraft position
drift over time from the two-body problem model (see
Figure 4). In order to account for this perturbation, a
deviation in the initial spacecraft velocity is needed.
Thus, an accurate search space for the perturbed
Lambert’s problem solution was needed in order to
ensure that the spacecraft would rendezvous with the
debris and that the propellant needed to accomplish
such maneuvers would be minimized. After multiple
tests, the average transfer time between debris pieces
corresponding to the optimal solutions was found to be
less than half of a day, thus validating the fact that the
Keplerian solution can successfully narrow down the
search space for the majority of transfers (except for
those transfers requiring much longer time of flight).
In order to determine such a search space, a Particle
Swarm Optimization (PSO) technique was used. [3]
Given the desired debris ID numbers and the window
available for the transfer as determined by the beam
search algorithm, the available departure epoch in the
transfer window and the transfer time (based on the
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remaining time available to complete the transfer) were
used as particles in the optimization. The subsequent
cost for each particle at each iteration was found by
using the Keplerian Lambert’s solution to determine
the Av cost of the transfer. This optimization method
resulted in a single departure epoch and transfer time
that would minimize the Av cost for the transfer under
purely Keplerian dynamics. Bounds were then applied
to these numbers (based on the expected convergence
under J> oblateness dynamics) in order to provide a
search region for Sniper Wolf. This algorithm was
named The Butcher due to the fact that it is supposed
to return rough estimates that needed to be refined.
Additionally, running this optimizer for all possible
ranges of departure and arrival dates would result in
porkchop plots, which are contour plots of Av on
departure vs. arrival date axes.

Drift vector
Optimal drift vector: Aim position bias—0

/Aim position bias
Aim point

Corrected Lambert
aim point

Target
spacecraft

Av under .J; perturbations

Chase
spacecraft g
Initial point

Av* without J, perturbations

FIGURE 4. Drift vector effects due to J2 dynamics. [4]

In order to find the exact necessary Av and time-of-
flight between two given debris for a range of departure
and arrival dates (accounting for J, effects), a multi-
objective PSO was implemented. This algorithm, re-
ferred to as Sniper Wolf, i.e. the precise, patient and (al-
most) infallible J>-perturbed Lambert solver, is tasked
with finding valid transfer solutions that satisfy the rel-
ative position and velocity constraints for rendezvous
(100 meters and 1 m/s, respectively) while minimiz-
ing the total Av needed to accomplish such maneuver.
The basic pseudocode is shown in Figure 5. Note that
only two-burn maneuvers were considered to keep the
optimization tradespace dimensions (and thus computa-
tional time) to a minimum. In order to increase the ro-

bustness of Sniper Wolf, the optimizer would run until a
valid (6r < drror) and optimal (Av < Avestimated)
solution was found. The inputs for Sniper Wolf are
directly taken from the outputs of The Butcher as de-
scribed above and are:

1. IDs of the departure and arrival debris pieces.
2. Departure and arrival time ranges.

3. Estimated Av and orbit type (long vs. short way
solution, etc.).

The outputs of Sniper Wolf are:

1. Optimal Av; and Avy needed to initiate and com-
plete the rendezvous maneuver.

2. Departure time and TOF corresponding to the op-
timal transfer found.

3. A flag corresponding to whether the optimizer was
able to find a valid solution within the prescribed
number of iterations.

Sniper Wolf - Pseudocode(P)

00 while 57 > drror && Av > Avestimated

01 PSO particles are randomly initialized using departure time, TOF,
and 3-component velocity vector deviations as particle elements

02forl:1:iterations

03 forl:1: particles

04 r1, T2 < Propagate starting and arrival debris pieces

05 Avq, Avg < Solve Keplerian Labert’s problem using 71, 72

06 if Periapse constraint is not met

07 J = 107 1 Pariicie receives a large penalty

08 else

09 Integrate s/c trajectory using the solution to Lambert’s
problem with the particle’s velocity vector deviations

10 dr +— Compute drift vector magnitude

11 J = 0.001 * [10 * (67 — drror) * u(dr — drroL) + ...
Av] +— Compute cost

12 end

13 end / end of particle computations

14  Determine the best particle based on J

15 Update "velocity” and "position” vectors for each particle
16 if J stagnates

17 Reset half of the particles which have the highest J
18 end

19 end / end of PSO iterations

20 Pgest, Jbest < Find best solution among the particles
20 if new Jpest > old Jpest

21 Jpest = new Jpest and Solution = Ppegt

22 end

23 end 7 end of the while loop

24 Return the best Solution

FIGURE 5. Sniper Wolf basic pseudocode.
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TABLE 1. Summary of all of the mission of the sequence The
Fury.

