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Abstract

New software engineering technologies facilitate development of ap-
plications from reusable software components, such as Virtual Machine
and container images (VMI/CIs). Key requirements for the storage of
VMI/CIs in public or private repositories are their fast delivery and
cloud deployment times. ENTICE is a federated storage facility for
VMI/CIs that provides optimisation mechanisms through the use of
fragmentation and replication of images and a Pareto Multi-Objective
Optimisation (MO) solver. The operation of the MO solver is, how-
ever, time-consuming due to the size and complexity of the metadata,
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specifying various non-functional requirements for the management of
VMI/ClIs, such as geolocation, operational cost and delivery time. In
this work, we address this problem with a new semantic approach,
which uses an ontology of the federated ENTICE repository, knowl-
edge base and constraint-based reasoning mechanism. Open Source
technologies such as Protégé, Jena Fuseki and Pellet were used to de-
velop a solution. Two specific use cases: (1) repository optimisation
with offline and (2) online redistribution of VMI/CIs, are presented in
detail. In both use cases, data from the knowledge base is provided to
the MO solver. It is shown that Pellet based reasoning can be used
to reduce the input metadata size used in the optimisation process by
taking into consideration the geographic location of the VMI/CIs and
the provenance of the VMI fragments. It is shown that this process
leads to reduction of the input metadata size for the MO solver by up
to 60% and reduction of the total optimization time of the MO solver
by up to 68%, while fully preserving the quality of the solution, which
is significant.

Keywords: semantics, knowledge, reasoning, distributed repository, Vir-
tual Machine or container images

1 Introduction

Today, a common software engineering practice is to reuse Virtual Machine
and container images (VMI/CIs), when building component-based cloud ap-
plications [1]. VMI/CIs represent suitable packaging for micro-services [2]
and fit nicely in the overall software engineering vision [3]. Software en-
gineering dashboards, such as Juju [4] and Fabric8 [5], make it possible to
quickly develop and provide new and elastic software services based on VMI /-
CIs, which can then run across multiple public or private clouds. These new
software engineering approaches and technologies aim at great improvements
of the software life-cycle and receive wide attention and adoption by the in-
dustry. DevOps [6] is a culture, movement and practice that focuses on the
process of software delivery that involves more open collaboration of profes-
sionals, including the sharing of such software artefacts. When combined with
the Open Source approach, such as the one of OW2 [7], it is becoming possible
to significantly reduce the software engineering costs and improve the quality
of the delivered software services [3| through reuse of software components. A



particular example is the design and development of component-based cloud
applications addressing fluid and solid mechanics problems. The application
is made of fully elastic components called Cloudlets, which can be managed
across multiple clouds [8] allowing engineers to share solution components
and recombine them in applications.

Thus, VMI/CIs are becoming predominant way for the delivery of soft-
ware. Due to their importance, many new approaches, technologies and
services for their storage, delivery, provisioning, deployment, and otherwise
management are emerging. When need for scaling the number of software
components arises, it is necessary to deliver VMI/CIs from a repository to
the selected cloud provider, and then deploy them for further use. This
delivery process for VMI/CIs is currently still time consuming and prone
to failures, for example, because some storage services have reduced online
availability. This problem is currently addressed with the rise of literally
thousands decentralized repositories for software components, e.g. CIs [9].
Storage services, such as any Amazon S3-compliant [10] storage or Docker
Hub [11]) can be used to store VMI/CIs and to deliver them upon request
to cloud storage providers. However, their operation is usually optimised for
the VMI/CIs delivery only to specific cloud providers. In order to avoid the
vendor lock-in problem much greater flexibility is needed.

An emerging new possibility is to optimise VMI/CI storage facilities
through their federation, which is an important new trend aiming to address
highly needed non-functional properties of VMI/CIs, such as delivery time,
performance, storage location, storage cost, privacy, compliance, security, re-
liability, availability, maintainability, portability, dependability and similar
aspects. Currently, it is very important to realize that the non-functional re-
quirements for each software-component may greatly vary. Sometimes they
may be correlated, while sometimes they may be conflicting. For example,
a software engineer who wishes to distribute a VMI in a specific geographic
region may wish to balance five different non-functional requirements: stor-
age cost for the VMI, geographic availability, delivery, provisioning and cloud
deployment time. Once the VMI has been stored in the repository, its geo-
graphic availability may also be dynamically changed and optimised based on
external factors, such as the geolocation of the cloud application’s end-users.

In order to address this range of problems, we are currently engaged in
the development of ENTICE, which is a fully distributed storage facility
designed for efficient operations with VMI/CIs, particularly their optimiza-
tion for smaller size, faster distribution, higher availability, lower cost and



timely delivery to cloud computing infrastructures World-wide. Essential
to ENTICE is the ability to collect and satisfy non-functional requirements
specified by the software engineer on each uploaded VMI/CI. The ENTICE
federated repository uses a Multi-Objective Optimisation (MO) algorithm to
optimize the distribution of VMI/CIs across all repositories participating in
the federation, which aims at satisfying every user’s Quality of Service (QoS)
needs. In next stages, this work will result in the design of Service-Level
Agreements (SLAs) for storage and management of VMI/CIs.

The key aim of this study is to use semantics in order to improve the over-
all operation of the ENTICE environment by facilitating the management of
the QoS requirements for individual users and the time consuming optimisa-
tion process of the distributed VMI/CIs. This work includes the development
of an ontology, a knowledge base, reasoning mechanisms and their integra-
tion with the ENTICE environment. Key expected practical benefits are
the reduction of the amount of input metadata used in the computationally-
intensive MO process. Additional utility is provided through estimation of
the actual free space in each VMI/CI repository, the ability to consider geo-
graphic location for each VMI/CIs and VMI fragments, provisioning of meta-
data for the management of SLAs, consistency checking of VMI fragment
provenance data, including checking for corrupted and contradictory facts,
and so on. Major focus of this work is the design of an integration framework
between the ENTICE knowledge base and the MO service. Generally, the
use of semantics in the ENTICE environment is intended to contribute to
improved software engineering productivity by raising the level of abstraction
in the overall software engineering process.

The paper proceeds as follows. In Section 2 this study is aligned with
related works. Section 3 presents the main concepts of this study. Section 4
explains the complex relationships in the ENTICE environment and the se-
mantic modelling approach, including the non-functional requirements for
the storage and delivery of VMI/CIs, the repositories themselves, their SLAs
in relation to the software developers, and other important aspects. The fi-
nal result is an ontology of the ENTICE environment expressed in W3C [12]
compliant syntax. Section 5 elaborates the design, implementation and in-
tegration of the associated ENTICE knowledge base. The MO approach is
presented in Section 6. Section 7 presents the implementation of a reasoning
mechanism for MO of the repository. Section 8 presents experiments showing
benefits of using the ENTICE knowledge base to facilitate improved opera-
tion of the environment. Section 9 summarises the main results, their impact
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and future work.

2 Related Works

Delivery of VMIs from a VMI repository to the actual computing infrastruc-
ture strongly affects the start-up time of VMs. This process is considered
to be slow and negatively impacting the dynamic scaling of cloud applica-
tions [13]. This problem has been generally addressed with the development
of VMI/CI distribution networks aiming to speed up VMI/CI speed up and
delivery, which implement various degrees of sophistication. Following is an
overview of various approaches.

