

Cite This Article: V. Ramadas & B. Anitha, "On Pseudo Compatible P-Fuzzy Soft Relations", International Journal of Applied and Advanced Scientific Research, Volume 3, Issue 1, Page Number 7-11, 2018.

Abstract:

We introduce the notion of pseudo compatible P-fuzzy soft relations of a sub group, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups.

Key Words: Soft Set, Null Soft Set, Injection Function, Fuzzy Set, P-Fuzzy Soft Middle Cosset, Pseudo Fuzzy Cosset, Strongest Fuzzy Relation & Compatible Fuzzy Soft Set.

Introduction:

The concept of fuzzy sets was first introduced by Zadeh [23]. Rosenfeld [16] used this concept to formulate the notion of fuzzy groups. Since then, many other fuzzy algebraic concepts based on the Rosenfeld's fuzzy groups were developed. Anthony and Sherwood [1] redefined fuzzy groups in terms of t- norm which is replaced the min operations of Rosenfeld's definition. Some properties of these redefined fuzzy groups, which we call t- fuzzy groups, have been developed by Sherwood [18], sessa [17], sidky and misherf (19). However the definition of t- fuzzy groups seems to be too general. Soft set theory was introduced in 1999 by Molodtsov [15] for dealing with uncertainties and it has gone through remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 21, 23]. Moreover, Atagun and Sezgin [5] defined the concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub modules of a module and studied their related properties with respect to soft set operations. Operations of soft sets have been studied by some authors, too. Ali et al. [4] introduced several operations of soft sets and Sezgin and Atagun [21] studied on soft set operations as well. Furthermore, soft set relations and functions [6] and soft mappings [14] with many related concepts were discussed. Here we introduce the notion of pseudo compatible P-fuzzy soft relations of a subgroup, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups.

Section-2 Preliminaries:

In this section, we recall basic definitions of soft set theory that are useful for subsequent sections. For more detail see the papers [[11], [15],] Throughout the paper, U refers to an initial universe, E is a set of parameters and P(U) is the power set of U. \subset and \supset stand for proper subset and super set, respectively. **Definition 2.1** [22]: A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P(U)$.

In other words, a soft set over U is a parameterized family of subsets of the universe U. Note that a soft set (F, A) can be denoted by F_A . In this case, when we define more than one soft set in some subsets A, B, C of parameters E, the soft sets will be denoted by F_A , F_B , F_C , respectively. On the other case, when we define more than one soft set in a subset A of the set of parameters E, the soft sets will be denoted by F_A , G_A , H_A , respectively. For more details, we refer to [11, 17, 18, 26, 29, 7]. Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2 [12]: Let λ , $\mu \in S(U)$. Then

- (i) If $\lambda(e) = \emptyset$ for all $e \in E$, λ is said to be a null soft set, denoted by \emptyset .
- (ii) If $\lambda(e) = U$ for all $e \in E$, λ is said to be an absolute soft set, denoted by U.
- (iii) λ is a soft subset of μ , denoted $\lambda \subseteq \mu$, if $\lambda(e) \subseteq \mu(e)$ for all $e \in E$.
- (iv) Soft union of λ and μ , denoted by $\lambda \cup \mu$, is a soft set over U and defined by $\lambda \cup \mu$: $E \rightarrow P(U)$ such that $(\lambda \cup \mu)(e) = \lambda(e) \cup \mu(e)$ for all $e \in E$.
- (v) $\lambda = \mu$, if $\lambda \subseteq \mu$ and $\lambda \supseteq \mu$.
- (vi) Soft intersection of λ and μ , denoted by $\lambda \cap \mu$, is a soft set over U and defined by $\lambda \cap \mu$: $E \to P(U)$ such that $(\lambda \cap \mu)(e) = \lambda(e) \cap \mu(e)$ for all $e \in E$.
- (vii)Soft complement of λ is denoted by λ^{c} and defined by $\lambda^{c} : E \to P(U)$ such that $\lambda^{c}(e) = U/\lambda(e)$ for all $e \in E$.

Definition 2.3 [12]: Let E be a parameter set, $S \subset E$ and $\lambda: S \to E$ be an injection function. Then $S \cup \lambda(s)$ is called extended parameter set of S and denoted by ξ_S . If S=E, then extended parameter set of S will be denoted by ξ .

Definition 2.4 [6]: The relative complement of the soft set F_A over U is denoted by F_A^r , where $F_A^r : A \to P(U)$ is a mapping given as $F_A^r(a) = U \setminus F_A(a)$, for all $a \in A$.

