Conference paper Open Access

Molecular Biomarkers, Near Infra- Red Spectroscopy and Computed Tomography as New Methodologies Applied in TREASURE Project to Predict the Quality of Pork and Pork Products from Local Pig Breeds

LEBRET, Bénédicte; PUGLIESE, Carolina; BOZZI, Riccardo; FONT-I-FURNOLS, Maria; PREVOLNIK POVŠE, Maja; TOMAŽIN, Urška; ČANDEK-POTOKAR, Marjeta


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1136175</identifier>
  <creators>
    <creator>
      <creatorName>LEBRET, Bénédicte</creatorName>
      <givenName>Bénédicte</givenName>
      <familyName>LEBRET</familyName>
      <affiliation>PEGASE, Agrocampus Ouest, INRA, 35590 Saint-Gilles, France</affiliation>
    </creator>
    <creator>
      <creatorName>PUGLIESE, Carolina</creatorName>
      <givenName>Carolina</givenName>
      <familyName>PUGLIESE</familyName>
      <affiliation>UNIFI, DISPAA, Via delle Cascine 5, 50144, Firenze, Italy</affiliation>
    </creator>
    <creator>
      <creatorName>BOZZI, Riccardo</creatorName>
      <givenName>Riccardo</givenName>
      <familyName>BOZZI</familyName>
      <affiliation>UNIFI, DISPAA, Via delle Cascine 5, 50144, Firenze, Italy</affiliation>
    </creator>
    <creator>
      <creatorName>FONT-I-FURNOLS, Maria</creatorName>
      <givenName>Maria</givenName>
      <familyName>FONT-I-FURNOLS</familyName>
      <affiliation>IRTA, Monells, Finca Camps i Armet, 17121 Monells (Girona), Spain</affiliation>
    </creator>
    <creator>
      <creatorName>PREVOLNIK POVŠE, Maja</creatorName>
      <givenName>Maja</givenName>
      <familyName>PREVOLNIK POVŠE</familyName>
      <affiliation>University of Maribor, Faculty of Agriculture and Life Sciences, Pivola 10, SI-2311 Hoče, Slovenia</affiliation>
    </creator>
    <creator>
      <creatorName>TOMAŽIN, Urška</creatorName>
      <givenName>Urška</givenName>
      <familyName>TOMAŽIN</familyName>
      <affiliation>Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia</affiliation>
    </creator>
    <creator>
      <creatorName>ČANDEK-POTOKAR, Marjeta</creatorName>
      <givenName>Marjeta</givenName>
      <familyName>ČANDEK-POTOKAR</familyName>
      <affiliation>Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Molecular Biomarkers, Near Infra- Red Spectroscopy and Computed Tomography as New Methodologies Applied in TREASURE Project to Predict the Quality of Pork and Pork Products from Local Pig Breeds</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>molecular biomarkers</subject>
    <subject>near infra-red spectroscopy</subject>
    <subject>computed tomography</subject>
    <subject>carcass composition</subject>
    <subject>meat quality</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-12-20</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1136175</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1136174</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/h2020_treasure</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Emerging non-destructive technologies are of interest in meat sector science and industry since they allow the characterization of products and quality control throughout processing. Three diff erent new technologies described in this paper will be considered in the TREASURE project for the evaluation and prediction of quality of pork and processed products: molecular biomarkers, near-infra red spectroscopy (NIRS), and computed tomography (CT). Molecular biomarkers are single genes, or a set of few genes, whose expression level determined in muscle few minutes after slaughter are associated to technological or sensory pork traits. External validation of biomarkers of pork quality, available from previous studies, will be undertaken. NIRS shows a great potential to predict composition of muscle and fat tissues, in particular their lipid content and fatty acid profi les. These novel techniques will be&amp;nbsp; assessed in the project using a wide variety of loin and subcutaneous fat samples from various European breeds. NIRS will also be used to determine chemical composition (water, salt, etc) and physical traits (rheology) of fresh meat and processed products. CT, which corresponds to 3D images constructed using X-ray technology, allows determining the quantity and repartition of lean, fat and bone tissues in living animals and in carcass or cuts. CT will be used to study the distribution of fat and muscle in carcasses and in loin from breeds exhibiting various adiposity levels.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/634476/">634476</awardNumber>
      <awardTitle>DIVERSITY OF LOCAL PIG BREEDS AND PRODUCTION SYSTEMS FOR HIGH QUALITY TRADITIONAL PRODUCTS AND SUSTAINABLE PORK CHAINS</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
34
26
views
downloads
All versions This version
Views 3434
Downloads 2626
Data volume 2.6 MB2.6 MB
Unique views 3333
Unique downloads 2424

Share

Cite as