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Highlights 
 
 Little experimental evidence supports the Hall-Petch inverse square-root scaling 

exponent. 
 The data fits a simple inverse scaling law. 
 The Hall-Petch effect is the same size effect as observed in micro-mechanics.  
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Abstract:  The classic data in the literature for the grain size dependence of the strength 
in many metals are reviewed. The exponent x relating strength to grain size d–x

 is not 
often the eponymous inverse square-root relationship (known as the Hall-Petch effect), 
but is widely scattered from values as low as x = 0.2 to values as high as x = 1. These 
exponents for individual datasets are shown to be largely meaningless.  For an ensemble 
of n selected datasets, the fit to the functional form ln[d]/d + const with n + 1 free fitting 
parameters is found to be almost as good as the fit to 1/Sqrt[d] + const with 2n fitting 
parameters (the Hall-Petch fit). The probability that the former is the preferable fit is 
high. Some data sets do not agree with the ln[d]/d fit, but their deviation is readily 
explained on simple physical grounds. Moreover, even when they are included in the fit, 
statistical tests still show that the ln[d]/d form is preferable by a wide margin. The 
conclusion is that the Hall-Petch effect is not another size effect sui generis but is the 
same size effect as that observed in epitaxial thin film growth and in micromechanical 
testing of small specimens. Consequently we propose that grain size strengthening of 
metals is driven by constraints on stress and dislocation curvature according to the space 
available.  
 
 
 
Graphical Abstract: 
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1.  Introduction 
 

The apparent increase in strength of a material as the size of the specimen or the 
strain field or some dimension of the material microstructure is reduced is known as size-
dependent plasticity. This size effect is now well-established in many forms of 
micromechanical testing. It is manifested in an increase of the apparent strength of a 
material in the form of thin foils in flexure (e.g. Ehrler et al., 2008), thin wires in torsion 
(e.g. Dunstan et al., 2009; Liu et al., 2013) and perhaps in tension (e.g. Bushby and 
Dunstan, 2011), micropillars in compression (see Korte and Clegg, 2010, for a 
compilation of much data), in foams (e.g. Hodge et al., 2007)) and in other geometries 
such as indentation hardness testing (e.g. Bushby & Dunstan, 2004). For reviews, see 
Arzt (1998), Zhu et al. (2008) or Kraft et al. (2010). The size effect is reported often in 
the yield point, to whatever accuracy that may be established in different experiments, 
and often in the flow stress at higher plastic strain.  Many authors have described it in 
terms of a power-law dependence of yield or flow stress  on the relevant size,  
  (1) xk  0

where   is the relevant size, and then sought to interpret the scaling exponent x 
phenomenologically or in terms of the underlying physics. The constants 0 and k are 
expected to be material constants; e.g. 0 may be the Peierls stress, or it may be the 
strength due to work-hardening. We refer to the other term in Eq.1, (– 0), as the 
overstress that is to be explained here by the grain-size dependence.   
 Hall (1951) and Petch (1953) presented data and fits showing that the strength of 
iron and steel depends on the grain size d, following Eq.1 (  identified with d) with an 
exponent of x = ½ and a coefficient kHP which is considered to be a material parameter.   
There is a large body of data in the literature reinforcing this dependence in a very wide 
range of metals, and so the equation  



 
d

kHP 0  (2) 

is presented in the textbooks as the Hall-Petch effect. Theories of the effect will be 
considered in Section 3.1 below.  
 Recently, we presented an analysis of micromechanical testing data (Dunstan and 
Bushby, 2013), particularly compression testing of micropillars, in which we showed that 
the data for the yield or flow stress of the pillars as a function of pillar diameter, while 
consistent with scaling exponents in the range 0 to 1, are also consistent with a fixed 
exponent x = 1 and with a fixed prefactor k,   
  (3) 1

0
 k

and also with the very similar equation, 
  (4) 1

0 ln  k

There are physical reasons why these equations might be good descriptions of the data, 
especially Eq.4; this is discussed in Section 3.2 below.  The purpose of this paper, 
therefore, is to review some of the classic literature data which demonstrates the Hall-
Petch effect, to assess whether the Hall-Petch scaling exponent in the data is accurately x 
= ½ or whether the data is better described by Eq.3 or Eq.4, and thereby to determine 
whether the Hall-Petch effect is sui generis or whether it is another manifestation of the 
same size effect that is seen in micromechanical testing.  

 3



 
2.  Experimental data 

 
2.1. Determination of the Scaling Exponent 
   

In Fig.1 we present some of the classic data upon which was based the Hall-Petch 
formula, Eq.2, in which  may be the yield or flow stress measured directly or may be 
derived from a hardness measurement. It is not necessary in this paper to distinguish 
yield and flow stress: experimentally, a reported yield stress may merely represent the 
flow stress at the lowest resolvable strain, and in any case the grain-size effect is reported 
in both yield and flow stress.   

