

Volume 3, Issue 1, Page Number 7-11, 2018.

Abstract:

We introduce the notion of pseudo compatible P-fuzzy soft relations of a sub group, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups.

Key Words: Soft Set, Null Soft Set, Injection Function, Fuzzy Set, P-Fuzzy Soft Middle Cosset, Pseudo Fuzzy Cosset**,** Strongest Fuzzy Relation & Compatible Fuzzy Soft Set.

Introduction:

The concept of fuzzy sets was first introduced by Zadeh [23]. Rosenfeld [16] used this concept to formulate the notion of fuzzy groups. Since then, many other fuzzy algebraic concepts based on the Rosenfeld's fuzzy groups were developed. Anthony and Sherwood [1] redefined fuzzy groups in terms of t- norm which is replaced the min operations of Rosenfeld's definition. Some properties of these redefined fuzzy groups, which we call t- fuzzy groups, have been developed by Sherwood [18], sessa [17], sidky and misherf (19). However the definition of t- fuzzy groups seems to be too general. Soft set theory was introduced in 1999 by Molodtsov [15] for dealing with uncertainties and it has gone through remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 21, 23]. Moreover, Atagun and Sezgin [5] defined the concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub modules of a module and studied their related properties with respect to soft set operations. Operations of soft sets have been studied by some authors, too. Ali et al. [4] introduced several operations of soft sets and Sezgin and Atagun [21] studied on soft set operations as well. Furthermore, soft set relations and functions [6] and soft mappings [14] with many related concepts were discussed. Here we introduce the notion of pseudo compatible P-fuzzy soft relations of a subgroup, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups.

Section-2 Preliminaries:

In this section, we recall basic definitions of soft set theory that are useful for subsequent sections. For more detail see the papers [[11], [15],] Throughout the paper, U refers to an initial universe, E is a set of parameters and P(U) is the power set of U. \subseteq and \supset stand for proper subset and super set, respectively. **Definition 2.1** [22]: A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A\rightarrow P(U)$.

In other words, a soft set over U is a parameterized family of subsets of the universe U. Note that a soft set (F, A) can be denoted by F_A . In this case, when we define more than one soft set in some subsets A, B, C of parameters E, the soft sets will be denoted by F_A , F_B , F_C , respectively. On the other case, when we define more than one soft set in a subset A of the set of parameters E, the soft sets will be denoted by F_A, G_A, H_A , respectively. For more details, we refer to [11, 17, 18, 26, 29, 7]. Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2 [12]: Let λ , $\mu \in S(U)$. Then

- (i) If λ (e) = \emptyset for all e \in E, λ is said to be a null soft set, denoted by \emptyset .
- (ii) If λ (e) = **U** for all e \in E, λ is said to be an absolute soft set, denoted by **U**.
- (iii) λ is a soft subset of μ , denoted $\lambda \subseteq \mu$, if $\lambda(e) \subseteq \mu(e)$ for all $e \in E$.
- (iv) Soft union of λ and μ, denoted by $\lambda \cup \mu$, is a soft set over U and defined by $\lambda \cup \mu$: E \rightarrow P(U) such that $(\lambda \cup \mu)(e) = \lambda(e) \cup \mu(e)$ for all $e \in E$.
- (v) $\lambda = \mu$, if $\lambda \subseteq \mu$ and $\lambda \supseteq \mu$.
- (vi) Soft intersection of λ and μ, denoted by $\lambda \cap \mu$, is a soft set over U and defined by $\lambda \cap \mu$: E \rightarrow P(U) such that $(\lambda \cap \mu)(e) = \lambda(e) \cap \mu(e)$ for all $e \in E$.
- (vii)Soft complement of λ is denoted by λ^C and defined by $\lambda^C : E \to P(U)$ such that $\lambda^C(e) = U/\lambda(e)$ for all $e \in E$.

Definition 2.3 [12]: Let E be a parameter set, $S \subseteq E$ and λ : $S \to E$ be an injection function. Then $S \cup \lambda(s)$ is called extended parameter set of S and denoted by ζ_s . If S=E, then extended parameter set of S will be denoted by ξ .

