Conference paper Open Access

Reranking-based Recommender System with Deep Learning

Saleh, Ahmed; Mai, Florian; Nishioka, Chifumi; Scherp, Ansgar


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/3217a43d-d66c-4a00-bcf9-634f8c43ad05/2017-ws34dlhd-reranking-based-recommender-system-with-deep-learning.pdf"
      }, 
      "checksum": "md5:6498d41cfe3a4d809f5ac788dbedfcbe", 
      "bucket": "3217a43d-d66c-4a00-bcf9-634f8c43ad05", 
      "key": "2017-ws34dlhd-reranking-based-recommender-system-with-deep-learning.pdf", 
      "type": "pdf", 
      "size": 166062
    }
  ], 
  "owners": [
    40380
  ], 
  "doi": "10.5281/zenodo.1135136", 
  "stats": {
    "version_unique_downloads": 16.0, 
    "unique_views": 30.0, 
    "views": 30.0, 
    "downloads": 17.0, 
    "unique_downloads": 16.0, 
    "version_unique_views": 30.0, 
    "volume": 2823054.0, 
    "version_downloads": 17.0, 
    "version_views": 30.0, 
    "version_volume": 2823054.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1135136", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1135135", 
    "bucket": "https://zenodo.org/api/files/3217a43d-d66c-4a00-bcf9-634f8c43ad05", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1135135.svg", 
    "html": "https://zenodo.org/record/1135136", 
    "latest_html": "https://zenodo.org/record/1135136", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1135136.svg", 
    "latest": "https://zenodo.org/api/records/1135136"
  }, 
  "conceptdoi": "10.5281/zenodo.1135135", 
  "created": "2018-01-15T05:52:32.581282+00:00", 
  "updated": "2019-11-01T19:15:19.642828+00:00", 
  "conceptrecid": "1135135", 
  "revision": 5, 
  "id": 1135136, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1135136", 
    "description": "<p>An enormous volume of scientific content is published every year.The amount exceeds by far what a scientist can read in her entire life.In order to address this problem, we have developed and empirically evaluated a recommender system for scientific papers based on Twitter postings. In this paper, we improve on the previous work by a reranking approach using Deep Learning. Thus, after a list of top-k recommendations is computed, we rerank the results by employing a neural network to improve the results of the existing recommender system. We present the design of the deep reranking approach and a preliminary evaluation. Our results show that in most cases, the recommendations can be improved using our Deep Learning reranking approach.</p>", 
    "contributors": [], 
    "title": "Reranking-based Recommender System with Deep Learning", 
    "language": "eng", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1135135"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1135136"
          }
        }
      ]
    }, 
    "access_right": "open", 
    "communities": [
      {
        "id": "moving-h2020"
      }
    ], 
    "grants": [
      {
        "code": "693092", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::693092"
        }, 
        "title": "Training towards a society of data-savvy information professionals to enable open leadership innovation", 
        "acronym": "MOVING", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "recommender systems", 
      "deep learning", 
      "semantic profiling"
    ], 
    "publication_date": "2018-01-04", 
    "creators": [
      {
        "affiliation": "ZBW - Leibniz Information Centre for Economics", 
        "name": "Saleh, Ahmed"
      }, 
      {
        "affiliation": "ZBW - Leibniz Information Centre for Economics", 
        "name": "Mai, Florian"
      }, 
      {
        "affiliation": "ZBW - Leibniz Information Centre for Economics", 
        "name": "Nishioka, Chifumi"
      }, 
      {
        "affiliation": "ZBW - Leibniz Information Centre for Economics", 
        "name": "Scherp, Ansgar"
      }
    ], 
    "meeting": {
      "acronym": "INFORMATIK 2017", 
      "url": "http://informatik2017.de/", 
      "dates": "25-29 September 2017", 
      "place": "Chemnitz, Germany", 
      "title": "47. Jahrestagung der Gesellschaft f\u00fcr Informatik"
    }, 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1135135", 
        "relation": "isVersionOf"
      }
    ]
  }
}
30
17
views
downloads
All versions This version
Views 3030
Downloads 1717
Data volume 2.8 MB2.8 MB
Unique views 3030
Unique downloads 1616

Share

Cite as