Definition 2.5 [6]: Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$, The restricted intersection of F_A and G_B is denoted by $F_A \sqcup G_B$, and is defined as $F_A \sqcup G_B = (H,C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cap G(c)$.

Definition 2.6 [6]: Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$, The restricted union of F_A and G_B is denoted by $F_A \cup_R G_B$, and is defined as $F_A \cup_R G_B = (H, C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cup G(c)$.

Definition 2.7 [12]: Let F_A and G_B be soft sets over the common universe U and $\boldsymbol{\psi}$ be a function from A to B. Then we can define the soft set $\boldsymbol{\psi}$ (F_A) over U, where $\boldsymbol{\psi}$ (F_A) : $B \rightarrow P(U)$ is a set valued function defined by $\boldsymbol{\psi}$ (F_A)(b) = \mathbf{U} {F(a) | a \in A and $\boldsymbol{\psi}$ (a) = b}, if $\boldsymbol{\psi}^{-1}(b) \neq \boldsymbol{\emptyset}$, = 0 otherwise for all $b \in B$. Here, $\boldsymbol{\psi}$ (F_A) is called the soft image of F_A under $\boldsymbol{\psi}$. Moreover we can define a soft set $\boldsymbol{\psi}^{-1}(G_B)$ over U, where $\boldsymbol{\psi}^{-1}(G_B)$: $A \rightarrow P(U)$ is a set-valued function defined by $\boldsymbol{\psi}^{-1}(G_B)(a) = G(\boldsymbol{\psi}(a))$ for all $a \in A$. Then, $\boldsymbol{\psi}^{-1}(G_B)$ is called the soft pre image (or inverse image) of G_B under $\boldsymbol{\psi}$.

Definition 2.8 [13]: Let F_A and G_B be soft sets over the common universe U and $\boldsymbol{\psi}$ be a function from A to B. Then we can define the soft set $\boldsymbol{\psi}^*(F_A)$ over U, where $\boldsymbol{\psi}^*(F_A) : B \rightarrow P(U)$ is a set-valued function defined by $\boldsymbol{\psi}^*(F_A)(b) = \bigcap \{F(a) \mid a \in A \text{ and } \boldsymbol{\psi}(a) = b\}$, if $\boldsymbol{\psi}^{-1}(b) \neq \emptyset$, =0 otherwise for all $b \in B$. Here, $\boldsymbol{\psi}^*(F_A)$ is called the soft anti image of F_A under $\boldsymbol{\psi}$.

3. Structures of Fuzzy Soft Subgroup:

Definition 3.1: A mapping $\mu: X \to [0, 1]$, where X is an arbitrary non-empty set is called a fuzzy soft subset in X.

Definition 3.2: Let G be any group. A mapping μ : G \rightarrow [0, 1] is a fuzzy soft subgroup of G if (FSG1) μ (xy) \geq min { μ (x) , μ (y)} (FSG2) μ (x⁻¹) = μ (x) for all x,y \in G.

Example:

Let Z be the additive group of all integers. For any integer n, nZ denote the set of all integers multiplies of n.

(i,e) n Z = { $0, \pm n, \pm 2n, \pm 3n, \ldots$ }. We have Z > 2Z > 4Z > 8Z > 16Z. Define $\mu : Z \rightarrow [0,1]$ by $\mu (x) = 1$, if x & 16Z; = 0.7, if x & 8Z - 16Z; = 0.5 if x & 4Z - 8Z; = 0.2 if x & 2Z - 4Z; = 0 if x & Z - 2Z. It can be easily verified that μ is fuzzy soft sub group of Z. If the Supplementary condition (FSG₃) μ (e _G) = 1 are satisfied, then the fuzzy soft group is called a standardized fuzzy soft group where e_G is an identity of the group (G, \cdot) **Proposition 3.3:**

A fuzzy soft subset μ of a group 'G' is a fuzzy soft subgroup of \hat{G} if and only if μ (x y ⁻¹) \geq min { μ (x), μ (y) for every x, y in G

Proof:

Let ' μ ' be a fuzzy soft subgroup of \hat{G} . Form ' μ ' is a fuzzy group (FSG₁) and (FSG₂) are satisfied.