Definition 2.4 [6]: The relative complement of the soft set F_A over U is denoted by F_A^r , where F_A^r : A \rightarrow P(U) is a mapping given as $F_A^r(a) = U \ F_A(a)$, for all $a \in A$.

Definition 2.5 [6]: Let F_A and G_B be two soft sets over U such that A∩B $\neq \emptyset$. The restricted intersection of F_A and G_B is denoted by $F_A \otimes G_B$, and is defined as $F_A \otimes G_B = (H, C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) =$ $F(c) \cap G(c)$.

Definition 2.6 [6]: Let F_A and G_B be two soft sets over U such that A∩B $\neq \emptyset$. The restricted union of F_A and G_B is denoted by $F_A \cup_R G_B$, and is defined as $F_A \cup_R G_B = (H, C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) =$ $F(c) \cup G(c)$.

Definition 2.7 [12]: Let F_A and G_B be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set ψ (F_A) over U, where ψ (F_A) : B→P(U) is a set valued function defined by ψ $(F_A)(b) = \bigcup \{ F(a) \mid a \in A \text{ and } \psi(a) = b \}, \text{ if } \psi^{-1}(b) \neq \emptyset$, $= 0 \text{ otherwise for all } b \in B.$ Here, $\psi(F_A)$ is called the soft image of F_A under ψ . Moreover we can define a soft set $\psi^{-1}(G_B)$ over U, where $\psi^{-1}(G_B)$: A $\to P(U)$ is a set-valued function defined by $\psi^{-1}(G_B)(a) = G(\psi(a))$ for all $a \in A$. Then, $\psi^{-1}(G_B)$ is called the soft pre image (or inverse image) of G_B under ψ .

Definition 2.8 [13]: Let F_A and G_B be soft sets over the common universe U and Ψ be a function from A to B. Then we can define the soft set $\psi^*(F_A)$ over U, where $\psi^*(F_A)$: B \rightarrow P(U) is a set-valued function defined by *(F_A)(b)= $\bigcap \{F(a) \mid a \in A \text{ and } \psi(a) = b\}$, if $\psi^{-1}(b) \neq \emptyset$, =0 otherwise for all b ∈ B. Here, $\psi^*(F_A)$ is called the soft anti-image of F_A under ψ .

3. Structures of Fuzzy Soft Subgroup:

Definition 3.1: A mapping $\mu: X \rightarrow [0, 1]$, where X is an arbitrary non-empty set is called a fuzzy soft subset in X.

Definition 3.2: Let G be any group. A mapping μ : G \rightarrow [0, 1] is a fuzzy soft subgroup of G if (FSG1) μ (xy) \ge min { $\mu(x)$, $\mu(y)$ } (FSG2) $\mu(x^{-1}) = \mu(x)$ for all $x, y \in G$.

Example:

Let Z be the additive group of all integers. For any integer n, nZ denote the set of all integers multiplies of n.

(i,e) n Z = { $0, \pm$ n, \pm 2n, \pm 3n……}. We have Z > 2Z > 4Z > 8Z > 16Z. Define μ : Z \rightarrow [0,1] by μ (x) = 1, if x έ 16Z; = 0.7, if x έ 8Z -16Z; = 0.5 if x έ 4Z-8Z; = 0.2 if x έ 2Z- 4Z; = 0 if x έ Z-2Z . It can be easily verified that u is fuzzy soft sub group of Z. If the Supplementary condition (FSG₃) μ (e _G) = 1 are satisfied, then the fuzzy soft group is called a standardized fuzzy soft group where e_G is an identity of the group (G, \cdot) **Proposition 3.3:**

A fuzzy soft subset μ of a group 'G' is a fuzzy soft subgroup of \hat{G} if and only if μ (x y $^{-1}$) \geq min { μ (x), μ (y) for every x, y in G

Proof:

Let ' μ ' be a fuzzy soft subgroup of \hat{G} . Form ' μ ' is a fuzzy group (FSG₁) and (FSG₂) are satisfied.