Peng et al. [14] presented a VMI distribution framework enabling collab-
orative sharing in cloud data centres. Zeng et al. [15] introduced a solution
for VMI backup and recovery comprising similarity retrieval, one-level file-
index and adjacent storage. Schmidt et al. [16] discussed the challenge of
distributing VMI files to a set of distributed computing nodes in a multi
cloud computing environment. They present a hybrid solution that adap-
tively selects the optimal transfer method depending on network capabilities
and cloud site constraints. Razavi and Kielmann [17] proposed an elastic
VM deployment mechanism using VMI caches to overcome the VM start-
up bottlenecks. Kimovski et al. [18] described mechanisms how to efficient
manage virtual machines in federated cloud repositories.

Due to the highly dynamic demand for new VMI files, traditional distribu-
tion as de-duplication mechanisms, such as Whole File Detection (WFD) [19],
Content Defined Chunking (CDC) [20], Fixed Sized Partitioning (FSP) [21],
Variable Sized Partitioning (VSP) [22] and Sliding-block method [23]—along
with traditional transmission mechanisms, such as File Transfer Protocol
(FTP) and Secure Copy Protocol (SCP), are not efficient enough without
an optimised knowledge management at the level of VMIs [24]. The knowl-
edge about cloud resources and virtualization environments such as similar-
ities among VMIs, image clusters and data centre topologies generally sup-
ports design of de-duplication and other management mechanisms for VMI
files [25]. Jayaram et al. [25] concluded that empirical analysis of VMI files
can be leveraged to design smart image distribution schemes, take informa-
tion about operational environment into account and help VM provisioning,
cloning and migration.

Sack et al. [26] proposed a semantic approach for addressing NP-complete



decision problem over a bibliographic domain. Our work differs from the cited
literature in a major way that the presented automatic distribution and de-
composition of VMIs uses a knowledge intensive approach based on W3C
interoperability standards, such as OWL2 [12] and aims to generally improve
software engineering practices. Even though there are methodologies de-
scribing the knowledge base ontology with various graph-based models [27]
and interactive semantic approaches [28], the ENTICE system knowledge
base consist of a single graph-based ontology. The use of semantics (ontol-
ogy, knowledge base and reasoning mechanisms including heuristic reasoning
rules [29]) may contribute significantly to the operation of the ENTICE dis-
tributed repository for VMI/CIs by providing important logistics, starting
from the management of SLA agreements between the software engineers
and the ENTICE environment, then by providing input data and informa-
tion for important functionalities of the environment, such as MO, and other
logistics for VMI/CIs migration between the repositories, portability, avail-
ability, reliability, costs, and other non-functional properties.

The present work focuses on the area of semantic modelling and knowl-
edge engineering for multi cloud environments. Semantic approaches have
already been used to address problems in distributed, grid and cloud com-
puting environments in a variety of studies. Some past projects covering
various semantic aspects have been: myExperiment [30], InteliGrid [31], On-
toGrid [32], mOSAIC [33] and others. Currently ongoing related projects
are Smart Cloud Engine [34] with which the projects SWITCH |[35] and
ENTICE [36] can compare. Among those, ENTICE is the only project fo-
cusing on the development of a distributed repository, the projects Smart
Cloud Engine and SWITCH are concerned with the runtime of cloud ap-
plictions. These projects have concentrated on the delivery of high quality,
fully functional and elastic cloud applications. An example is the design and
development of a component-based cloud application for solving fluid and
solid mechanics problems. It is composed of fully elastic components called
Cloudlets, which can be managed across multiple clouds [8]. This application
has compute, memory and communication intensive software components,
which can greatly influence the user experience. It is therefore important to
provide for elasticity to applications like this one, for example, an ability to
move, deploy and scale the number of running VMs or containers.

This research domain poses some very specific challenges, such as the
needs to support both strategic decisions, when the software engineer nego-
tiates a SLA for her/his VMI with the ENTICE repository, and dynamic
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decisions, when automated elasticity has to be obtained by the cloud appli-
cation at runtime. Our goals are therefore, not only to semantically model
the ENTICE distributed repository environment, but also to provide mech-
anisms in the knowledge base that will support both strategic and dynamic
reasoning and information support. In a wider context, this work is posed to
contribute to more optimised and modern software engineering approaches
that include more machine processable knowledge and information in the
software engineering life-cycle.

3 Using semantics in the ENTICE environment

Today, it is a common software engineering practice to pack software com-
ponents (services, scripts) into VMIs or CIs and uploaded them to storage
facilities for further use by elastic cloud applications. During this process, the
developer has to deal with complex requirements, considering among other,
interoperability and performance issues. It is therefore very important that
non-functional requirements, including QoS requirements for the manage-
ment of VMI/CIs are taken into account when optimising the operation of
the federated storage facility. In this context, semantics could be used in the
decision making process at both strategic (by the software engineer) and dy-
namic (by the various software services) levels, when operating a distributed
repository of VMI/CIs, such as the ENTICE environment. Following is a
short overview of the ENTICE environment, its use cases and the semantic
approach proposed in this work.

3.1 The ENTICE federated repository

The ENTICE federated repository is developed to allow for efficient opera-
tions, including moving, replication and delivery of VMI/ClIs, as illustrated
in Figure 1. The developer has the possibility to access VMI/CIs via a graph-
ical User Interface (UI) and from there deploy them on a cloud provider. The
overall software engineering process is informed by using metadata which is
systematically gathered, exchanged and otherwise managed in a knowledge
base. The key components of the ENTICE environment that encapsulate all
the use cases are presented as follows:

1. Development tools (such as Fabric8 [5]). These are basic instruments
used by a developer of a cloud application. Such tools do not yet pro-
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Figure 1: The ENTICE environment uses knowledge for optimal operations
with Virtual Machine and container images.

vide enough information to the developer concerning the deployment
stage (e.g. the best deployment location). Programs, APIs and other
services have to be deployed using a server that runs on a specific op-
erating system. Creating VMI/CI, even for only testing purposes, that
contain specific services takes time and the developer must have some
knowledge about library dependent software of the service, the scala-
bility of the software and similar. By using the ENTICE environment a
developer can access the images through a RESTful service or through
a specifically designed Ul facilitating repositories-wide software search
and discovery.

2. ENTICE knowledge base service comprises of a RDF store and
mechanisms, such as validations, reasoners, rules and similar, serving
information to all other components of the architecture. The service
interchanges the data through the ENTICE external interfaces, the
developer API and the ENTICE dedicated services. All the data is



organised according to a domain ontology. Based on the ontology, sets
of reasoning mechanisms are implemented.

. The ENTICE User Interface (UI) provides to the developer sev-
eral features such as optimising and searching VMIs/CIs, uploading
new images to the repositories that include pre-installed user specific
services and applications, or even system based settings (e.g. network
configuration, SSH and system credentials). Besides the image upload,
the user has the possibility to generate images by using a script (e.g.
Chef [37] or Puppet recipe [38]) that includes functional requirements.
In the UI search screen the developer is able to search among all avail-
able public VMIs/CIs, which are stored in public VMI/CI repositories,
such as those of Amazon S3 [10] or Docker Hub [11].

. The services of the ENTICE environment provide functionalities
that are exposed through the UI. These services are elastic and ge-
ographically distributed in order to optimise the operation based on
information and knowledge on network performance (e.g. latency and
current bandwidth) through monitoring services. For each VMI/CI
containing user developed software components (e.g. services, databases,
APIs and other applications) a special ENTICE service can be used to
reduce the image size (e.g. remove unused libraries and documentation)
in order to significantly reduce the VMI/CI size while not affecting the
mandatory running applications functionalities. By performing an op-
eration like this, the user may save significantly on the storage cost as
soon as the software asset is deployed in the VMI/CI repositories and
experience faster auto-scaling operations of a running VM.