The Fury - Mission Summary
Mission Number of | Av [m/s] Propellant
Number Transfers Mass [kg]
1 11 3978.62 4951.58
2 10 3929.44 4881.75
3 9 3316.76 3599.01
4 10 3923.04 4764.82
5 8 3408.66 3776.52
6 7 3984.92 4841.94
7 6 2258.99 2027.75
8 6 2765.71 2685.57
9 6 2313.49 2102.76
10 5 2785.08 2715.98
11 5 2508.40 2339.24
12 4 2506.96 2308.16
13 4 2787.16 2701.60
14 3 1467.72 1140.72
15 3 1251.12 941.42
16 2 1384.10 1049.31
17 1 2373.11 2106.17
18 1 1479.99 1134.23
19 1 2861.90 2759.22
20 1 2479.13 2239.80
4 Results

After running Raiden, the top-level optimizer, multiple
times using the beam search method described in Sec-
tion 2, the most optimal solution that was found, The
Fury, consisted of 20 missions with a total of 103 trans-
fers between debris pieces. The timeline of the mission
is shown in Figure 6, where each segment corresponds
to each individual mission (as defined by the number
above it) launched as part of The Fury. The first mis-
sion in chronological order, Mission 20, starts on MDJ
23476.38. A summary of all of the missions and trans-
fer Avs and propellant mass is given in Table 1. The
average required Av and transfer time values per trans-
fer for each mission are shown in Figure 7.

The intention in the mission planning was to attempt
to gather as many debris pieces as possible while keep-
ing fuel requirements within the mass restrictions de-
fined by the problem. Figure 7 shows that this objective
was achieved with success for larger missions, such as
Missions 1 through 8. These larger missions maintained

3000

13

| |
1500 2000 2500

Days Since Start of First Mission

|
1000

FIGURE 6. The Fury - Mission timeline.

higher efficacy in using the fuel that was allocated for
their duration. However, as large missions are created
by sorting debris pieces into similar orbital planes, the
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The Fury: Mission Results
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FIGURE 7. The Fury averaged results.

likelihood of being able to group the rest of the debris
similarly decreases. There is a trend that appears, where
an increase in the ratio of fuel cost per debris captured
manifests as the number of debris available decreases to
a small number (such as a single transfer). Some mis-
sions consisted of lower quantities of debris removed
with larger fuel masses, such as Missions 17 through
20. Although this is an undesirable effect, it is inher-
ently a part of the problem.

In order to remove larger quantities of debris in less
missions, the conditions that determine how similar or-
bital planes are classified for groups of debris needed
to be relaxed. The relaxation of these conditions can
result in costly transfers that are high in fuel consump-
tion. The higher fuel consumption at times would fall
outside of the bounds of the mass capability set forth by
the problem statement. The alternative approach was
to take a larger number of missions in order to be ca-
pable of transferring between all debris pieces without
exceeding the mass restrictions that govern the problem.
The required mass ended up being lower than the maxi-
mum carrying capability available at times, but this was
useful in lowering the cost function for specific mis-
sions directly.

Generally, the missions consisting of longer average
times of flight between objects also required less fuel,
as seen in Figure 7. However, outliers like Mission 3
exist that do not fit that pattern. This likely occured be-
cause not only are variation in semimajor axis and ec-
centricity not accounted for when determining the mis-
sion sequence, but the optimization methods used are
not guaranteed to find global minima.

Future improvement to this method of solution
could consist of isolating the high fuel single transfer
missions in order to find a way to group them with
nearby missions that fall within similar time-frames.
Another aspect of the solution that could be analyzed
further is the number of burns per transfer. The abil-
ity to increase the number of burns beyond two could
yield more favorable fuel consumption requirements
for most transfers, especially those with larger plane
change magnitudes.