 μ (xy⁻¹) \geq min { μ (x), μ (y⁻¹)} = min { μ (x) μ (y) } conversely let μ (x y⁻¹) \geq min { μ (x), μ (y)} in equality be satisfied. Choosing $y = x$ we get that $\mu (xx^{-1}) = \mu (e) \ge \min \{ \mu (x), \mu (x^{-1}) \} = \mu (x)$. Hence for x=e. $\mu (y^{-1}) = \mu$ $(ey^{-1}) \ge \min \{ \mu(e) \mu(y) \} = \mu(x)$ consequently $\mu(xy^{-1}) \ge \min \{ \mu(x) \mu(y^{-1}) \} = \min \{ \mu(x), \mu(y) \}$

Remarks 3.4: Let ' μ ' be a fuzzy soft sub group of a group 'G' and $x \in G$. then $\mu(x, y) = \mu(y)$ for every $y \in G$ if and only if $\mu(x) = \mu(e)$

Definition 3.5: Let ' μ ' be a fuzzy soft sub group of a group 'G'. For any $a \in G$. are defined by $(a \mu)(x) = \mu(a^{-1})$ x) for every $x \in G$ is called the P-fuzzy soft cosset of the group G determined by 'a' and ' μ '

Definition 3.6: Let ' μ ' be the fuzzy soft sub group of a group G. then for any a, $b \in G$ a P-fuzzy soft middle cosset a μ b of the group G is defined by (a μ b) (x) = μ (a⁻¹ x b₋₁) for every x \in G.

Definition 3.7: Let ' μ ' be a fuzzy soft sub group of G and $a \in G$. Then the P-pseudo fuzzy cosset (a μ) ^p is defined by $(a \mu)^p(x) = p(a) \mu(x)$ for every $x \in G$ and for some $p \in P$.

Example:

Let $G = \{1, w, w^2\}$ be a group with respect to multiplication where 'w' denotes the cube root of unity. Define a map μ : G \rightarrow [0,1] by

 $\mu(x) = \int 0.7$ if $x = 1$

 $=$ 0.3 if $x = w, w^2$

The pseudo fuzzy soft cosset (a μ) ^p for p (x) = 0.4 for every x \in G to be equal to 0.28 if x =1 and 0.12 if x = w, w^2 .

Definition 3.8: Let μ and λ be any two fuzzy soft subsets of a set 'X' and $p \in P$. the P-pseudo fuzzy soft double cosset to $(\mu \times \lambda)^p$ is defined as $((\mu \times \lambda)^p = (\times \mu)^p \cap (\times \mu)^p$ for $x \in X$.

Definition 3.9: Let λ and ' μ ' be two fuzzy soft subgroups of a group 'G' then λ and μ are said to be P- fuzzy soft conjugate subgroups of G if for some $g \in G\lambda$ (x) = μ (g⁻¹ x g) for every $x \in G$. **4. Some Properties of Pseudo Fuzzy Softt Cosets:**

Proposition 4.1:

Let ' μ ' be a fuzzy soft subgroup of a group 'G'. Then P-pseudo fuzzy soft cosset (a μ) ^p is a fuzzy soft sub group of 'G' for every $a \in G$.

Proof: Let ' μ ' be a fuzzy soft sub group of G, for every x, y in G we have $(a \mu)^p (xy^{-1}) = p(a) \mu (xy^{-1}) \ge p(a)$ min $\{\mu(x), \mu(y)\} = \min \{p(a) \mu(x), p(a), \mu(y)\} \ge \min \{a \mu\}^p(x), (a, \mu)^p(y)\}$ for every $x \in G$. This proves that (a μ)^p is a fuzzy soft subgroup of G.

Remark 4.2: A fuzzy soft subgroup ' μ ' of a group G is said to be positive fuzzy soft subgroup of 'G' if ' μ ' is positive fuzzy soft subset of the group 'G'.