The data are rescaled by the minimum grain size and the maximum stress of each 
dataset in order to display them on the same axes. The tungsten dataset used here is given 
by Vashi et al. (1970) and obtained by indentation. We have divided the diamond 
pyramid hardness (DPH) values presented by the factor 2.7 to estimate the flow stresses.  
The data for iron are those of Petch (1953) which are for mild steel and two kinds of iron, 
but the data for the three materials are so similar that there is no need to distinguish them.  
The data for copper and brass are taken from Armstrong et al. (1962). In Fig.1a, the four 
datasets are plotted against the inverse square-root of d, as was done by the original 
authors, rescaled so that they can be represented on the same graph. The solid lines in 
Fig.1a are least-squares linear regression fits to Eq.2, and they fit the data well.  These 
datasets and fits are typical of the large body of experimental evidence for Eq.2 for the 
Hall-Petch effect.  

In Fig.1b, the same data are plotted against the inverse fourth-root of d, and in 
Fig.1c they are plotted against the inverse of d.  The solid lines are least-squares fits of 
the data to Eq.1 with x = ¼ and with x = 1, and they are clearly good fits to the data – 
often as good, to the eye, as the fits to x = ½ of Fig.1a. In Fig.1d are plotted least-squares 
fits to Eq.1 in which x is a free fitting parameter as well; in this plot the same axes are 
used as in Fig.1a. Values of x ranging from 0.2 to 1 are found for the different datasets 
(Table I). Thus the good fits to the inverse square-root of d in Fig.1a are not, of 
themselves, strong evidence for the scaling exponent being x = ½.   
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Fig.1.  Scaled data demonstrating the Hall-Petch effect for W (open circles) 
from Vashi et al. (1970), for Fe (small points) from Petch (1953), and for Cu 
(solid triangles) and brass (open squares) from Armstrong et al. (1962). Each 
dataset is scaled by its minimum grain size and maximum flow stress in order 
that the datasets may be compared on the same axes.  In (a), the data are 
plotted against the inverse square-root of the grain size and the solid lines are 
best fits of the Hall-Petch formula Eq.2 to the data. In (b) and (c), the data are 
plotted against the inverse fourth-root and the inverse of the grain size, and 
the solid lines are fits of the general expression Eq.1 with x = ¼ and x = 1 
respectively. In (d) the data are plotted as in (a) but compared with the non-
linear fits of Eq.1 to the data in which 0, k and x have all been taken as free 
fitting parameters. The fitted values of the exponent x are 0.99 for W, 0.67 for 
Fe, 0.38 for brass and 0.2 for Cu.  
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We have shown previously that scaling exponents cannot be reliably obtained 
from plots and fits such as those in Fig.1a-c. Given their scatter, the data do not cover a 
sufficient range of grain sizes. Considerably more than two decades in grain size would 
be required before any confidence could be placed in the value of the exponent revealed 
by straight-line fits such as those in Fig.1a (Dunstan and Bushby, 2013).  The fitted 
exponents of Fig.1d are also not reliable – indeed, we would suggest, not meaningful – 
for inspection of Fig.1d shows that the curvatures corresponding to values of x ∫ ½ are 
largely determined by the data points for the very largest grain sizes.  Yet the four 
datasets used in Fig.1 are typical of the datasets in the literature.  We chose these four for 
Fig.1 because they display the full range of fitted exponents x, from 0.2 to 1.  In Table I 
we give fitting parameters for many more datasets for a variety of different metals from 
the literature, which again display a wide range of fitted values for the scaling exponent 
x. The standard deviations on the fitted exponents x are also given, and it is clear from 
them that the data does not give a precise determination of the exponents.   

It is essential, in displaying agreement between data and a particular analytic fit as 
in Fig.1a, to consider also what else the data fits or does not fit, before concluding that 
the data supports the chosen analytic fit. We conclude that this collection of classic data, 
whether as individual datasets or taken as a whole, gives no significant experimental 
support to the inverse square-root dependence of the Hall-Petch effect on grain size, Eq.2. 