. VMI/CI repositories. Currently, ENTICE includes private reposi-
tories and can be extended with public repositories that are available
on the Internet. For example, more than 200,000 software packages on
different repositories can be accessed via JFrog Bintray [39].

Thus, the idea to integrate those repositories in the ENTICE environ-
ment may provide important benefits. All the information of VMIs/ClIs
available in those repositories can be stored in the knowledge base with
addition of new constraints, dependencies and other derived data from
reasoning or user experience. For example, the majority of Cls are
specifically running only one service (e.g. Apache Tomcat) and user



specific applications (e.g. a Web application deployed on Tomcat).
The ENTICE environment can reduce the size of a CI and facilitate
the selection of technologies (e.g. migrate the database from MySQL to
NoSQL) by integrating the appropriate libraries into the newly created
CI. Same can also be applied to VMIs.

3.2 Using the ENTICE environment

A VMI/CI distributed upload is more specific use case which the best de-
scribes the intent of this paper. Figure 2 shows the steps involved from a
viewpoint of the ENTICE user (e.g. VMI/CI developer).

m o O “l want to upload_this VMI with delivery time pf 1
_— minute and availability in China and Australia,
*ﬁ and ..”
VMI/CI VMI/CI upload
e || request
=1 .
() m— . Study possible trade-off
—®-© Collecting between cost and delive
Qs time. v
Multi-objective
Optimisation
Decision User selects the best
® making option.
S VMI/CI
!t%“ distribution

Figure 2: VMI/CI distributed upload by specification of non-functional prop-
erties.

First, the image upload request is made to the ENTICE environment.
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Then the user is able to specify QoS requirements about the image such as
geographic location of the service, storage and/or network latency, image
availability, image delivery time to the cloud, and cost of storing and down-
loading image. Some of these requirements might be specified as constraints
to the system (e.g. due to legislations upon countries of storing data, or due
to storage quota/capacity limitations) while others as optimisation objectives
(e.g. find the storage with the best price). A multi-objective optimisation
algorithm then considers the constraints and optimisation goals and tries to
find the best storage for the request. An outcome of the algorithm is a set of
feasible storages (with respect to the constraints) that are at the same time
the best fit (with respect to the optimisation objectives); thus, the outcome
facilitates user in decision making. Because the user is able to specify several
optimisation objectives at the same time, the best solution does not result in
a single storage but instead in a set of best solutions, known as Pareto front.
The final decision upon the image placement is then left to the user to allow
for fine-tuning her optimisation objectives before the image is stored into the
best storage.

3.3 Semantic approach

The role of the knowledge base in the above use case ranges from collecting
and storing the QoS for every image, to providing information about the stor-
ages, and supporting the decision making process. The relation between the
knowledge base and the multi-objective optimisation service is of particular
interest in this study. We experimented with two different procedures, which
mainly differ in the information exchange between the knowledge base and
the multi-objective optimisation service. They are described in the following.

In the first procedure the knowledge base supplies the multi-objective
optimisation service with the list of storages and their properties, as well
as the list of constraints for the image upload request. The optimisation
algorithm then performs the Pareto front computation by considering the
whole set of storages and takes care of the constraints after the Pareto front
is computed. This serves as a reference model that we want to improve with
the second procedure.

The second procedure is therefore designed to efficiently reduce the initial
set of storages provided to the Pareto front computation. This way less data
has to be exchanged between the knowledge base and the multi-objective
optimisation service, and the optimisation is performed on a feasible set of
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storages only, with respect to the user’s constraints. Therefore, the multi-
objective optimisation algorithm in this case does not need the list of con-
straints.

The second procedure has performance and cost advantages over the first
one. Applying constraints to the set of storages directly in the knowledge
base consumes less network bandwidth which can in some cloud settings
result in lower cost. It can also improve transfer times, if application of rules
is not too computationally intensive for the knowledge base. Next, if the
whole set of storages is very large and the applied constraints eliminate most
of the storages, the computation of the Pareto front might become difficult,
because the multi-objective optimisation algorithm works on random subsets
of its input set, as is described in Section 6. Even if that is unlikely to
occur with carefully designed genetic algorithm, if is more likely to fit a
small subset of storages into a memory than the larger set, which should
also improve the time required for the Pareto computation. Nevertheless,
if the multi-objective optimisation procedure needs to combine storages in
order to meet the constraints (e.g. replicate image over a subset of storages
to meet high request for image availability), the number of combinations
grows exponentially with the number of storages. Some of these issues are
summarised in Figure 3.

The detailed analysis of the various use cases leads to a collection of func-
tional and non-functional requirements for the development of the ENTICE
ontology and the associated knowledge base.

4 Requirements analysis and development of
the ENTICE ontology

In order to develop an ENTICE ontology and associated knowledge base
it was first necessary to collect and analyse key requirements. Here, we
first identify the functional requirements, which are needed to integrate the
semantic technology with other services of the ENTICE environment. Fol-
lowing this, non-functional requirements are elaborated. These are necessary
to preserve elevated overall system Quality of Service (QoS) and Quality of
Experience (QoE). The QoE measures the actual user’s experience with the
ENTICE environment. The second part of the section explains the develop-
ment of the ENTICE ontology.
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4.1 Functional requirements

The new system can be accessed only by registered users. Therefore, the
knowledge base must support different authorization and authentication lev-
els (e.g. only administrators can access to special panels and further interact
with operations in progress, check current status of services and compare
them to the knowledge base content).

Various search mechanisms should be provided, from the simple basic
search queries to obtain data stored in a single entity (e.g. search VMI/CI
by different criteria, check a repository resource status, etc.) to more complex
search mechanisms in order to satisfy the capabilities for:

e search between individuals of the same type and their chronological dif-
ferences, usually derived from the same ancestor, due to updates (e.g.
updating VMI operating system, adding new applications or function-
alities, etc.). In those cases the mechanism should be able to find
redundant and outdated individuals in order to remove them;

e rule based constraint verification (e.g. constraint check of compatibility
for the new added software in CI/VMI).

From the ENTICE system heterogeneity the knowledge base service must
also support connectivity through external interfaces. Thus, the knowledge
base has to support common used connectivity protocols like REST. In some
cases the knowledge base service has to access sensitive data and certification
mechanism must be supported (e.g. Secure Shell (SSH)) to fulfil the security
requirement aspect.

4.2 Non-functional requirements

The knowledge base needs to address a variety of non-functional requirements
that can be identified in the majority of ENTICE environment components.
The most important of them are:

e achieving high performance of the services inter-connected via the knowl-
edge base (e.g. fast query responses);

e ability to distribute the knowledge base service or even the knowledge
base environment itself to avoid single point of failure;
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e scalable knowledge base architecture, its ontology (e.g. by adding new
cloud providers the system must be able to store new pricing metrics)
and possibility to increase resources for the growing knowledge base
storage;

e availability where monitoring of RDF store service has to be running
and minimize the down time of the knowledge base service or notify
the administrators for major system faults;

e security that overlaps with functional requirements;

e data integrity by using different validation supporting reasoners (e.g.
HermiT, Pellet etc.) and adequate action in case of data integrity
violation (e.g. data types or relationships don’t match the ontology
scheme definition).

In the following, we elaborate the design and development of the ENTICE
ontology.