Proposition 4.3:

Every P- pseudo fuzzy soft double cosset is a fuzzy soft subgroup of a group 'G'

Proof:

(i) $(\mu \times \lambda)^p (x y) = { (x \mu)^p \cap (x \lambda)^p } (xy) = (x \mu)^p (x y)$ and $(x \lambda)^p (xy)$ $= p (x) \mu (x y)$ and $p (x) \lambda (xy)$ } $\geq p$ (x) min { μ (x), μ (y) } and p (x) min { λ (x), λ (y)} \geq min {p (x) μ (x), p (x) μ (y)} and min { p (x) λ (x), p (x) λ (y)} \geq min {p (x) μ (x), p (x) μ (x)}, min{p (x) μ (y) and p (x) λ (y)} $=$ min {(x μ)^p \cap (x λ)^p} (x), (x μ)^p n (x λ)^p) (y)} \geq min { (μ x λ)^p (x), (μ x λ)^p (y) } (ii) $(\mu \times \lambda)^p$ (x) = {(x μ)^p \cap (x λ)^p} (x) = (x μ)^p \cap (x λ)^p (x)

 $= p(x) \mu(x)$ and $p(x) \lambda(x) = p(x) \mu(x)^{-1}$ and $p(x) \lambda(x)^{-1}$ (since λ and μ are fuzzy subsets) = $(x \mu)^p (x)^{-1}$ and $(x \lambda)^p (x)^{-1} = { (x \mu)^p n (x \lambda)^p } (x)^{-1} = (\mu x \lambda)^p (x)^{-1}$

Theorem is proved.

Proposition 4.4:

Every P-fuzzy soft middle cosset of a group 'G' is a fuzzy soft subgroup of G.

Proof:

Let a μ b be a P-fuzzy soft middle cosset of the group 'G' and ' λ ' and ' μ ' be two P-conjugate fuzzy soft subgroups of G.

(i) (a μ b) (x y) = μ (a⁻¹ x y b⁻¹) = λ (x y) [\cdot : λ and μ conjugate fuzzy soft subgroups]

 \geq min { λ (x), λ (y) } \geq min { μ (a⁻¹ x b⁻¹), μ ((a⁻¹ y b⁻¹)}

 \geq min { (a μ b) (x), (a μ b) (y)}

 (ii) (a μ b) (x) $(x b^{-1}) = \mu (a^{-1} x^{-1} b^{-1}) (\cdot : \mu'$ fuzzy sub group)=(a μ b) (x^{-1}) Theorem is proved.

Definition 4.5: Let G' be a group. A fuzzy soft subgroup ' μ ' of 'G' is called normal if μ (x) = μ (y⁻¹x y) for all x, y in G. (or) A fuzzy soft subgroup μ_H of G is called a fuzzy soft normal subgroup of 'G' if $\mu_H(x y) = \mu_H(y)$ x) for all x, y in G.

Proposition 4.6:

Every P-pseudo fuzzy soft cosset is a fuzzy soft normal subgroup of a group G'

Proof:

Let $(a \mu)^p$ be any P-pseudo fuzzy cosset. $a \in G$ and for some $p \in P$. Now $(a \mu)^p$ $(x) = p$ $(a) \mu$ $(x) = p$ (a) min { μ (e), μ (x) } = p (a) min { μ (y⁻¹ y), μ (x) }

$$
\ge p (a) \min \{ \min \{ \mu (y)^{-1}, \mu (y) \}, \mu (x) \} \ge p (a) \min \{ \mu (y)^{-1}, \min \{ \mu (y), \mu (x) \} \}
$$

= p (a) $\mu (y^{-1} x y)$ for all $y \in G$.

Aliter:

Let (a μ)^p be any P-pseudo fuzzy soft cosset and $a \in G$ for some $p \in P$, Let μ_H is a fuzzy soft normal subgroup of G. Now ($a \mu H$)^{p} ($x y$) = p (a) μ _H (xy) = p (a) μ _H ($y x$) (μ _H is fuzzy soft normal) = ($a \mu$ _H)^{p} (y x)

Proposition 4.7:

The intersection of two P-pseudo fuzzy soft cosset normal subgroup is also fuzzy soft normal subgroup of a group.

Proof:

Let (a μ)^p and (b μ)^p be any two P-pseudo fuzzy soft cosset normal subgroup of G.