 
2.2. Other Fits   
 

We noted in the Introduction that there are good physical reasons to expect that 
the data might fit Eq.3 or Eq.4. Of these, Eq.4 is the more theoretically precise.  These 
equations derive most fundamentally from the relationship between dislocation curvature 
and stress (Orowan, 1947), through the elastic energy that can be relieved by the creation 
or evolution of dislocations and the energy required for the creation or evolution of the 
dislocations (Dunstan et al., 1996). Both of these energies depend similarly on the elastic 
moduli of the material, and the only length scale in the problem is the Burgers vector of 
the dislocations. The Young’s modulus may be taken as representative of the different 
moduli that enter into the stored elastic energy in different experiments and into the 
dislocation self-energy. Without entering into the details of what dislocations are 
available in each metal, the Burgers vector scales with the lattice parameter of the 
material. Before making any comparison with Eq.3 or Eq.4, therefore, it is appropriate to 
apply the two normalisations, dividing the stress by the Young’s modulus Y and dividing 
the grain size by the lattice parameter, a0. Then we plot the normalised stress, which is 
the elastic strain  =  /Y, against the normalised grain size d/a0. Fitting the normalised 
data to Eqs. 1–4 gives the dimensionless fitting parameters 0, k and x reported in Table I.  

Seventeen datasets from the literature (references in Table I) for various metals 
were normalised in this way and compared with Eq.4.  Eight which agreed reasonably 
well are plotted on logarithmic axes in Fig.2a and 2b. The solid lines in Fig.2a are not fits 
to the data but plots of Eq.4 with a single value of k and values of 0 chosen to display the 
consistency of the data with Eq.4. In Fig.2b, the same data are plotted together with fits 
of the Hall-Petch relation, Eq.2 (the normalised fitting parameters are given in Table 1).  
The remaining nine datasets are plotted in Fig.2c for comparison with Eq.4 and again in 
Fig.2d with their Hall-Petch fits.  
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Fig.2.  Data for flow stress or hardness are normalised as described in the 
text. In (a) and (b), those datasets which agree reasonably well with Eq.3 are 
plotted. In (c) and (d), the datasets which are in significant disagreement with 
Eq.3 are shown.  The solid lines in (a) and (c) represent Eq.4 with x = 1 and k 
= 1; only 0 is varied to fit each dataset. The solid lines in (b) and (d) are fits 
to Eq.2 with x = ½; both k and 0 are varied to fit each dataset.  The sources 
for the data and values of the fitting parameters are given in Table I.  

 
   

The behaviour revealed by Fig.2 is very interesting.  It is certainly the case that if 
the yield or flow stress were actually determined by the Hall-Petch formula, Eq.2, with 
the scaling exponent fixed at x = ½ and the two fitting parameters 0 and kHP independent 
and determined by different physical mechanisms, it would be implausible that 0 and k 
should be related in a large proportion of the data sets in such a way as to permit the fits 
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of Fig.2a to the one-free-parameter formula, Eq.4, with x = 1, k ~ 1 and only 0 free. Then 
it is plausible that those datasets which do not agree (Fig.2c, d) show that there are other 
physical processes which often modify the behaviour from that expected from Eq.4. This 
is discussed in the next Section.   
 
2.3. Other Physical Processes 
 

The nine datasets of Fig.2c deviate sufficiently from Eq.4 that we need to 
consider whether they refute it, or whether their deviation can be accounted for by 
plausible physical mechanisms.  Consider first the data for nanocrystalline iron 
(Armstrong, 2011) and Ti (Hu and Cline, 1968). At small grain sizes (normalised d of 
1000 or less), these three datasets deviate considerably below the Eq.4 line, so that if a fit 
to Eq.4 is forced, much lower values of k are required (Table 1). However, 
nanocrystalline metals are expected to fall below the strength predicted by the Hall-Petch 
law in any case, for example because the mechanism of plasticity may become grain-
boundary sliding.  See Arzt (1998) and Armstrong (2011) for detailed discussions. So 
these three datasets do not refute Eq.4.   
 The other six datasets in Fig.2c are in disagreement with Eq.4 at large grain sizes.  
The strength decrease with increasing grain size is much greater than predicted. This is 
explicable if for example we suppose that the metallurgical processing that creates the 
large grain material also softens it – e.g. by reducing dislocation densities. This softening 
will then be correlated with the grain size but not caused by it. If a fit to Eq.4 is forced, 
much higher values of k are required (Table 1).  Other mechanisms, such as a correlation 
between grain size and precipitate densities, might also be invoked.  However, the papers 
from which we obtained these datasets mostly do not give sufficient details of the 
preparation and characterisation to enable an assessment of the magnitude of these 
effects. Moreover, grain size distributions and the methods of finding the average are not 
generally given.  There is considerable scope for inconsistency between different authors.  
 To summarise the implications of the experimental data, Fig.2b and 2d show that 
Eq.2 fits all the data well, with widely scattered parameters 0 and kHP which can take on 
arbitrary values (i.e. there is no reliable theoretical prediction of these values for different 
materials, see Section 3.1). But there is little evidence that the exponent is x = ½ for all 
materials. On the other hand, Fig.2a reveals an unexpected behaviour that requires 
explanation. It shows that, with an exponent x = 1 (Eq.3) or close to that (Eq.4), many 
values of k for many materials collapse onto a single value, k ~ 1.  This suggest the 
hypothesis that Eq.4 correctly describes the general behaviour, with special 
circumstances (grain boundary slipping, changes of strength induced by the metallurgical 
processing and correlated with but not causally related to grain size, etc.) causing large 
deviations from Eq.4 in about half the datasets. In the next section we test this hypothesis 
more rigorously.     
 