4.3 Ontology development

The development of the ENTICE ontology was done iteratively, by identi-
fying the functionalities and their matching entity classes among all sub-
systems, their dependencies in a form of relationships and the constraints of
entity attributes to satisfy the data exchange between ENTICE services. The
aim of the ontology design process is to create a robust ontology schema with
possibility to be scaled in order to support new functionalities by minimally
affecting the existing ones (e.g. by only adding new relationships and en-
tity attributes). Particular care was put on developing reasoning capabilities
with Pellet and possibilities to use RDFS [40] and SWRL [41] rule engines.
By using reasoners, it is possible to facilitate environment information flow,
minimize human errors while inserting new RDF data, check existing ontol-
ogy data inconsistency and even simplify data transfer between the ENTICE
services.

The entire ENTICE ontology with interconnected entities is presented
in Figure 4. Since the knowledge base is the main database of the ENTICE
environment all essential use case data must be covered. The most important
ontology entities are described in Table 1 and are used as main knowledge
assets in the experiments. Thus, besides the ontology scalability aspect other
important criteria are also satisfied, including:
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e data must be efficiently accessed through queries and reasoning mech-
anisms by following Ontology Design Patterns [42];

e new expressivenesses must be achieved by inferencing the ontology con-
tent. Therefore, new relationships should be generated to facilitate the
querying through matching the ontology;

e minimum redundancy level should be reached during the ontology de-
velopment; and

e classes must be designed in a way to support the future scalability in
a way of generalize concepts (e.g. ProvenanceData class should not be
used only for Fragments).

Table 1: Important concepts modelled by the ENTICE ontology.

ENTITY NAME SHORT DESCRIPTION USE CASES
DiskImage, VMI, CI VMIs and Cls. Explore, upload, deploy, optimize, recipe build
Repository characteristics of available cloud repositories Explore, upload, deploy, optimize, recipe build
Fragment preliminary description of fragments MO
User information about users including user type Login, VMI ownership

Geolocation geographical information about the repositories Explore
Pareto calculated pareto possibilities provided by MO. MO
DiskImageSLA  information about resulting (and new) SLA Upload, MO
Quality all information about recipe builds use case Build VMI/CT from recipes
ProvenanceData all phases of fragment distribution MO
Delivery information about deployment of VMIs/CIs Deploy VMI/CI

The developed ontology stores important concepts about the entire EN-
TICE environment, such as:

e concepts of software resources (e.g. VMI/CIs, cloud-based environmen-
tal settings);

e programming concepts (e.g. storage complexity, taxonomy of func-
tional properties etc.);

e virtual organization concepts (e.g. privileges, credentials, ownership);
e resource negotiation-related concepts (Pareto SLAs);
e QoS concepts and

e runtime environment concepts (e.g. monitoring).
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Based on the ontology design it may be understood that the ENTICE
knowledge base focuses on the cloud domain with specific use cases covering
broad aspects, such as VMI/CI distribution, fragmentation, SLLAs manage-
ment and so on.

4.4 Role of the ENTICE knowledge base

General complexity of the nowadays cloud based systems is increasing due to
integration of new functionalities, arising from new users which leads to the
needs for continous maintenance of datasets. There are common approaches
to improve or at least maintain reasonable data flow performances such as
migration to new technologies (e.g. from MySQL to NoSQL storage systems),
hardware upgrades and software optimisation approaches. The later in terms
of semantic design and optimized access of ENTICE metadata is the main
role of the ENTICE knowledge base. The semantic approach is used not only
to describe the data in a interoperable graph-based representative ontology,
but also to enrich the relationships among the entities by using reasoning
mechanisms.

Through the process of system implementation and integration, new en-
tity data can be seamlessly created including attributes with constraints,
relationships and rules which have to be fulfilled in order to inference new
knowledge. Moreover, the complexity of specific SPARQL queries can be
significantly reduced that leads to reduced query results and faster metadata
management for the functioning of the overall ENTICE environment. The
concrete result, which is evaluated further in this study is the simplification
of SPARQL queries by using pre-inference knowledge created with rule based
reasoning mechanisms.

5 Designing and implementing the knowledge
base

In order to be able to use the ENTICE ontology it is necessary to develop
specific mechanisms for managing complex-structured data. In the course of
this study, experiments were performed with various degrees of expressiveness
to model the relationships among the entities, the use of advanced constraint
mechanisms, RDF validation [43|, complex data querying, inferencing new
knowledge using reasoning mechanisms and other approaches. The primary

16



use of the knowledge base is to provide RDF metadata to all subsystems
and services of the ENTICE environment through a main API. The API is
developed in a way that supports various queries and reasoning mechanisms
and other aspects, such as security. The knowledge base is also designed in
a way that its software components can further scale, e.g. via the use of new
container instances.

In order to fulfil some basic interoperability requirements the knowledge
base service must support the exchange of RDF data using simple queries,
different reasoners, and rule based constraint verification to minimize human
errors that may occur through the graphical Ul when executing write based
requests into the knowledge base or scripts (e.g. functional descriptions of
VMIs/CIs). Those mechanisms are indirectly described in the following sec-
tion on how the knowledge base provides metadata to other ENTICE services,
particularly, the Pareto SLA and Multi-objective optimisation part with sub-
stantiate calculation time improvements through experimental results.

5.1 Design

The ENTICE environment can be seen as repository-based system that en-
capsulates a variety of subsystems. Basically, it provides a universal back-
bone for Infrastructure as a service (IaaS) VMI/CI, which supports different
use cases with dynamic resource (e.g. running resources for few seconds or
continuously for years) and other QoS requirements. The ENTICE technol-
ogy is strongly decoupled from the application and their specifics such as
runtime environments, but continuously supports them through optimised
VMI/CI image creation, assembly, migration and storage. The ENTICE
environment inputs are unmodified and functionally complete VMIs or Cls
from users. Unlike the other cloud provider environments in the market, our
environment transparently tailor and optimise them for specific Cloud infras-
tructures with respect to their size, configuration, geographical distribution,
such that they are loaded, delivered (across Cloud boundaries), and executed
faster, with improved QoS and decreased final cost for the end users. The
proposed high-level architecture is shown in Figure 5 and comprised of the
following key subsystems:

e knowledge base service, which is a central part of our work, presented
in our study and supports all the other services of the ENTICE envi-
ronment with information needed for strategic and dynamic decisions
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making,

VMI/CI portal, which is the ultimate graphical UI used by the devel-
oper to search for software artefacts across the distributed repositories,

VMI/CI Synthesis, which facilitates the synthesis of VMI/CIs based

on recipes,

VMI/CI Analysis, which facilitates the optimisation of the size of VMI /-
CIs,

VMI/CI Distribution, which facilitates VMI/CI movements and other
operations among the potentially unlimited set of geographically dis-
tributed repositories, thus, optimising VMI/CI delivery time at partic-
ular geographic locations and storage costs,

Multi-objective Optimisation (MO) Framework, which addresses the
needs for optimised operation of the overall environment through its
MO methods implemented via JMetal and can also support VMI/CI
Distribution and Online VMI/CI Assembly,

Pareto Service Level Agreements (Pareto SLA), which is a method
used by the users to negotiate terms of contract with the distributed
repositories of VMI/CI,

Online VMI/CI Assembly, which is in charge of assembling the VMIs/-
ClIs from fragments and

VMI/CI Management Template that represents available Cloud man-
agement systems (e.g. OpenNebula, OpenStack etc.) which are de-
ployed on different geographical locations (Slovenia, Hungary, Austria
and UK) and the ENTICE environment can access them through their
APIs. In the future new Cloud management systems can be added.