5 Discussion and Conclusions

In this paper the methods and results of the Astrody-
namics Research Group of Penn State in the 9" Global
Trajectory Optimization Competition were described
[1]. An optimization strategy using a beam search clus-
tering method (Raiden) was used to group orbital debris
with similar orbital planes and RAAN to determine the
order and timing of each visit. A Keplerian Lambert’s
problem solution (The Butcher) was applied to narrow
down the search space for a high-fidelity optimizer us-
ing Particle Swarm Optimization (Sniper Wolf), which
determined the best departure date and time of flight
for each visit. While the method did result in four one-
transfer missions with high fuel costs, all 123 objects
were captured in 20 missions, giving ARGoPS a final
score of 1512.60176793564.

Further improvements require more computational
power to find a better mission sequence and lower indi-
vidual transfer Avs.
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Abstract.  This report presents the results,
methodology, and lessons learned for the Citadel-
DMACC group concerning the 9th Global Trajec-
tory Optimization Competition. As first-time en-
trants, the focus was on developing a fundamen-
tal understanding of the project scope and prob-
lem approach, while utilizing this competition for-
mat as an opportunity for undergraduate research,
and in this instance, specifically for a first-year en-
gineering student. The optimization strategy that
was utilized focused on the debris selection pro-
cess. Initial debris target selection was centered
on possible orbital intersections between an initial
debris orbit and the instantaneous orbital projec-
tion generated from another target debris at a given
time step. This report will discuss two target selec-
tion processes and their applicability to the prob-
lem. Lessons learned from how to approach the
problem are presented here along with an analysis
on the reasons behind the team’s failure to provide
a successful submission.

*Corresponding author. E-mail: pbass@citadel.edu

1 Introduction

The Global Trajectory Optimization Competition
(GTOC) is an international competition open to indus-
try, governmental agencies, colleges, universities, and
even savvy space mechanics enthusiasts. The goal is to
find unique and creative solutions for solving complex
orbital mechanics and trajectory optimization problems
wherein the solutions can be applied to real-world mis-
sions [1]. The ninth iteration of the competition was de-
veloped and organized by the European Space Agency.
The competition problem statement outlined the need to
deorbit 123 pieces of orbital debris in order to halt the
Kessler effect, brought on by the explosion of a Sun-
synchronous satellite. The Kessler effect is the idea that
a collision in space will generate impact debris, which
will then cause more collisions with more debris, and so
on until it becomes impractical to send spacecraft into
or through a given orbital altitude [2]. In the given prob-
lem, the challenge presented is to find efficient proce-
dures for navigating a spacecraft between debris orbits
in order to remove this debris while minimizing cost.
The authors were part of team Citadel-DMACC and
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it was the team’s first time competing in GTOC. As part
of this first-time competition entry, a first-year under-
graduate engineering student was brought onto the team
to promote research, develop student interest in orbital
mechanics, and reinforce concepts learned in first-year
coursework. During the month-long window to gen-
erate a solution, the team developed two methods for
target selection, which are described in detail herein.
As the problem statement laid out, the spacecraft would
start at a selected piece of debris (target) and then ma-
neuver to successive targets in order to ultimately clear
all of the debris, while minimizing fuel usage. As first-
time entrants, this team’s initial focus was to reduce the
complexity of the problem and focus on finding a pair of
orbits that would come close enough to an intersection
to allow for a direct orbital transfer. From this point, a
corresponding set of orbital maneuvers was calculated
that would move the spacecraft from the initial orbit to
the target orbit and rendezvous with the second piece of
debris, producing a valid submission for this competi-
tion. While this target selection process was success-
ful, issues ultimately arose in the precision of position
and velocity calculations, which could not be overcome
in the competition time frame. This report will there-
fore focus on the successful orbit selection process and
transfer maneuvers utilized, followed by discussion of
lessons learned from the competition.

2 Problem Approach

For the competition, the team utilized single-core pro-
cessor operations on various Windows-based platforms,
using MATLAB as the software of choice. The choice
of hardware focus allowed code to be written in tan-
dem across a variety of desktop and laptop computers
owned by the various team members. Utilizing MAT-
LAB with single-core processing allowed for reinforce-
ment of concepts learned in the first year Engineering
Computer Applications course at The Citadel, while di-
recting focus towards learning concepts of orbital me-
chanics. Future entries will explore how to leverage the
parallel processing capabilities of the software to expe-
dite the trajectory optimization process, while expand-
ing beyond the scope of existing course concepts.