2.4. Statistical Analysis 
 

Here we follow the analysis methodology of McKay (2003) to calculate the 
likelihoods of the hypotheses given all the available data (without the discrimination of 
Fig.2). Then we use the Akaike information criterion (AIC, Akaike, 1974) to determine 
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and quantify a preference for one hypothesis over the other. The AIC is a well-
established criterion that takes into account the number of parameters as well as the data 
itself. There are developments of it, e.g. the corrected Akaike information criterion 
(AICc) and the Bayesian information criterion (BIC), which generally penalise the 
number of parameters more severely than the AIC (Liddle, 2007), so that the use of the 
AIC here is conservative.     
 We restrict our analysis to the two hypotheses or models, HHP and HDC (the 
subscript DC indicating the role played by dislocation curvature) expressed by Eq.2 and 
Eq.4 respectively.  That is, HHP is the hypothesis that Eq.2 describes the physics and the 
data correctly, with x = ½ and with 0 and kHP as fitting parameters which depend on the 
material and on the specimen preparation. HDC is the hypothesis that Eq.4 describes the 
physics and the data correctly, with x = 1, with k ~ 1 and with only 0 as a fitting 
parameter which depends on the material and on the specimen preparation. We test these 
hypotheses against the full seventeen datasets.  

Independent fits to Eq.4 were made so that each data set is described by a pair of 
values di = (0, k). We write the full set of pairs as d = {0, k}. These are given in Table 1 
as well as the Hall-Petch 0 and k. For all fits reported here, we used the Mathematica 
function NonlinearModelFit, which returns many statistical diagnostics. However, it is 
clear that the contributions to residuals discussed in Section 2.3 will not give Gaussian-
distributed independent residuals, but instead very heavy-tailed distributions of correlated 
residuals. Consequently, many of the diagnostics must be treated with caution.   

 
Fig. 3.   The dataset for tungsten (solid circles) and a dataset for brass 
(CuZn20, open squares) are plotted on log-log axes. The two-parameter fits 
of Eq.4 are (W) the chain-dotted line and (CuZn20) the dashed line. The one-
parameter fits with k = 0.7 are shown by the solid lines which are (by chance) 
indistinguishable for these two datasets.   

 
  The fitted values are highly correlated; the off-diagonal elements of the 
correlation matrix are close to unity.  We therefore also fixed k (at 0.7) and, fitting only 
for different values of 0 for each dataset, obtained satisfactory fits for the datasets in 
Fig.2a while for the other nine materials these one-parameter fits with fixed k are plainly 
bad as in Fig.2c. In Fig.3 the two-parameter fits for W and for CuZn20 are shown as 
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broken lines and the one-parameter fits (by chance, indistinguishable from each other) as 
the heavy solid line.  Here and for the other materials in Table I from W through to 
CuZn20 the one-parameter fits are acceptable, so we carried out a nine-parameter fit to 
all eight of these data sets with the eight values of 0 and a single value of k as the free 
parameters.  This fit returned k = 0.68.  The root-mean-square average of the residuals 
was 2.3  10–4.  For comparison, a 16-parameter fit (eight values of 0 and eight value of 
kHP with x = ½) to Eq.2 gives an RMS average residual of 1.8  10–4.  This difference is 
reflected in the adjusted R2 values of 0.995 and 0.997 respectively.  Both fits are good, 
but the 16-parameter fit is better than the 9-parameter fit, with smaller residuals and a 
larger R2. This is expected, even if both models were good descriptions of the data. The 
HHP fit with more parameters should have smaller residuals simply because it has more 
parameters (it is expected from Fig.1 that the lower value of the exponent x in HHP, even 
if incorrect, makes little difference to the quality of fit). Indeed, if we fitted all three 
parameters of Eqn.1, the residuals would be reduced below those of HHP, but there would 
be 24 free fitting parameters. The key point is that the quality of the fit is not here the 
determining factor in deciding which hypothesis is favoured by the data. 
 In order to know which of the two hypotheses is selected by the data, we apply 
the Akaike information criterion (AIC). Following McKay (2003), we first estimate the 
likelihood of the two hypotheses in the light of the data. The likelihood function of a 
hypothesis H given a datum x is the probability of the datum x under the hypothesis, 
    HH xPxL   (5) 

and for a dataset x, also written as {xi} of n data xi, the likelihood is the product of the 
likelihoods of Eq.5 for each datum, 

     


n

i ixPL
1

HxH  (6) 

The absolute value of the likelihood is of no significance; hypothesis preferences are 
concerned only with the relative values for the different hypotheses (McKay, 2003).  