 $(a \mu)^p$ (x) = ($a \mu^p$ (y^{-1} x y), $y \in G$ --- (1)

$$
(b \mu)^p (x) = (a \mu)^p (y^{-1} x y), y \in G-(2)
$$

Now, { $(a\mu)^p \cap (b\mu)^p (x) = ((a \cap b)\mu)^p (x) = p (a \cap b) \mu (x) = p (a) \cdot p (b) \mu (x) = p (a) \cdot \mu (x)$ and p (b) $\mu (x) =$ (a μ)^p(x) and (b μ)^p(x) = (a μ)^p(y⁻¹x y) and (b μ)^p(y⁻¹x y) by ((i) & (ii))= p (a). p (b) μ (y⁻¹x y)= ((a \cap b) μ ^p (y⁻¹ xy) = { (a μ)^p \cap (b μ)^p} (y⁻¹ x y).

Theorem is proved

Aliter:

Let $(a \mu_H)^p \cap (b \mu_H)^p$ $(x \ y) = ((a \cap b) \mu_H)^p$ $(x \ y) = p (a \cap b) \mu (x \ y) = p (a \cap b) \mu_H (y \ x) (\mu_H \text{ is})$ fuzzy soft normal)= $(a \cap b) \mu_H$) p } (y x)= { $a \cap b$) $^p \cap (b \mu_H)$ p } (y x)

Proposition 4.8:

P-Pseudo fuzzy soft double cosset is a fuzzy soft normal subgroup of a group 'G'

Proof:

Let $(\mu \times \lambda)$ ^p be any P- pseudo fuzzy soft double cosset for $x \in X$. Now $(\mu x \lambda)^p$ $(x) = \{ (x \mu)^p \cap (x \lambda)^p \} (x) = (x \mu)^p (x) \cap (x \lambda)^p \} (x)$ $= p(x) \cap \mu(x) \cap p(x) \lambda(x) = p(x) \min \{ \mu(x), \mu(e) \} \cap p(x) \min \{ \lambda(x), \lambda(e) \}$ = p (x) min { μ (x), μ (y⁻¹ y)} \cap p (x) min { λ (x), λ (y⁻¹ y⁻¹) \geq p(x) min { μ (x), min μ (y⁻¹), μ (y) } \cap $p(x) \min \{ \lambda(x), \min \{ \lambda(y^{-1}), \lambda(y) \} \}$ = p (x) min { μ (y⁻¹), μ (x y)} \cap p (x) min { λ (y⁻¹), λ (x y)} $= p(x) \mu(y^{-1} x y) \cap p(x) \lambda (y^{-1} x y) = \{ x \mu \}^p \cap (x \lambda)^p \} (y^{-1} x y)$ $= (\mu \times \lambda)^p (y^1 \times y)$

Theorem is proved.

Proposition 4.9:

P-Fuzzy soft middle cossets forms a fuzzy soft normal subgroup of G.

Proof:

 $(a \mu b) (x) = \mu (a^{-1} x b^{-1}) = \lambda (x) = \min \{ \lambda (x), \lambda (e) \}$ $=$ min { λ (x), λ (y⁻¹ y)} \ge min { λ (x), min (λ (y⁻¹), λ (y))} = min { λ (y⁻¹) min (λ (x), λ (y)}= min (λ (y⁻¹), λ (x y) } = λ (y⁻¹ x) $= \mu (a^{-1} (y^{-1} x y) b^{-1}) = (a \mu b) (y^{-1} x y)$

Definition 4.10: The strong fuzzy soft α -cut is defined as $A^+_{\alpha} = \{x/A(x) > \alpha\}$ where A is any fuzzy soft set. **Definition 4.11:** Let 'A' be a fuzzy soft set in a set S. Then the strongest fuzzy soft relation on 'S' (ie) fuzzy soft relation on 'A' is $\mu_A(x,y) = \min \{(A(x), A(y)\}.$

Definition 4.12: Cartesian Product: Let λ and μ be any two fuzzy soft sets in X. Then the cartesian Product of λ and μ is λ x μ : $x \times x \rightarrow [0, 1]$ defined by $(\lambda \times \mu)(x, y) = \min {\{\lambda(x), \mu(y)\}}$ for all x,y ϵX .