The method utilized for optimizing target selection
was to keep the process relatively simple and focus on
identifying orbital intersections solely between two tar-
gets. Due to the wide variety of orbital parameters for
the 123 pieces of space debris in this competition, not

all of the orbits come close enough to each other to con-
stitute a direct intersection, defined as having a mini-
mum distance of less than 100 meters. Once an inter-
secting pair of orbits was found, the spacecraft trans-
ferred directly from the initial target orbit to the final
target orbit at the intersection point. Because the start-
ing orbit of the spacecraft was chosen, the spacecraft
orbit was assumed to initially match that of the debris
on the first orbit so that the deorbit package could be
applied to this first target before the first orbital trans-
fer maneuver was made. The starting orbit was de-
termined based on the first two intersecting orbits that
were found with a reasonable for AV for transferring
orbits. This initial maneuver would enable the space-
craft and the second target debris to have matching ec-
centricity, inclination, right ascension of the ascending
node (2), and argument of perigee (w) to progress from.
Upon transferring to the final target orbit, the space-
craft would then have to undergo a series of additional
maneuvers, detailed later, in order to physically ren-
dezvous at the final target location.

Time-sensitive J2 perturbations on both the space-
craft and debris, due to the Earth’s oblateness, made
for a challenging approach to identifying possible ini-
tial and final targets. For each debris orbit, it was rea-
soned that at every instant in time, it is being perturbed
by the Earth and therefore its {2 and w are continually
changing. This means that its orbital plane, and con-
sequently its distance to any other orbit, are constantly
varying. Therefore, the methodology began with select-
ing a starting target and calculating its trajectory for a
given window of time. This would also constitute the
starting position and trajectory for the spacecraft. For a
given final target, a complete orbital path was calculated
for a given time. When incorporating the J2 perturba-
tions, the {2 and w vary continually, requiring that the
complete orbital path be recomputed each second. Pos-
sible intersections between this time-dependent, final-
target, orbital path and the perturbed starting orbit tra-
jectory were calculated and repeated until an orbital in-
tersection was found.

Figure 1 is a highly conceptualized representation
of the approach taken. In Figure 1.a, the black and blue
curves represent the perturbed trajectories of the final
target and the spacecraft/initial target, respectively. For
each time step, the final target was considered to have an
instantaneous orbital projection of possible intersection
points for the spacecraft’s trajectory, shown as a dashed
red line. Figure 1.b, shows this again at a later time.
It is not until the minimum cartesian distance between
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FIGURE 1. Conceptualized interpretation of a perturbed orbital intersection between a spacecraft trajectory and the instan-

taneous orbit projection of the target debris

the spacecraft and the final target’s instantaneous orbit
falls below 100 m, the threshold set in the competition’s
problem statement, that the orbits are considered to be
intersecting (Figure 1.c).

The first challenge began in trying to determine if
two given debris orbits could be considered intersect-
ing. Two separate approaches were explored to deter-
mine the minimum distance between the initial and fi-
nal target orbits before checking if that minimum dis-
tance fell below the intersection threshold. Figure 2
illustrates the first approach. In this method, the two
orbital trajectories were discretized coarsely (approxi-
mately 1000 points each) and an initial guess was made
as to which point on each orbit corresponded to the min-
imum distance. This guess on each of the two orbits is
depicted in Figure 2.a as index m on the spacecraft path
and index n on the target path. From this initial guess,
the next point in each direction was considered (i.e. m-
1 and m+1 on the spacecraft path) for each orbit. The
cartesian distance between each of these 3 points on the
spacecraft path and each of the three points on the tar-
get path was then calculated, forming a 3x3 local dis-
tance matrix, shown in Figure 2.b. The minimum of
this 3x3 matrix was then found and the corresponding
index was taken as the new initial guess. This process
was repeated iteratively until the minimum of the ma-
trix was found to occur at the center, resulting in a lo-
cal minimum. Once the overall minimum distance be-
tween orbits was reached, the density of points on the
orbits was refined by spreading 1000 points over what

was previously 1 index on the course grid. This pro-
cess was repeated until the minimum distance did not
vary down to 16 significant figures (the highest default
MATLAB precision). At that point, if the minimum dis-
tance was less than 100 m, the orbits were determined
to have intersected and the analysis continued by calcu-
lating the necessary orbital maneuvers. If the minimum
distance did not fall below the intersection threshold,
two new target orbits were identified and the process
was repeated. One drawback of this method is that it is
possible to get a local minimum distance versus a global
minimum and the particular local minimum is very de-
pendent on the initial guess. Another drawback of this
method is that even without incorporating J2 perturba-
tions, the distance two orbits could theoretically have as
many as four local minima. Once J2 perturbations are
introduced, the minimum distance between orbits varies
with each precession and it becomes necessary to ana-
lyze multiple orbital periods, each with their own set of
local minima.