 
 

Fig.4.  Plots of the fitted coefficients normalised by the Young’s modulus and 
the lattice constant (Table I), (a) 0 and kHP for the Hall-Petch fits to Eqn.2, 

 10



and (b) 0 and k for the fits to Eq.4. The datasets shown in Fig.2a are plotted 
as solid circles. In (a), there are no expectations where these should be in the 
0-kHP space, while in (b) they are expected to lie close to k ~ 1. The open 
circles represent the datasets plotted in Fig.2c; there are no expectations 
where these should be in (a).  

 
Rather than considering each individual datum, we analyse the set d of pairs of 

parameters di = (0, k) for each of the seventeen datasets of Fig.2. Under HHP, any such 
pair is consistent with the hypothesis. In Fig.3a, the experimental values are scattered 
within a domain of approximately 1 decade wide by 1.5 decades high. By Benford’s Law, 
without any theory to suggest what values should be observed, data are expected to be 
uniformly distributed on a logarithmic scale (Newcomb, 1881; Benford, 1938) This is 
indeed observed in Fig.3a, for both the data of Fig.2a (solid points) and the data of Fig.2c 
(open circles). The Eq.4 fitted values d = {(0, k)} are plotted in Fig.3b. The solid data 
points are now grouped in the middle of the plot.  This might be considered to be an 
artefact of the initial selection of some datasets for Fig.2a and others for Fig.2c. However, 
we now proceed without making any use of this selection.  

In the space of Fig.2b, the Hall-Petch Eq.2, model HHP predicts a flat distribution 
of  HPHixP . We are not interested in the distribution over 0, which is the same for both 

hypotheses. We may choose suitable units for the probability density distribution over k. 
We choose probability per two decades of k, over the range kL = log10 k from kL = –1 to 1. 
Then  HPHixP  = 1 throughout this range and    HPHP

HxHx PL   = 117 = 1.  Eq.4, 

model HDC, predicts a heavy-tailed probability density distribution centred on some value 
of kL and with an unknown width kL. That is, the hypothesis contains two variables and 
may be written as HDC(kL, kL). The likelihood function is also a function of these two 
variables,  

    


n

i LLiLL kkdPkkL
1 DCDC ),()),(( HxH  (7) 

As a heavy-tailed distributions for P(x) , we used a Lorentzian,  

 
2

0
20

)(
),,(

kkk

k
NkkkP

LL

L
LL 


  (8) 

where the normalisation factor N is chosen so that the integral of P from kL = –1 to 1 is 
unity. Then the likelihood for HDC is  

  (9) 


n

i LL kkPkkL
1 00 ),(),(

DCDC

LDC is plotted in Fig.5 as a function of  kL and kL, and we see that the maximum 
likelihood LDC ~ 3 occurs at kL = 0.2, or k = 1.6, in reasonable agreement with the k = 
0.68 given by the direct fit to the Fig.2a datasets or the k = 1 used in Fig.1a.  The 
maximum LDC ~ 3 means that the odds on HDC and against HHP are three to one. This is 
already a strong indication that HDC will be the preferred hypothesis.  

To include the significance of the number of parameters p, we now calculate the 
value AIC of the AIC, given by  
 LpAIC ln22       (10) 
where p is the number of parameters, so we have 
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8.33ln236

68ln268




DCDC

HPHP

LAIC

LAIC
     (11) 

The relative likelihood of the hypothesis with the lower AIC, here HDC, is 

      (12) 8)(½ 107.3   DCHP AICAICeAIC
 

 
 

Fig.5.  The likelihood functions LHP (the flat plane at L = 1) and LDC given by 
Eq.9 are plotted against kL and kL. The peak height value for HDC is L = 3, 
occurring at the value kL = 0.2 and width kL = 0.6, consistent with k ~ 1.  

 
The hypothesis HDC is overwhelmingly favoured by odds of many millions to 

one.  This analysis quantifies the informal reasoning (by Occam’s Razor) that it would be 
highly unlikely, if the Hall-Petch Eq.2 were a true reflection of reality with two 
independent parameters per dataset, that a substantial subset of the data would fit Eq.4 
(Fig.2a). It confirms and expresses quantitatively the informal reasoning that if there exist 
plausible ad-hoc explanations of the data of Fig.2c which disagree with HDC, then these 
data are not strong evidence against HDC nor strong evidence for the counter hypothesis 
HHP.  