 $\mu (xy^{-1}) \ge \min \{ \mu (x), \mu (y^{-1}) \} = \min \{ \mu (x) \mu (y) \} \text{ conversely let } \mu (x y^{-1}) \ge \min \{ \mu (x), \mu (y) \} \text{ in equality be satisfied. Choosing } y = x \text{ we get that } \mu (xx^{-1}) = \mu (e) \ge \min \{ \mu (x), \mu (x^{-1}) \} = \mu (x). \text{ Hence for } x=e. \mu (y^{-1}) = \mu (ey^{-1}) \ge \min \{ \mu (e) \mu (y) \} = \mu (x) \text{ consequently } \mu (xy^{-1}) \ge \min \{ \mu (x), \mu (y^{-1}) \} = \min \{ \mu (x), \mu (y) \}$

Remarks 3.4: Let ' μ ' be a fuzzy soft sub group of a group 'G' and $x \in G$. then $\mu(x y) = \mu(y)$ for every $y \in G$ if and only if $\mu(x) = \mu(e)$

Definition 3.5: Let ' μ ' be a fuzzy soft sub group of a group 'G'. For any $a \in G$. are defined by $(a \mu) (x) = \mu (a^{-1} x)$ for every $x \in G$ is called the P-fuzzy soft cosset of the group G determined by 'a' and ' μ '

Definition 3.6: Let ' μ ' be the fuzzy soft sub group of a group G. then for any a, b \in G a P-fuzzy soft middle cosset a μ b of the group G is defined by (a μ b) (x) = μ (a⁻¹ x b₋₁) for every x \in G.

Definition 3.7: Let ' μ ' be a fuzzy soft sub group of G and $a \in G$. Then the P-pseudo fuzzy cosset $(a\mu)^{p}$ is defined by $(a \mu)^{p} (x) = p (a) \mu (x)$ for every $x \in G$ and for some $p \in P$.

Let $G = \{1, w, w^2\}$ be a group with respect to multiplication where 'w' denotes the cube root of unity. Define a map $\mu : G \rightarrow [0,1]$ by

 $\mu(x) = \int 0.7$ if x = 1

= 0.3 if $x = w, w^2$

The pseudo fuzzy soft cosset (a μ) ^p for p (x) = 0.4 for every x \in G to be equal to 0.28 if x =1 and 0.12 if x = w, w².

Definition 3.8: Let μ and λ be any two fuzzy soft subsets of a set 'X' and $p \in P$. the P-pseudo fuzzy soft double cosset to $(\mu x \lambda)^p$ is defined as $((\mu x \lambda)^p - (x \mu)^p \cap (x \mu)^p)$ for $x \in X$.

Definition 3.9: Let λ and ' μ ' be two fuzzy soft subgroups of a group 'G' then λ and μ are said to be P- fuzzy soft conjugate subgroups of G if for some $g \in G\lambda$ (x) = μ (g⁻¹ x g) for every $x \in G$. **4. Some Properties of Pseudo Fuzzy Softt Cosets:**

Proposition 4.1:

Let ' μ ' be a fuzzy soft subgroup of a group 'G'. Then P-pseudo fuzzy soft cosset (a μ) ^p is a fuzzy soft sub group of 'G' for every a \in G.

Proof: Let ' μ ' be a fuzzy soft sub group of G, for every x, y in G we have $(a \mu)^p (xy^{-1}) = p(a) \mu (xy^{-1}) \ge p(a)$ min { $\mu(x), \mu(y)$ } = min { $p(a) \mu(x), p(a), \mu(y)$ } \ge min { $a \mu$ }^p(x), $(a, \mu)^p (y)$ } for every $x \in$ G. This proves that $(a \mu)^p$ is a fuzzy soft subgroup of G.

Remark 4.2: A fuzzy soft subgroup ' μ ' of a group G is said to be positive fuzzy soft subgroup of 'G' if ' μ ' is positive fuzzy soft subset of the group 'G'.

Proposition 4.3: Every P- pseudo fuzzy soft double cosset is a fuzzy soft subgroup of a group 'G'

Proof: (i) $(\mu \ x \ \lambda)^p (x \ y) = \{ (x \ \mu)^p \cap (x \ \lambda)^p \} (xy) = (x \ \mu)^p (x \ y) \text{ and } (x \ \lambda)^p (xy) \}$ $= p \ (x) \ \mu \ (x \ y) \text{ and } p \ (x) \ \lambda \ (xy) \}$ $\ge p \ (x) \ min \{ \ \mu \ (x), \ \mu \ (y) \} \text{ and } p \ (x) \ min \{ \ \lambda \ (x), \ \lambda \ (y) \}$ $\ge min \{ p \ (x) \ \mu \ (x), \ p \ (x) \ \mu \ (y) \} \text{ and } min \{ \ p \ (x) \ \lambda \ (x), \ p \ (x) \ \lambda \ (y) \}$ $\ge min \{ p \ (x) \ \mu \ (x), \ p \ (x) \ \mu \ (x) \}, \ min \{ p \ (x) \ \lambda \ (x), \ p \ (x) \ \lambda \ (y) \}$ $= min \{ (x \ \mu)^p \cap (x \ \lambda)^p \} \ (x), \ (x \ \mu)^p \ n \ (x \ \lambda)^p \ (y) \}$ $\ge min \{ \ (\mu \ x \ \lambda)^p \ (x), \ (\mu \ x \ \lambda)^p \ (y) \}$ (ii) $(\mu \ x \ \lambda)^p \ (x) = \{ (x \ \mu)^p \cap (x \ \lambda)^p \} \ (x) = \ (x \ \mu)^p \cap (x \ \lambda)^p \ (x)$