Incorporating J2 perturbations made it necessary to
utilize a different approach for finding orbital intersec-
tions. As previously described, this approach involved
generating a complete instantaneous orbit for the tar-
get orbit at each instant in time in order to find where
the perturbed spacecraft trajectory intersected the tar-
get orbit as it moved along its own perturbed trajectory.
Figure 3 illustrates the process to determine this inter-
section. For a given time, the Cartesian coordinates for
the spacecraft and target debris were calculated based
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FIGURE 2. Determining the orbital intersection point of two non-perturbed orbits

on the given orbital parameters for each piece of de-
bris. Using this target debris position as well as the
instantaneous €2 and w for that orbit, an instantaneous
orbit was calculated and discretized into 1000 points.
The difference between the spacecraft position at that
time and each point on the instantaneous orbit was de-
termined and is shown as a row in Figure 3.b. Each row
of this matrix corresponds to the distance from the in-
stantaneous location of the spacecraft at a given time to
each point on the instantaneous target debris orbit. This
distance calculation was performed for 20 orbits of the
spacecraft, each split into 1000 discrete cartesian loca-
tions. The resulting matrix formed using this approach
had a size of 20000 x 1000 elements. While this is con-
siderably larger in size than the localized distance ma-
trix described in the first approach, the minimum of this
matrix represents a global minimum over this 20 orbit
sample. This global minimum is a necessity for deter-
mining the minimum distance between perturbed orbits
given the cyclical nature of the distance between these
orbits. If a minimum point for this specified time win-
dow was found to fall below 100 m, then an intersection
was declared, the mesh was refined at that intersection

point with another 1000 points, similar to the previous
method, and the process was completed again until a fi-
nal minimum distance was determined. Figure 4 shows
the minimum distance between the path of target 16 and
the instantaneous orbit of target 37 over a given 20 orbit
sample. It is obvious that a search for a local minimum
could result in any number of incorrect choices. The
global minimum over this range is identified in the fig-
ure and can be seen to cross the 100 m threshold for
intersection.

If no intersection was found between the spacecraft
and target orbits over this 20 spacecraft period, the anal-
ysis would move to the next set of targets and the pro-
cess was repeated. If an intersection was determined
to occur, then a AV calculation was conducted to see
how fuel intensive the maneuver would be to move from
one orbit to the next. It was found that compensating
for apse line rotations was the major factor in fuel con-
sumption. Upon completing this analysis for the given
targets, it was found that the orbits of targets 16 and
37 intersected at ¢ = 23472.33 days and that the fuel
consumption for this maneuver (Table 1) allowed for
enough fuel for the spacecraft to reach target 37 after
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FIGURE 3. Determining distance between the time-sensitive, perturbed spacecraft path and the time-sensitive instantaneous-

orbit projection from the perturbed target path

TABLE 1. Mission Submission for Transiting from Target 16 to 37

f x ¥y z 7, vy, v, m AV, AV, AV, event
(mjd2000)  (km)  (km) _ (km) _ (ms) _(mis) (ms)  (kg) (ms) _ (ms)  (ms)_id
23467 -4149.3  -5770.5 -606.9 -535,5 1098.9 -7351.1 4560 0 0 0 16
23472.33  2680.5 5652.9 -3270.3 -452.8 -3592  -6580.1 2236 2104.3 -1053.4 31.84 16
2347236  -2671.6 -5640.8 3267.3 44593 35433 64817 2153 -7.533 -59.95  -109.7 -1
23473.33 -2597.9 -5857.6 2927.5 245.84 3275.1 67712 2074 4.078  54.488 112.7 37
2347833 85169 3161.1 6306.3 22533 64119 -3208.8 2044 0 0 0 37

two additional phasing burns.