It is worth noting that the values AIC and BIC returned by the Mathematica  
function NonlinearModelFit in fitting all 17 datasets simultaneously to Eq.2 with 34 free 
parameters and to Eq.4 with 18 parameters do prefer strongly the Hall-Petch fit. This is 
an artefact arising from the assumption in the Mathematica analysis that the residuals on 
the fits are Gaussian-distributed. This assumption penalizes models with heavy-tailed 
distributions very severely.     
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3.  Theory and Discussion 

 
3.1. Theories of the inverse-square-root dependence. 
 

There are several theoretical explanations extant in the literature to explain the 
inverse square-root of grain size appearing in Eq.2. See Conrad and Jung (2005) or Zhu 
et al. (2008) for a discussion.  

Hall (1951) used the inverse square-root fit (Eq.2) because of the theory of 
Eshelby et al. (1951) of dislocation pile-up.  Subsequently, as more experimental data 
became available and appeared to support the inverse square-root fit, this developed into 
the idea that a stress concentration factor should be invoked to account for plasticity. In a 
macroscopic picture, slip bands originate in a single grain, and propagate across grain 
boundaries under a sufficient stress. In a microscopic picture, dislocations emitted by the 
same source pile up against the grain boundary until the stress concentration is sufficient 
to cause emission of dislocations in the next grain. In two-dimensional DDD, Balint et al. 
(2005) used impermeable grain boundaries and found pile-up and strengthening 
according to Eq.2.   This is not surprising, since dislocations are confined to the same slip 
planes and cannot bow out as bowing requires three dimensions.  However, pile-up is not 
always observed in experiment (e.g. Li and Chou, 1970) nor in three-dimensional DDD. 
Simulations of bicrystals under uniaxial loading (Daveau, 2012) have shown that grain 
boundaries do not, of themselves, cause pile-up. Zhou and LeSar  (2012), using both 
impenetrable and penetrable grain boundaries, observe that many dislocations embed into 
the simulated grain boundaries instead of piling-up, and that the others form a more 
complex structure. Senger et al. (2013) do observe pile-up under suitable conditions but 
that it has little influence on the stress. Admittedly, DDD simulation are restricted to low 
values of strain  ~ 0.02, but this is ample to observe the Hall-Petch effect on the yield 
and flow strains and to observe pile-up under suitable conditions. In these simulations, 
the grain boundaries are usually modelled as simple impenetrable surfaces, e.g. Balint et 
al. (2005), LeSar (2012) – it is hard to envisage a more sophisticated model that would be 
still more conducive to pile-up. 

Since pile-up is not always observed or not always important, other theories have 
been proposed. There are three physically-distinct models in which the inverse square-
root derives from the Taylor expression for the shear flow stress  in forest hardening,  = 
0 + b½ where  is a factor of the order of unity,  is the shear modulus, b is the 
magnitude of relevant components of the Burgers vector and  is the dislocation density. 
Then a direct dependence of the dislocation density  on the inverse of the length scale, 
here d–1, is invoked.  Ashby (1970) proposed that the variations in properties from grain 
to grain necessitate inhomogeneous plastic strain, and hence densities  of geometrically-
necessary dislocations which will contribute to hardening. The magnitudes of the 
resulting plastic strain gradients scale with d–1 giving   d–1. The inverse square-root in 
the Hall-Petch law then derives directly from the square root in the Taylor formula.  Li 
(1963) proposed that grain boundaries act as dislocation sources, and again the inverse 
square-root in the Hall-Petch law derives directly from the Taylor formula. Finally the 
Conrad slip-distance theory (Conrad and Jung, 2005) has a dislocation density 
proportional to the inverse of the slip distance or mean free path of mobile dislocations, 
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which here is dependent on the grain size.  In the Conrad theory, the Hall-Petch inverse 
square-root again derives from the Taylor formula; also it occurs only with square-root 
strain-hardening as (pl) – 0  . ½

pl
 It is not clear to what extent these theories require that the scaling exponent is 
rigorously x = ½, and the data certainly provides no strong support for that value. The 
Eq.1 fitting parameters 0 and k, which are interpreted in terms of independent material 
properties, vary very much for any given data set according to the value of x used to fit 
the data, as seen in Fig.1.  Yet these theories do not predict that the two fitting parameters 
0 and k should vary together from one material to another in the way required by Fig.2a, 
such that so many datasets should fit accurately Eq.3 with only one free fitting parameter 
(0) for each dataset.   
 
3.2.  Dislocation Curvature 
 

A valuable insight comes for DDD simulations, which have no intrinsic length 
scale. On assigning a length scale  to any given simulation, dislocation curvatures 
change as the inverse of that length scale and so do the corresponding stresses. The 
evolution of the simulation is, of course, independent of the length scale assigned.   This 
is sufficient to show that over-stresses – whether yield or flow stresses – and the 
corresponding elastic yield or flow strains, should scale with –1. This is the physical 
basis for Eq.3 above (Dunstan et al. 1996, Dunstan 2012). Then details of the dislocation 
self-energy modify this to give the –1 ln form of Eq.4.  This scaling behaviour is seen in 
Matthew’s (1966) equilibrium critical thickness theory for the plastic relaxation of 
strained epitaxial layers, in which the radius of curvature of the termination of a misfit 
dislocation, equal to the layer thickness h, determines how the stress required for 
plasticity must vary with the thickness (as h–1 lnh).   