 $= p(x) \mu(x) \text{ and } p(x) \lambda(x) = p(x) \mu(x)^{-1} \text{ and } p(x) \lambda(x)^{-1} \text{ (since } \lambda \text{ and } \mu \text{ are fuzzy subsets)} = (x \mu)^{p}(x)^{-1} \text{ and } (x \lambda)^{p}(x)^{-1} = \{ (x \mu)^{p} n (x \lambda)^{p} \} (x)^{-1} = (\mu x \lambda)^{p}(x)^{-1}$

Theorem is proved.

Proposition 4.4:

Every P-fuzzy soft middle cosset of a group 'G' is a fuzzy soft subgroup of G.

Proof:

Let a μ b be a P-fuzzy soft middle cosset of the group 'G' and ' λ ' and ' μ ' be two P-conjugate fuzzy soft subgroups of G.

(i) $(a \mu b) (x y) = \mu (a^{-1} x y b^{-1}) = \lambda (x y) [:: \lambda \text{ and } \mu \text{ conjugate fuzzy soft subgroups}]$

 $\geq \min \{ \lambda(x), \lambda(y) \} \geq \min \{ \mu(a^{-1} x b^{-1}), \mu((a^{-1} y b^{-1})) \}$

 $\geq \min \{ (a \ \mu b) (x), (a \ \mu b) (y) \}$

(ii) $(a \mu b) (x) = \mu (a^{-1} x b^{-1}) = \mu (a^{-1} x^{-1} b^{-1}) (\because \mu' \text{ fuzzy sub group}) = (a \mu b) (x^{-1})$ Theorem is proved. **Definition 4.5:** Let 'G' be a group. A fuzzy soft subgroup ' μ' of 'G' is called normal if $\mu (x) = \mu (y^{-1} x y)$ for all x, y in G. (or) A fuzzy soft subgroup μ_H of G is called a fuzzy soft normal subgroup of 'G' if $\mu_H (x y) = \mu_H (y)$

x) for all x, y in G.

Proposition 4.6:

Every P-pseudo fuzzy soft cosset is a fuzzy soft normal subgroup of a group 'G'

Proof:

Let $(a \mu)^p$ be any P-pseudo fuzzy cosset. $a \in G$ and for some $p \in P$. Now $(a \mu)^p (x) = p (a) \mu (x) = p (a)$ min { $\mu (e), \mu (x)$ } = $p (a) \min \{ \mu (y^{-1}y), \mu(x) \}$

 $\geq p (a) \min \{ \min \{ \mu (y)^{-1}, \mu (y) \}, \mu (x) \} \geq p (a) \min \{ \mu (y)^{-1}, \min \{ \mu (y), \mu (x) \} \\ = p (a) \mu (y^{-1} x y) \text{ for all } y \in G.$

Aliter:

Let $(a \ \mu)^{p}$ be any P-pseudo fuzzy soft cosset and $a \in G$ for some $p \in P$, Let μ_{H} is a fuzzy soft normal subgroup of G. Now $(a \ \mu H)^{p} (x \ y) = p(a) \ \mu_{H} (x \ y) = p(a) \ \mu_{H} (y \ x) (\mu_{H} \text{ is fuzzy soft normal}) = (a \ \mu_{H})^{p} (y \ x)$

Proposition 4.7:

The intersection of two P-pseudo fuzzy soft cosset normal subgroup is also fuzzy soft normal subgroup of a group.

Proof:

Let $(a \mu)^{p}$ and $(b \mu)^{p}$ be any two P-pseudo fuzzy soft cosset normal subgroup of G.

 $(a \mu)^{p}(x) = (a \mu^{p}(y^{-1}x y), y \in G^{---}(1)$

$$(b \mu)^{p}(x) = (a \mu)^{p}(y^{-1}x y), y \in G$$
—(2)

Now, {($(a\mu)^{p} \cap (b\mu)^{p}(x) = ((a \cap b)\mu)^{p}(x) = p(a \cap b)\mu(x) = p(a)$. $p(b)\mu(x) = p(a)$. $\mu(x)$ and $p(b)\mu(x) = (a\mu)^{p}(x)$ and $(b\mu)^{p}(x) = (a\mu)^{p}(y^{-1}xy)$ and $(b\mu)^{p}(y^{-1}xy)$ by ((i) & (ii)) = p(a). $p(b)\mu(y^{-1}xy) = ((a \cap b)\mu)^{p}(y^{-1}xy) = ((a \cap b)\mu)^{p}(y^{-1}xy)$.