As it can be seen in Figure 5, knowledge management and information

supply play a crucial role in the operation of the overall ENTICE environ-
ment. Due to space limitations, in the following we focus on the use of the
newly developed knowledge base and its reasoning methods in relation to
some NP-hard optimisation problems, which are addressed by a combination
of MO and the Pareto SLA technique. NP-hard optimisation problem, for
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example, is the optimal distribution of VMIs across the distributed reposito-
ries which allows to agree (e.g. via SLA) specific maximum allowed delivery
time at a specific maximum allowed cost.

5.2 Implementation

The ontology of ENTICE project was developed by using the ontology edi-
tor Protégé. The main language for the ENTICE ontology is implemented
in the OWL2 [44] using Turtle format due its human readability. The knowl-
edge base service was developed using Java based technologies and frame-
works such as Java Jersey for RESTful web service, Apache Maven for soft-
ware management and Apache Jena Fuseki for serving RDFs. The last was
chosen because it supports various powerful reasoners (e.g. Pellet, TrOWL,
ELK etc.) [45], its default integrated reasoner and have satisfactory perfor-
mance [46]. During the implementation phase of the project new mechanisms
will be integrated to facilitate the knowledge base service deployment, testing
and security (e.g. Apache Shiro).

The integration process of the ENTICE services followed a well defined
path: (i) identification of services/APIs as presented in previous chapter,
(ii) definition of communication protocols between systems, (iii) detailed de-
scription of requests and communication flow and (iV) actual integration and
detailed implementation.

The main supported communication protocol between ENTICE services,
in particular between the knowledge base service and other services, is HT' TP
REST protocol with JSON based exchange data format. For services involv-
ing VMI/CI management cases (e.g. VMI/CI deployment and redistribu-
tion), the knowledge base service is adapted to support other communication
protocols such as Web Services Description Language — WSDL.

Detailed work-flow for the supported use cases was identified through
a detailed UML diagram definition which followed the requests definition
supporting the data scheme of the ENTICE ontology. To reduce the risks
concerning errors during the development, a testing system based on Unit
tests was introduced in a continuous build integration using Jenkins [47], for
example at each code update (e.g. git push), updated ENTICE services were
build and Unit tests were executed.

The final stage of the implementation and integration mainly involves
implementation of the graphical Ul and identification of possible boundary
conditions that can affect the system.
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6 Multi-objective Optimisation Framework

This section elaborates the development and integration of the ENTICE
multi-objective optimization framework for optimized VMI distribution [48].
The optimization framework can be applied on multiple distinctive appli-
cation levels within the ENTICE environment. For the implementation of
each application level, within the optimization framework, diverse heuristic
tracks have been pursued. Above all, a consolidated service based application
program interface has been provided for easy integration of the framework
within heterogeneous cloud environments.

6.1 Background

Optimization is a process of denoting one or multiple solutions that relate
to the extreme values of multiple specific objective functions within given
constraints. When the optimization task encompasses a single objective
function it typically results in a single solution, called an optimal solution.
Furthermore, the optimization could also consider several conflicting objec-
tives simultaneously. In such circumstances, the process will result in a set
of alternative trade-off solutions, so-called Pareto solutions, or simply non-
dominated solutions. The task of finding the optimal set of non-dominated
solutions is known as multi-objective optimization. In what follows, an out-
line of the basic concepts considering multi-objective optimisation theory is
provided.

For a point o € O is said to dominate o' € O if o' is better than o in
respect to all objectives and o’ is worse for at least one of them. A point
o' € O is considered to be non-dominated if there is no other point o € O,
which dominates o/. A particular solution x € X is called Pareto optimal if
its "position" in the objectives space is non-dominated by any other point.
The set of all Pareto optimal solutions is called Pareto optimal set.

The set of all optimal solutions in the objective space is called Pareto
frontier. The Pareto front can be considered as a efficient tool for aiding the
decision making process. The shape of the front can provide insights, which
allow to efficiently explore the space of non-dominated solutions with certain
properties, and reveal regions of particular interest which cannot be seen in
advance, before the optimizations process has started. Therefore, the users
do not need to set their preferences before finding a set of optimal solution.

Furthermore, when considering multiple different Pareto solutions, a spe-
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cific method is required to compare the quality of the solutions set. A Pareto
set is considered to be of good quality if it provides accuracy and diversity.
One way of determining the quality of a set of Pareto solutions is the hy-
pervolume. Given a set of trade-off solutions X, the hypervolume HV (X)
calculates the area encircled between the points in X and a given reference
point W. This way, the better the points contained in X and the most diverse
they are, the HV (X)) will be higher.

6.2 Designing Multi-Objective Optimisation (MO) frame-
work for ENTICE

VM images are currently stored by cloud providers in proprietary centralised
repositories without considering application characteristics and their runtime
requirements, causing high deployment and instantiation overheads. More-
over, users are expected to manually manage the VM image storage which is
tedious, error-prone and time-consuming process especially if working with
multiple cloud providers. Current state-of-the-art does not provide any sub-
stantial means for streamlined adaptation of distributed repositories and effi-
cient utilization of the storage resources. The vast majority of existing work
in this field has been focused towards optimization of the utilization of the
computational resources. Regrettably, limited research has been conducted
on the management of the VM images, as essential storage resources in fed-
erated environments. Inadequate management of those crucial resources can
easily lead to inefficient utilization and overall degradation of the computa-
tional performance of the whole system. In this context, the optimisation of
the VMUI’s distribution across federated repositories is required both by the
applications and by the underlying cloud providers for improved resource us-
age, operational costs, elasticity, storage use, and other desired QoS-related
features. Multiple optimization requirements have been identified and suit-
able strategies have been proposed for overcoming of those barriers.

Based on these considerations, the following optimization modules have
been developed: (i) initial VMI distribution, (ii) Offline VMI redistribution
and (iii) online VMI redistribution. In this paper the focus will be on (ii)
and (iii) due to the possibility of knowledge base collaboration in the problem
solving.

ENTICE is developed to support VM image redistribution both offline,
as well as online during application execution by pro-actively moving the
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most demanded VM image fragments close to the resources the application
is currently running on [49]. In case of online image delivery, ENTICE will
automatically discover user demand patterns by analysing the meta-data
(e.g. sequence and number of downloads of particular images or fragments)
published by the provider-operated repositories (e.g. similar to Glance from
OpenStack) and replicate the highly demanded images or fragments accord-
ing to user demands. For example, if some VM images are always instantiated
at a high frequency, they will be placed at other providers where the users
might need them. Furthermore, based on the performance requirements,
use patterns, and structure of images or location of input data, ENTICE
(assisted by its knowledge base) will automatically optimise in the back-
ground the distribution and placement of VM images to significantly lower
their provisioning time for complex resource requests (which can be in the
orders of hours using today’s provider lock-in technologies) and for execut-
ing the user applications (thus focusing on their functional use scenarios).
The optimisation will consider the requirements of applications built as a
composition of VMs and arrange for simultaneous delivery of multiple VM
images to selected clouds, optionally enhanced with application input data.
Moreover, the online discovery and assembly of VM image fragments em-
ploys the same multi-objective optimisation framework by assembling a VM
image in a running VM at the provider with the best performance, lowest
instantiation overheads (fragment transfers and VM deployment), and execu-
tion cost trade-off. Additionally, the ENTICE multi-objective optimization
framework has been envisioned to provide a specific module for efficient ini-
tial distribution of the VM images across the distributed storage repositories.
The advantage of implementing such a module is twofold, as it can provide
means for balanced distribution of the VMIs and it can reduce the complexity
for selecting an initial storage repository by the VMI’s owner.