A more mechanistic account of the physical origin of the scaling laws Eq.3 and 
Eq.4 takes into account directly the line tension or energy per unit length of a dislocation. 
The displacement of material due the introduction of a dislocation is, of course, the 
constant b. This means that the stress required scales inversely with the dimension L of 
the material displaced through b. This is the physical origin of the L–1 term in Eq.3 and 
Eq.4.  An excellent example, studied intensively both experimentally and theoretically, is 
found in the analysis of strained epitaxial layers. Following Matthews (1966), plastic 
relaxation requires a layer thickness large enough to put sufficient force on a threading 
dislocation to turn it over and extend it as a misfit dislocation (Matthews critical 
thickness).  

The dislocation energy consists of a contribution from the core (atomistic) and a 
contribution from the elastic energy of the strain field of the dislocation. This elastic 
energy is found by integration over the radius from the dislocation, and to avoid 
divergence the integral has to be cut off an inner radius r0 ~ b and at an outer radius R0 
which is given by a free surface, or by the distance to other dislocation or other parts of 
the same dislocation (e.g. in the case of a dislocation dipole).  This is the physical origin 
of the logarithmic term in Eq.4 (Cottrell 1953). It should be included in analysis of any 
problem invoking dislocation bowing such as precipitation hardening (Monnet, 2006) or 
forest hardening (Madec et al., 2002). Madec et al. show in a DDD study of forest 
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hardening that over six orders of magnitude of dislocation density the influence of the 
logarithmic term is clearly detectable.  

Significant plasticity requires that dislocation sources operate. In the application 
to strained epitaxial layers, this requires a thickness a few times Matthews critical 
thickness, so that relaxation critical thickness can be defined as a few times equilibrium 
critical thickness (Beanland, 1995; Dunstan et al., 1996; Dunstan, 2012). It also 
eliminates the need to include an unstrained substrate in the problem, and therefore 
applies to micromechanical testing in general. More generally, the Matthews approach 
applies to dislocation source operation in any confining volume. Parthasawary et al. 
(2007) and Huang et al. (2011) have used the same idea to account for the size effect in 
micropillars where it is the diameter of the pillar that constrains the source, as also have 
Gruber et al. (2008) for the strengthening of thin films. Most generally, it applies to the 
overstress called the size effect in nanoindentation and micromechanics, whenever spatial 
confinement over a length scale  puts a lower bound on dislocation curvature and hence 
on stress, as we have proposed previously (Jayaweera, 2003; Dunstan and Bushby, 2004).  
And here we suggest that Fig.2a and the statistical analysis in Section 2 of the models 
HHP and HDC is strong evidence that it applies to the effect of grain size on the strength of 
metals as well.  That is, a size effect is seen whenever dislocation curvature is restricted 
by the space in which it has to operate. 

This approach predicts a minimum strength of k/L where L is the relevant length 
scale restricting the dislocation bowing radius. L need not be grain size; L may be 
structure size, dislocation spacing, precipitate spacing, etc, or some suitable combination 
of these factors.  The relationship to the models of Section 3.1 is thus that if these models 
invoke bowing or source operation, they must predict at least the minimum strength. As 
in the superposition of precipitation hardening and forest hardening studied by Queyreau 
et al. (2010), each extra strengthening mechanism may also have a length scale and a 
scaling exponent. This may be treated by constructing a combined effective length. Or, as 
we do in this paper, the effective length is identified with the grain size, and to the extent 
that the other models give an extra contribution to the strength, then this may contribute 
to what we have called the bulk strength.  In that case it could also give rise to the 
deviations above our fits observed on the right-hand side of Fig.2c.  Different such 
mechanisms could very well occur at different length scales resulting in the identification 
of distinct size regimes, as proposed by Kraft 2010. Nevertheless, our analysis in this 
paper leads to the conclusion that the data provides evidence for only one exponent, 
which is unity.
 

