Conference paper Open Access

Reranking-based Recommender System with Deep Learning

Saleh, Ahmed; Mai, Florian; Nishioka, Chifumi; Scherp, Ansgar


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">recommender systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">deep learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">semantic profiling</subfield>
  </datafield>
  <controlfield tag="005">20191101191519.0</controlfield>
  <controlfield tag="001">1135136</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">25-29 September 2017</subfield>
    <subfield code="g">INFORMATIK 2017</subfield>
    <subfield code="a">47. Jahrestagung der Gesellschaft für Informatik</subfield>
    <subfield code="c">Chemnitz, Germany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ZBW - Leibniz Information Centre for Economics</subfield>
    <subfield code="a">Mai, Florian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ZBW - Leibniz Information Centre for Economics</subfield>
    <subfield code="a">Nishioka, Chifumi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ZBW - Leibniz Information Centre for Economics</subfield>
    <subfield code="a">Scherp, Ansgar</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">166062</subfield>
    <subfield code="z">md5:6498d41cfe3a4d809f5ac788dbedfcbe</subfield>
    <subfield code="u">https://zenodo.org/record/1135136/files/2017-ws34dlhd-reranking-based-recommender-system-with-deep-learning.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://informatik2017.de/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-01-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1135136</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ZBW - Leibniz Information Centre for Economics</subfield>
    <subfield code="a">Saleh, Ahmed</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Reranking-based Recommender System with Deep Learning</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;An enormous volume of scientific content is published every year.The amount exceeds by far what a scientist can read in her entire life.In order to address this problem, we have developed and empirically evaluated a recommender system for scientific papers based on Twitter postings. In this paper, we improve on the previous work by a reranking approach using Deep Learning. Thus, after a list of top-k recommendations is computed, we rerank the results by employing a neural network to improve the results of the existing recommender system. We present the design of the deep reranking approach and a preliminary evaluation. Our results show that in most cases, the recommendations can be improved using our Deep Learning reranking approach.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1135135</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1135136</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
30
17
views
downloads
All versions This version
Views 3030
Downloads 1717
Data volume 2.8 MB2.8 MB
Unique views 3030
Unique downloads 1616

Share

Cite as