6.2.1 Offline VMI redistribution

The problem of offline VMI redistribution consist of a finite, but very large,
number of combinatorial alternatives, which are not known in the beginning
of the solving process. The optimization process is conducted by utilizing two
conflicting objectives: cost for storing and transferring of the data, which we
simply call Cost objective and Performance objective. This process is per-
formed by analysing the repositories usage patterns, and results in optimized
distribution of the VMIs and the associated data-sets across the federated
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environment.

The cost model is described around the notion of the financial expenses
which are needed to store a unit of data in a given repository site C; and the
economical burden for transferring the data from the initial to the optimal
site Cyrnew- The exact values of the financial expenses for data storage and
transfers should be provisioned by all cloud providers within the federation.

The performance model includes complex reasoning behind it. It is based
on the VM image usage patterns and it requires proper monitoring tool for
efficient execution. The raw theoretical throughput of the interconnecting
structure within a Cloud federation does not properly describe the factual
communication performance, as it is difficult to predict the actual route the
packets may take to reach the destination and the load on the intermediate
communication channels. Opportunely, it is possible to leverage the data
from the framework’s monitoring module to perform a coarse but sufficient
estimation on the actual throughput between any pair of end points in the
federation. In this way, if there is a sufficient information on the previous
transfers among the repository sites and the Cloud computing instances, a
direct “virtual” links between the above mentioned entities can be abstracted
over the physical network and their bandwidth can be estimated.

The core of the offline VMI redistribution sub-module is constructed over
the NSGA-II multi-objective optimization algorithm. As with any population
based genetic heuristic the basic entity is the individual. Within the given
problem description the individual has been represented as vector with a
size equal to the number of stored VMIs. The value kept in every element
of the vector corresponds to a single storage repository where a particular
VMI can be stored. For accomplishing the above statement, within the
proposed framework, each VMI is assigned with a unique ID value, which
correspond to the index of the vector element. Respectively, all storage sites
in the federation are also assigned with unique IDs that are parallel to the
appropriate values saved in the vector elements. In such way, each individual
corresponds to a solution vector that represents unique global mapping of all
VMIs to storage sites in the federated repository.

Afterwards, multiple solutions vectors are created and then randomly
populated with values in the range from one to the number of available
storage sites, thus creating the initial population. Every single individual
represents one possible distribution solution that has to be evaluated. Then,
the evaluation of each individual is performed by reading the values stored
in the vector fields. Based on those values, starting from every element
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in the vector, a neighbouring sub-graph is constructed and the appropriate
objective functions are applied. Those values are then grouped together and
the median value is selected as the overall fitness of the given individual.

6.2.2 Online VMI redistribution

One very important aspect that should be considered in federated cloud en-
vironment and repositories is the optimization of specific user’s VM images
and corresponding data sets while correlated applications are being executed.
Even though the offline VM image redistribution should place the VM im-
ages in the optimal storage site, there might be cases where the optimization
is required only “locally”, for some particular images or data sets. For ex-
ample, if a user continuously deploys particular VM image within a short
period of time, the position where that image is stored can be additionally
optimized based on the newly available data. Consequently, the image can
“temporarily” be transferred to the more optimal solution for the given sce-
nario. The same principle can be applied to the associated datasets, which
can be redistributed “closer” to the physical machines where the VM images
are deployed. By using the same methods implemented in the offline VM
image redistribution, the online VM image provisioning can be managed. As
both processes are analogous, the only difference comes from the scope and
the time interval in which the optimization is performed. With the online
VM image redistribution, the optimization is only executed by user’s request,
and only on its own images. When the user asks for optimization of the VM
images storage position while deployment, the algorithm is initiated with a
limited scope. The input data of the optimization module is only narrowed
to the user images and the optimization only takes into account the user’s
usage patterns in a previously set time interval. In this way it becomes pos-
sible to further optimize the position of VM images in the cases when they
are frequently deployed in a short interval of time.

7 Reasoning for the Multi-Objective Optimisa-
tion

Semantic representation of the data by using ontologies and associated knowl-
edge bases can be exploited to identify new knowledge by using different
reasoning mechanisms. In comparison with traditional relational databases
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that allow only simple logical connections between tables, knowledge bases
have the ability to describe connections between entities in a more descrip-
tive way by using Description Logics (DL). Thus, different facts that are not
explicitly expressed in an ontology, can be derived such as satisfiability of
a concept, subsumption of concepts, consistency of ABox with respect to
TBox, checking if individual is an instance of a concept, retrieval of indi-
viduals and realisation of an individual. On the level of the entire ontology,
reasoning is used to reduce redundancy of information and to find conflicts
in knowledge content. The ENTICE environment supports Jena default rea-
soners and others that are supported in Jena Fuseki (e.g. BUNDLE, Pellet,
TrOWL and DLEJena).

Constraint-based reasoning, as a concept, has connections to a wide vari-
ety of fields, including formal logic, graph theory, relational databases, com-
binatorial algorithms, operations research, neural networks, truth mainte-
nance, and logic programming. RDF based stores can be deducted as a com-
bination between relational databases that includes formal and graph theory
logic. For ontologies such as ENTICE, satisfying the syntactic constraints,
the most suitable candidates are rule-based reasoner, tableaux reasoner and
other query engines such as ABox. One of the most used for Web Ontol-
ogy Language OWL1 is the Jena’s default reasoner, however, for processing
OWL2 the Pellet reasoner can offer more powerful reasoning capabilities.

The ENTICE knowledge base and its reasoning mechanisms are used in
two steps of the MO process: (i) for the online repository redistribution and
(ii) for the offline redistribution.

7.1 Using the ENTICE knowledge base

In the first step of online distribution the knowledge base is used as an asset
to speed up the execution time of MO algorithm. Due to the need of fast
execution time to assure reasonable QoE, the ENTICE environment tends
to use different subsystems and their approaches, in this case knowledge
base RDF based data retrieval. To be more concrete, the knowledge base
provides only those data that are reasonable to be used as the input for the
MO algorithm and it constructs this data by taking into account knowledge
base defined constraints that are sorted by their relevance as shown in the
SPARQL query 1. There are also other constraints considered in this stage,
that are presented in the following section. The online redistribution flow is
depicted in Figure 6.
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Listing 1: SPARQL query for online redistribution. In the inner SELECT
statement the repository subjects are sorted according to their relevance, and
in the outer SELECT statement all the attributes of the repository class are
extracted.

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX kb: <http://project-entice/2015/knowledgebase#>
SELECT ?s ?p 70

WHERE {
?s 7p 70 {
SELECT ?s ?p ?0 ?storage ?operational
WHERE {
?s a kb:Repository .
?s kb:Repository_OperationalCost ?operational .
?s kb:Repository_StoragelLevelCost ?storage
}
ORDER BY ASC (xsd:double (?operational * 0.9 + ?storage))
LIMIT 50
}
}

For the offline redistribution the data needed for MO is more because derives
from different entities that stores information about VMI or CI and the
entire life-cycle of redistributions containing delivery and deployment time.
This two times are used to represent practical SLA that can differ from a
theoretical one. The approach that provides relevant input data for MO is
the following:

1. With a SELECT query 20% of the cheapest repositories with a minor
delivery and deployment times are removed in the further steps.

2. With a SWRL based rule by using Pellet reasoner a property infer-
ence is applied on the same provenance data on the same repository to
be stored on each of those individuals. The rules are mainly applied
on entity property level by using Assertional Box (Abox) to represent
OWL facts. For example, by using owl:propertyDisjoint With data is
additional marked as not relevant for additional querying.
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3. The relevance of the VMIs/CIs that should be redistributed, is sorted
through a SELECT query where the selection criteria is based on higher
deployment time, delivery time and SLA of the cloud. For these ex-
periments additional QoS metrics (e.g. services can be deployed only
in one continent) were not applied.