4. Conclusions 
 
 Here, we have demonstrated two rather separate conclusions:  
The first is that there is no conclusive experimental evidence for the inverse square-root 
dependence of strength upon grain size, the Hall-Petch law, despite the rare datasets such 
as Ti (Hu and Cline, 1968) which fit this particularly well. The uncertainty in the 
exponent is great enough that the simple inverse fits or inverse fourth-root fits may be as 
good.  This implies that the exponent should also be a fitting parameter (Eq.1) rather than 
fitting to the two parameters of Eq.2. In this case, the strong correlations in the fitted 
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parameter values should be taken into account when a physical interpretation of their 
values is sought;  
The second conclusion is that the k values observed as the exponent x is varied collapse 
onto a single k value for the simple inverse (x = 1).  This is a very strong indication that 
the different materials, and indeed differently treated specimens of the same material, are 
distinguished by a single parameter value 0 for each specimen that expresses its 
different asymptotic limit (yield or flow strength at infinite grain size), and that after 
suitable normalization of the data the size effect is described by a second parameter k 
with the same value for all materials, as in Eq.3 or Eq.4. Moreover, there is a sound 
physical basis for supposing the validity of this approach.   

Following these two conclusions, the Hall-Petch dependence of the strength on 
grain size is another manifestation of the same size effect as observed in epitaxial layers 
and in micromechanical testing.   
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Table I.  Normalisation and Fitting Parameters   

Normalisation 
parameters 

Hall-Petch fit parameters, 
normalised Eq.2, x = ½ 

Fit parameters, normalised Eq.1  Fit parameters, normalised Eq.4, 
x = 1 

Metal 

Y GPa a0 nm 0 k 0 k x 0  k  
Nano-Fe a 211 0.287 2.5710–3 0.054 3.210–3 0.070 0.600.2 3.9010–3 0.0750.01 
Nano-Fe b 211 0.287 3.0810–4 0.14 2.410–3 0.54 0.780.08 2.0810–3 0.360.01 
Ti c 116 0.295 3.010–3 0.10 2.910–3 1.02 0.500.04 3.5510–3 0.370.02 
W d 411 0.316 2.510–3 0.185 4.310–3 3.4 0.990.25 4.0610–3 0.580.04 
Cr e 279 0.288 1.7610–3 0.20 2.110–3 0.37 0.600.05 2.8810–3 0.720.03 
Cu f 115 0.361 2.1010–4  0.055 3.410–4 0.0028 0.200.5 2.710–4 0.900.02 
Fe Fig3.1 211 0.287 5.510–4 0.14 1.4510–4 0.041 0.340.05 9.110–4 0.910.01 
CuZn YP f 115 0.361 4.110–4 0.136 1.7510–4 0.046 0.370.08 7.110–4 1.250.1 
Steel 2.5% g 211 0.287 8.910–4 0.092 1.1410–3 0.0085 0.840.15 9.910–4 1.360.25 
CuZn 20% f 115 0.361 2.9510–4 0.154 3.010–3 0.154 0.380.14 3.310–3 1.430.02 
Steel h 211 0.287 3.010–4 0.156 4.610–4 0.63 0.650.2 5.910–4 1.80.2 
Steel 20% g 211 0.287 1.6210–3 0.131 2.010–4 0.0089 1.000.2 1.7710–3 2.20.2 
Steel YP g 211 0.287 3.710–4 0.22 1.5410–4 0.31 0.510.03 5.710–4 3.80.3 
CuZn6931 i 115 0.287 1.0310–3 0.31 1.0010–3 0.41 0.520.1 1.310–3 5.50.3 
CuZn7030 j 115 0.361 8.610–4 0.28 6.610–4 0.46 0.520.1 1.110–3 5.50.4 
CuZn6832 i 115 0.361 9.010–4 0.36 1.2710–3 6.5 0.750.14 1.310–3 6.50.04 
Fe k 211 0.287 2.110–3 0.52 2.510–3 3.1 0.680.2 2.810–3 7.40.25 
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a   Nanocrystalline iron, Jang and Koch (1990), taken from Armstrong (2011) Fig.1. 
b   Nanocrystalline iron, Embury and Fisher (1966), taken from Armstrong (2011) Fig.1. 
c   Recrystallised titanium, Hu and Cline (1968), taken from Armstrong and Jindal 

(1968) Fig.1 
d   Powder-compacted tungsten, Vashi et al. (1970), taken from Armstrong and Elban 

(2012) Fig.21 
e   Electro-deposited chromium, Brittain et al. (1985) Fig.1. 
f   Copper at 0.5% strain, brass at yield point and at 20% strain, Armstrong et al. (1962) 

Fig.3 
g   Steel at yield point, 2.5% and 20% strain, Armstrong et al. (1962) Fig.1 
h   Annealed mild steel – Armco, Siemens-Martin, basic Bessemer – Hall (1951) Fig.1a 
i   68-32 and 69-31 brass, Bassett and Davis (1919) taken from Jindal and Armstrong 

(1967) Fig.1. 
j   Rolled and annealed cartridge brass, Babyak and Rhines (1960) taken from Jindal and 

Armstrong (1967) Fig.1. 
k  Mild steel, ingot iron, spectrographic iron, Petch (1953) Fig.1. 
 
 