Proposition 4.13:

Let μ_A be a strongest Fuzzy soft relation on 'S' and 'A⁺_α' be the strong α -cut .Then μ_A forms a strong α - cut fuzzy soft group on S.

Proof:

Let A:S \rightarrow [0,1] be any function and μ_A be the strongest fuzzy soft relation on S. (i) Let $x,y \in S$

 $\mu_A(x,y) = \min \{A(x), A(y)\} \ge \min \{ \alpha, \alpha \} \ge \alpha$

(ii) $\mu_A(x^{-1}, y^{-1}) = \min \{A(x^{-1}), A(y^{-1})\} = \min \{A(x), A(y)\} = \mu_A(x, y)$

(ii) $\mu_A(e, e) = \min \{A(e), A(e)\} = \min \{1, 1\} = 1$

 μ_A forms a strong fuzzy group α - cut on S.

Proposition 4.14:

Let λ and μ be strong fuzzy soft α - cuts on S. Then $\lambda \times \mu$ is a strong fuzzy soft group α - cut. **Proof:** Let x, yeS and λ : $x \times x \rightarrow [0,1]$ be any function.

(i) $(\lambda \times \mu)$ (x,y) = min { λ (x), μ (y)} \geq min { α, α } \geq α

(ii) $(\lambda \times \mu)$ $(x^{-1}, y^{-1}) = \min {\lambda (x^{-1}), \mu (y^{-1})} = \min {A(x), A(y)} = (\lambda \times \mu) (x, y)$

(ii)
$$
(\lambda \times \mu)
$$
 (e,e) = min { λ (e), μ (e)} = min {1,1} = 1

 $(\lambda \times \mu)$ forms a strong fuzzy soft group α -cut on S.

Remark 4.15: i) min $(a,b)^i = min \{a^i,b^i\}$ for all Positive integer 'i'

ii) $\mu_A i(x,y) = (\mu_A(x,y))^i = \min \{A(x), A(y)\}^i = \min \{A^i(x), A^i(y)\}$

Proposition 4.16:

Let μ_A^i and μ_A^j be two strong fuzzy soft relations and A_α^+ be strong fuzzy soft α - cut .Then $\mu_A^i{}_{UA}^i$ forms a strong fuzzy soft α -cut on S.

Proof:

Since i<i

$$
\mu_{A}^{j}U_{A}^{j}(x,y) = \{ (A^{i}UA^{j}) (x), (A^{i}U A^{j}) (y) \} = \min \{ \max \{ A^{i}(x), A^{j}(x) \}, \max \{ A^{i}(y), A^{j}(y) \} \\
= \max \{ \min \{ A^{i}(x), A^{i}(y) \}, \min \{ A^{j}(x), A^{j}(y) \} \\
= \max \{ \min \{ A(x), A(y) \}^{1}, \min \{ A(x), A(y) \}^{j} \} \\
\ge \max \{ \min \{ \alpha, \alpha \}^{i}, \min \{ \alpha, \alpha^{j} \} \} \ge \max \{ \alpha^{i}, \alpha^{j} \} \ge \max \{ \alpha^{i}, \alpha^{j} \} \ge \infty^{i}
$$

 $\mu_A^i{}_{UA}^j$ is a strong fuzzy soft α -cut on S.

Remark 4.17: Let μ_A^i and μ_A^j be two strong fuzzy soft relations and A_α^* be strong fuzzy soft α -cut. Then $\mu_A^i{}_{nA}^i$ is a strong fuzzy soft α -cut on S.

Proof: It is obvious

Definition 4.18 : A fuzzy soft binary relation μ on a semi group 'S' is called P-fuzzy soft compatible iff μ (ac, bd) \geq min { μ (a,b), μ (c,d)} for all a,b,c,d ϵ S.

Preposition 4.19:

Let μ_A be the strongest fuzzy soft relation on S. Then A_α^+ is a strong α -cut then μ_A forms P-fuzzy soft compatible.