Given the spirit of the competition, optimizing the
orbital maneuvers that the spacecraft would undergo
when moving from target to target is of clear impor-
tance. However, as will be discussed in further detail
below, errors in calculating spacecraft position and ve-
locity propagated with respect to time and these inac-
curacies could not be overcome in time for a success-
ful rendezvous submission. This prevented full vetting
and optimization for the intended maneuvering proce-
dure, when transiting from one target to another, so
these maneuvers will only be mentioned briefly in this
report. Upon selecting targets, as detailed above, and
making the commensurate burn to move the spacecraft
onto the target’s orbit, two more burns were reasoned to
be needed for moving the spacecraft into a rendezvous
position with the target debris. A phasing maneuver
was initiated with the final phasing maneuver occur-

ring 15 orbits after the initial burn was conducted [3].
The initial and final burns were performed at the tar-
get’s perigee point. This procedure consisted of 3 total
burns for moving between two targets, consisting of:
1) RAAN/inclination/AP burn from starting target to fi-
nal target orbit burn, 2/3) initial and final phasing burns.
For the targets selected (transiting from target 16 to 37),
these maneuvers resulted in a total AV of 2.6145 km/s
and a consumption of 2522.0 kg of fuel.

3 Lessons Learned

Despite the inability to overcome errors in position and
velocity calculations in order to submit a successful so-
lution, a variety of lessons were learned throughout this
process and these lessons will inform the team’s ap-
proach to future competitions. First, during the solu-
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FIGURE 4. Minimum orbital distances between debris 16 and 37, as a function of debris 16’s orbit number, with an indicated

intersection point between orbits 4 and 5.

tion process, the team was able to work through most
of the issues for making simple maneuvers between tar-
gets, but in the end, propagating errors with the posi-
tion/velocity vectors were found. The code used was re-
peatedly refined and re-compared to the charts provided
in the problem statement, but the differences could not
be overcome in the allotted timeframe and therefore,
no solution was submitted successfully. At best, the
team could match 6-7 significant digits with the num-
bers provided in the problem statement which had 17
significant figures. When submitting possible solutions,
it was found that the propagating error resulted in posi-
tion differences of 300 m between the calculated and
actual positions. After reviewing procedures graciously
posted by one of the other competitors, it was found that
the issue with the calculations was with the level of pre-
cision that was being rendered through MATLAB when
solving the set of ordinary differential equations that de-
scribe the motion of the spacecraft [4]. For future com-
petitions and research, understanding how to effectively
use the precision options for MATLAB’s ordinary dif-
ferential equation solvers is paramount to obtaining ac-
curate solutions. The second lesson learned stems from
an understanding of the equations provided in the prob-
lem statement for determining the Cartesian vectors of
the spacecraft/target position and velocity. It was ini-
tially incorrectly assumed that these relationships pro-
vided the same results as if positions were calculated in

the geocentric equatorial frame. This error was discov-
ered at roughly the half-way point of the competition
and meant a near total rework of the code produced.
The last lesson to be discussed stemmed from a pas-
sage in the problem statement, where it is mentioned
that the spacecraft feels the full J2 perturbations once
it leaves a given target. From this statement, it was in-
correctly assumed that the transit time of the spacecraft
was the only time that perturbations were necessary to
consider. It was found that the intent of the statement
was quite the opposite and meant that perturbations had
to be considered at all times, with the effects needing to
be calculated separately when the spacecraft was away
from any target. In future competitions, these lessons
will be taken into consideration and will form a basis
from which to implement more complex concepts into
the approach to a solution.

4 Conclusions

In all, this was a challenging competition that allowed
for creativity and flexibility in solving a complex, open-
ended problem. The competition prompted many inter-
esting discussions and brain-storing sessions, as well as
a number of teachable moments, for both the student
and faculty members. Had the team been able to over-
come the precision errors that were encountered, the tar-
get selection processes detailed herein would have been
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expanded to transiting between multiple targets versus
the bulk of our endeavors being solely focused on mov-
ing between two. As an opportunity to promote un-
dergraduate research, this competition has been a great
success, by reinforcing and giving engineering context
to concepts delivered in first-year coursework. This ex-
perience was a great opportunity for fostering the stu-
dent’s academic interests and he is excited about con-
tributing to future GTOC iterations.
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