The use of the knowledge base in connection to the MO algorithm is
analysed in the following section.

7.2 Integration with the MO framework

The multi-objective optimisation framework is reliant upon the user’s usage
patterns to properly optimise the distribution of the VMIs and associated
dataset across the federation. To this aim, the knowledge base is an essen-
tial tool that provides crucial information for proper modelling of the usage
patterns, thus prompting efficient operation of the optimisation framework.
Furthermore, to be able to accurately evaluate the objective functions, the
framework requires information on the previous data transfers within the
distributed repository. In addition, various other parameters, such as cost
for storing, interconnections bandwidth and latency, are necessary.

There are two pivotal points of interest in the integration of the knowl-
edge base within the domain of the optimisation framework: (i) provisioning
of decision variables and (ii) performing the decision making policy on the
obtained Pareto trade-off solutions.

For the purpose of the presented research work, the Multi-objective opti-
misation framework is viewed in the terms of its inputs and outputs, without
providing any deeper knowledge of its internal workings. The interaction
between the knowledge base and the MO framework is performed through
RESTful service based API. As previously described, the Multi-objective
optimisation framework can be applied on multiple distinctive levels. Never-
theless, on each level, the provisioning of the input variables is performed in
a similar manner. When the optimisation process is initiated, the framework
sends a query for the required data to the knowledge base. The knowledge
base has been constructed in such a way, to provide only the relevant input
data that will be described in the following subsection and substantiated
through the presented evaluation.

The flow of interactions between the knowledge base and the optimisa-
tion algorithm, in the cases of online redistribution is depicted in Figure 7.
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The entities involved in the process are: (i) the client who initiates the up-
load process, (i) the knowledge base service which manages the data, (iii)
the MO service which computes the Pareto front, and (iv) Image redistribu-
tion system that actually performs the requested action. The process starts
when the client requests an upload of the VMI/CI to the ENTICE federated
repository, by specifying the non-functional properties of the image, such as
geographic location (e.g. preferred location, political legislations, etc.). Then
the knowledge base serves to the MO service a subset of repository metadata
information, depending upon the constraints selected by the client in the
request. The MO then computes the Pareto front and returns the result to
the client through the knowledge base service. The client selects a desired
cost/performance trade-off from the Pareto front of optimal solutions (i.e.
selects a single point from the set that best matches client requirements)
and passes the information to the Image redistribution service through the
knowledge base service which then uploads the VMI/CI. Finally, the Image
redistribution service notifies the client upon the success of the upload action.

The offline redistribution flow, as shown in Figure 8, involves the same
entities as presented in the online redistribution, albeit with a different aim
— to redistribute VMIs/Cls residing in the ENTICE federated reposito-
ries in order to minimize the overall cost while preserving the performance
(e.g. images deployment times). The major difference compared to the online
redistribution entails in the steps from 2 to 5 that includes several metadata
exchange between the knowledge base service and the MO service. Basically,
the knowledge base service triggers the MO service with a VMI/CI redistri-
bution request that returns the list of provenance metadata. The provenance
metadata contains the tracks of previous redistribution executions of the frag-
ments comprised of deployment times of images to the clouds, delivery times
of images from one repository to another, and timestamps information. The
MO service uses this information to calculate the new candidate redistribu-
tion placement and passes them to the client through the knowledge base
service. After the client confirms the new redistribution placement, the Im-
age redistribution service is notified through the knowledge base service and
starts the redistribution of images. Finally, the Image redistribution service
notifies the client upon the success of the redistribution action.
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8 Experimental Evaluation

The performance and behaviour of the knowledge base, in case of providing
the input data for the MO framework, have been evaluated implicitly by
assessing and analysing the outcomes of the Multi-objective optimisation
framework in different simulation scenarios.

Moreover, a comprehensive examination was conducted to determine the
dependencies between the aforementioned modules. Essentially, the experi-
mental evaluation provided crucial insides on the influence of the knowledge
base reasoner on the efficiency of the optimisation process. Lastly, broad
analysis was performed in isolation, both on the knowledge base and the op-
timisation framework, to determine the most suitable execution parameters
for both modules.

The evaluation activities were conducted by utilizing the ENTICE test
bed environment, which has been distributed across multiple locations in Eu-
rope. To be more concrete, for the purposes of this research work, the Multi-
objective framework was deployed at the University of Innsbruck premises,
that includes 7 physical nodes, four of which have AMD processor with 16
cores and 32 GB RAM. Two of them have AMD processors with 32 cores and
64 GB RAM. The last one has an Intel Xeon processor with 40 cores and
128 GB RAM. On the other hand, the Knowledge base has been arrayed at
the University of Ljubljana, where 4 physical nodes of the ENTICE test bed
are located. Each of these nodes has dual socket Intel Xeon processor with 8
logical cores per socket, 8 GB of RAM, and 2x2TB of storage. The physical
interconnection between the two sites has been established over the Internet
network, while the logical communication between the processes was based
upon RESTful and SOAP services.

To begin with, both online and offline redistribution modules share the
same heuristics, thus entailing unified assessment of the most suitable exe-
cution parameters. Therefore, it is essential to properly evaluate the optimi-
sation framework, and thus enable the specification of the proper inputs for
the reasoning mechanism behind the knowledge base.

Table 2 provides a comprehensive examination of the quality values for
the Pareto optimal set of solutions and the required execution time by the
optimisation framework in contrast to the number of evaluations within the
genetic algorithm. To properly asses the quality of the Pareto solutions, a
comparison has been presented with a set of mapping solutions determined
by using "round robin" mapping model for storing VMIs in the ENTICE
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federation. The statistical significance of the results has been analysed by
applying ANOVA test, which has shown significant difference between the
proposed algorithm and the "round robin" mapping strategy, both in re-
spect with the cost and performance objective. The cost objective has been
calculated based on the publicly provided price list for storing data in the
Cloud by Amazon. The performance objective has been modelled based on
the reported communication performance measures for 10 Gbit and 1 Gbit
Ethernet [50]. For readability reasons, the bandwidth values were converted
to delivery time needed for 1 Mbit of data to be transferred from the source
to the destination. The optimisation framework was specified to search for a
set of optimal trade-off distribution solutions for a problem size of 1000 VM
images.

Table 2: Assessment of the VMI redistribution algorithm in respect with the
number of evaluations. The execution time, cost objective and performance
objective are given as a median value from fifteen distinctive executions per
experiment. From the optimisation perspective for both, cost and perfor-
mance objectives lower values mean better. Additionally, statistical signifi-
cance (i.e. p-value) for both objectives has been computed and is in all the
evaluations greater than 0.5%.

Evaluations Cost STD (+/-) Difference Performance STD (+/-) Difference Execution
(x107%) (x107%) (%) (x1078) (x1078) (%) time (ms)

10000 3273 5 0.49 5356 272 18.48 5164
20000 3262 5 0.84 4732 287 34.11 9742
30000 3251 5 1.17 4109 316 54.43 15285
40000 3247 6 1.32 3793 263 67.29 16522
50000 3240 6 1.53 3526 314 79.98 18492
60 000 3237 5 1.63 3281 259 93.39 25038
70000 3230 6 1.85 3119 269 103.45 27075
80000 3225 6 2.00 2905 226 118.47 30747
90 000 3224 6 2.03 2686 178 136.23 34502
100 000 3220 6 2.17 2605 168 143.62 39904

The experimental results clearly show that the number of evaluations
within the genetic algorithm has substantial impact on the execution time
and the quality of the solutions. For example, increasing the number of
evaluation from 10000 to 100000 can lead to 140% better quality and 700%
higher execution time. Therefore, it can be deduced that for online VMI
redistribution, which requires real time optimisation, it is essential to select
the minimal number of evaluations which guarantees satisfactory quality of
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the solutions. On the contrary, the offline VMI redistribution is not time
depended, which implies that higher limit on the number of evaluations can
be specified.