Proof:

Now $\mu_A(ac, bd) = \min \{A(ac), (A(bd))\} \ge \min \{\min \{A(a), A(c)\}, \min \{A(b), A(d)\}\$

 \geq min { $\mu_A(a,b), \mu_A(b,d)$ }

3.18 Proposition:

Let μ_A be a P-fuzzy soft compatible. Then μ_A is a strong fuzzy soft α -cut.

Proof:

Now μ_A (ac, bd) $\geq \{\mu_A (a, b), \mu_A (b, d)\}$ =min {min (A(a), A(b)}, min {A(b), A(d)}}>min {min { α, α }, min $\{\alpha, \alpha\}$ > min $\{\alpha, \alpha\}$ > α . Hence μ_A is P-fuzzy soft compatible forms a strong fuzzy soft α -cut. **Conclusion:**

Here we introduce the notion of pseudo compatible P-fuzzy soft relations of a subgroup, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups**.** One can obtain the similar ideal into Soft G-modular and L- fuzzy structures.

References:

- 1. J. M. Anthony and H .Sherwood, Fuzzy groups redefined J. Math. Anal. Appl.69 (1979), 124-130.
- 2. Acar U., Koyuncu F., Tanay B., Soft sets and soft rings, Comput. Math. Appl., 59(2010), 3458-3463.
- 3. Aktas. H., C. agman N., ˘ Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
- 4. Ali M.I.,Feng F., Liu X., Min W.K., Shabir M., On some new operations in soft set theory, Comput. Math. Appl., 57(2009), 1547-1553.
- 5. Atagun A.O., Sezgin A., Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(3) (2011), 592-601.
- 6. Babitha K.V., Sunil J.J., Soft set relations and functions, Comput. Math. Appl., 60(7)(2010), 1840- 1849.
- 7. Feng F., Jun Y.B., Zhao X., Soft semirings, Comput. Math. Appl., 56(2008), 2621–2628.
- 8. Feng F., Liu X.Y., Leoreanu-Fotea V., Jun Y.B., Soft sets and soft rough sets, Inform. Sci., 181(6) (2011), 1125-1137.
- 9. Jun Y.B., Soft BCK/BCI-algebras, Comput. Math. Appl., 56(2008), 1408 -1413.
- 10. Jun Y.B., Park C.H., Applications of soft sets in ideal theory of BCK/ BCI-algebras, Inform. Sci., 178(2008), 2466-2475.
- 11. Jun Y.B., Lee K.J., Zhan J., Soft p-ideals of soft BCI-algebras, Comput. Math. Appl., 58(2009), 2060- 2068.
- 12. Kazancı O., Yılmaz S¸., Yamak S., Soft sets and soft BCH-algebras, Hacet. J. Math. Stat., 39(2)(2010), 205-217.
- 13. Majumdar P., Samanta S.K., on soft mappings, Comput. Math. Appl., 60 (9)(2010), 2666-2672.
- 14. Molodtsov D., Soft set theory-first results, Comput. Math. Appl., 37(1999), 19-31.
- 15. A. Rosenfeld, Fuzzy groups, J.math.Anal.Appl.35 (1971), 512- 517.
- 16. S. Sessa, on fuzzy subgroups and fuzzy ideals under triangular norms, Fuzzy sets and fuzzy systems, 13, (1984), 95-100.
- 17. H. Sherwood, Product of fuzzy subgroups, Fuzzy sets and systems, 11, (1983), 79-89.
- 18. F. I. Sidky and M. Atif Misherf, Fuzzy cossets and cyclic and abelian fuzzy subgroups, Fuzzy sets and systems, 43, (1991), 243-250.
- 19. Sezgin A., Atagun A.O., Ayg un E., A note on soft near-rings and idealistic soft near-rings, Filomat, 25(1)(2011), 53-68.
- 20. Sezgin A., Atagun A.O., on operations of soft sets, Comput. Math. Appl., 61(5) (2011), 1457-1467.
- 21. Zhan J., Jun Y.B., Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(6) (2010), 2037- 2046. Fuzzy sets and systems, 43, (1991), 243-250.
- 22. L.A.Zadeh, Fuzzy sets, Inform and control, 8, (1965), 338-353.