Once proper execution parameters for the multi-objective optimisation
framework have been determined, it is possible to proceed with the evaluation
of the knowledge base and its role in the reduction of the optimisation search
space. Optimisation problems are typically constrained by some bounds.
Constraints divide the search space into two distinctive regions: feasible and
infeasible. The stage in which the constraints are applied can have a great
effect on the computational performance of the algorithm. If the constraints
are applied after the evaluation of the solutions, it would induce unnecessary
computational overhead. The knowledge base provides means for setting the
constraints in advance and reducing the input data set, before the process
of evaluation of the solutions, thus allowing higher computational efficiency.
Some of the constraints that are currently considered are:

e actual free space of the (private) repository,

e geographical distance which is determined by user IP or even manually
by user from selecting the preferred continent (e.g. targeted audience)
and

e SLA which is taken into account by users requirements.

Table 3 presents the correlation between the execution time, the quality
of online redistribution and the input data set provided by the ENTICE
knowledge base reasoner. The experiments have been conducted on a set
of 500 VMIs, with 1000 repetitions of the optimisation algorithm and the
population size of 50 individuals. For each scenario, the experiment was
repeated 10 times.

In the case of online VM image redistribution the number of redistributed
VM images is usually fixed, thus limiting the opportunities for reducing the
search space. This implies, that the knowledge base can only constrain the
optimisation by reducing the number of possible repository sites. This pro-
cess results in lower execution time of the optimisation process by up to 8%,
which could be essential for real-time applications. Additionally, reducing
the search space induces lower query times for the data access and reduced
network bandwidth. Furthermore, to guarantee the quality of the solutions,
the hypervolume of the optimal solution has been measured and compared in
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relation with different input data sets. From the analysis of the hypervolume
values it can be concluded that there is no statistically significant difference
between the distributions, thus implying that the quality of the solutions is
not affected by reducing the input data set, except for the case in which the
dataset was reduced to 20% of the original size.

Table 3: Assessment of the online VMI redistribution algorithm in respect
with the fraction of provided data on the available repositories by the knowl-
edge base. The execution times and hypervolume are given as a median value
from fifteen distinctive execution per experiment.

Full Data Set ~ 80%  60%  40% 20%

Query Time (ms) 58 56 50 47 40
STD (+/-) 352 504 261 341  3.85
Execution Time MOO (ms) 93 93 92 91 86
STD (+/-) 1568 1541 17.51 1751  9.89
Difference (%) \ 012 1.07 261 829
Hypervolume 0.65 063 0.64 0.67 0.53
STD (+/-) 0.13 009 008 0091 0.14
Difference (%) \ 207 -1.17 349 -18.89
p-value \ 042 044 0.25 0.01

Lastly, Table 4 shows the correlation between the execution time, the
quality of the offline redistribution and the input dataset provided by the
knowledge base reasoner. The experiments have been conduced on a varying
set of VM images determined by the reasoner. The genetic search algorithm
was executed with a population size of 100 individuals until it reached 10 000
distinctive evaluations. For each scenario, the experiment was repeated 10
times.

The offline VM image redistribution is usually conduced across all repos-
itories that fulfil the relevant SLA criteria. This implies, that the knowledge
base can apply reasoning in advance to constrain the number of VM images
that are required to be redistributed, thus leading to significant reduction of
the search space. This process results in lower execution time of the optimi-
sation framework by up to 68%. It is essential to be noted that in the case
of offline redistribution it is difficult to measure the quality of the solutions
directly. The main reason behind this limitation is the fact every reduction of
the number of redistributed images results in smaller size of each individual
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Table 4: Assessment of the offline VMI redistribution algorithm in respect
with the fraction of provided data on the available VM images by the knowl-
edge base. The execution times and spread are given as a median value from
fifteen distinctive execution per experiment.

Full Data Set  80%  60%  40% 20%

Query Time (ms) 374 315.5 285.5 250.5 206
STD (+/-) 6.29 890 10.09 10.90 3.88
Execution Time MOO (ms) 918 745 555 398 297
STD (+/-) 57.12  75.13 90.41 70.54 195.92
Difference (%) \ 18.87 39.62 56.66 67.70
Pareto Spread 0.65 066 0.71 0.67 0.71
STD (+/-) 0.15  0.07 0088 013  0.10
% Difference o 1.69  9.01 271 8.96
p-value \ 031 066 0.38 0.85

in the population, thus making the hyper-volume unsuitable for comparison.
To overcome this limitation, the quality of the Pareto solutions has been
compared based on the spread of each individual solutions compared to a
given centroid. From the analysis of the spread values it can be concluded
that there is no statistically significant difference between the distributions,
thus implying that the quality of the solutions is not affected by the reducing
the input data set as is clearly shown in Figure 9.

9 Conclusions

This study represents viable usage scenarios for knowledge management in
the cloud computing domain in general, and an application to the area of
distributed VMI/CI storage repositories. It is shown that semantics can be
used to facilitate faster optimisation process and management of complex
non-functional requirements, including QoS and QoE requirements of the
software engineers and applications’ end users. This work complements re-
cent research and innovation projects that use semantic technologies in the
cloud computing domain including the Smart Cloud Engine, SWITCH and
mOSAIC projects. However, all present developments concentrate on using
semantics for the runtime of cloud applications and services and not on the
storage of software components.
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The multi-objective optimisation problem, which is addressed by this
study is well-known to be NP-hard [51]. This poses significant computa-
tional complexity in case of increasing input data size to the MO solver. In
such circumstances, it is shown that the knowledge management and reason-
ing approach developed in this study can be effectively used to reduce the
input for the optimisation algorithm, which in turn reduces the total com-
putational time. The use of the approach leads to more efficient operation
of the ENTICE environment and better resulting performance.

Other areas where the ENTICE knowledge and information management
approaches is useful are in the actual cloud application design stage. The
software engineer may directly pose queries in the ENTICE knowledge base
and receive guidance leading to more informed selection of software compo-
nents (VMI/CIs) and better overall quality and self-adaptive properties of
the resulting cloud application.

The lesson learned from this work is that a knowledge management ap-
proach can be very instrumental when dealing with heterogeneous federated
cloud environments. This area poses some new challenges for the use of
semantics, such as the needs for greater expressiveness and for using more
complex reasoning mechanisms (other than constraints-based reasoning).

An important area which was not been addressed in the present study is
the possibility to geographically distribute the ENTICE knowledge base sim-
ilarly to the federated storage. The overall ENTICE environment is designed
to be distributed and non-centrally managed. Hence, our future goal is to
improve the design of the knowledge base so that centralized RDF-storage
and management will not be needed.
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Figure 3: Comparison of two different procedures (A and B) of data prepara-
tion for the Pareto front computation. Black dots denote storages subject to
the user’s constraint, e.g. particular VMI has to be stored in Europe; white
dots denote storages that do not meet the constraints. Plots below the map
signify the difference between the two procedures. The first (A) procedure
starts with all storages and computes the Pareto front on the samples taken
from the whole set of storages. In case when the white dots outnumber the
black dots by a large margin, the method may require significant computa-
tions to find the Pareto front satisfying the constraints. This is not the case
for the second (B) procedure.
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