Theorem is proved

Aliter:

Let $(a \mu_{H})^{p} \cap (b \mu_{H})^{p}$ $(x y) = ((a \cap b) \mu_{H})^{p}$ $(x y) = p (a \cap b) \mu_{H} (y x) (\mu_{H} is fuzzy soft normal) = (a \cap b) \mu_{H})^{p}$ $(y x) = \{a \cap b)^{p} \cap (b \mu_{H})^{p}$ (y x)

Proposition 4.8:

P-Pseudo fuzzy soft double cosset is a fuzzy soft normal subgroup of a group 'G'

Proof:

Let $(\mu x \lambda)^p$ be any P- pseudo fuzzy soft double cosset for $x \in X$. Now $(\mu x \lambda)^p$ $(x) = \{ (x \mu)^p \cap (x \lambda)^p \}(x) = (x \mu)^p (x) \cap (x \lambda)^p \}(x)$ $= p (x) \cap \mu (x) \cap p (x) \lambda (x) = p (x) \min \{\mu (x), \mu (e)\} \cap p (x) \min \{\lambda (x), \lambda (e)\}$ $= p (x) \min \{\mu (x), \mu (y^{-1} y)\} \cap p (x) \min \{\lambda (x), \lambda (y^{-1} y^1)$ $\ge p(x) \min \{\mu (x), \min \mu (y^{-1}), \mu(y)\} \cap$ $p (x) \min \{\lambda (x), \min \{\lambda (y^{-1}), \lambda (y)\}$ $= p (x) \min \{\mu (y^{-1}), \mu (x y)\} \cap p (x) \min \{\lambda (y^{-1}), \lambda (x y)\}$ $= p (x) \mu (y^{-1} x y) \cap p (x) \lambda (y^{-1} x y) = \{ x \mu \}^p \cap (x \lambda)^p \} (y^{-1} x y)$ $= (\mu x \lambda)^p (y^{-1} x y)$

Theorem is proved.

Proposition 4.9:

Proof:

P-Fuzzy soft middle cossets forms a fuzzy soft normal subgroup of G.

 $(a \ \mu \ b) \ (x) = \mu \ (a^{-1} x \ b^{-1}) = \lambda \ (x) = \min \{ \lambda \ (x), \lambda \ (e) \}$ = min { $\lambda \ (x), \lambda \ (y^{-1} y) \} \ge \min \{ \lambda \ (x), \min (\lambda \ (y^{-1}), \lambda \ (y)) \}$ = min { $\lambda \ (y^{-1}) \min (\lambda \ (x), \lambda \ (y) \} = \min (\lambda \ (y^{-1}), \lambda \ (x \ y) \} = \lambda \ (y^{-1} x)$ = $\mu \ (a^{-1} \ (y^{-1} x \ y) \ b^{-1}) = (a \ \mu \ b) \ (y^{-1} x \ y)$

Definition 4.10: The strong fuzzy soft α -cut is defined as $A^+_{\alpha} = \{x/A(x) > \alpha\}$ where A is any fuzzy soft set . **Definition 4.11:** Let 'A' be a fuzzy soft set in a set S. Then the strongest fuzzy soft relation on 'S' (ie) fuzzy soft relation on 'A' is $\mu_A(x,y) = \min \{(A(x), A(y))\}$.

Definition 4.12: Cartesian Product: Let λ and μ be any two fuzzy soft sets in X. Then the cartesian Product of λ and μ is $\lambda x \mu$: $x \times x \rightarrow [0, 1]$ defined by $(\lambda \times \mu) (x, y) = \min \{\lambda(x), \mu(y)\}$ for all $x, y \in X$.

Proposition 4.13:

Let μ_A be a strongest Fuzzy soft relation on 'S' and 'A⁺_{α}' be the strong α -cut .Then μ_A forms a strong α - cut fuzzy soft group on S.

Proof:

Let A:S \rightarrow [0,1] be any function and μ_A be the strongest fuzzy soft relation on S.

(i) Let x,y ε S

 $\mu_A(x,y) = \min \{A(x), A(y)\} \ge \min \{\alpha, \alpha\} \ge \alpha$

(ii) $\mu_A(x^{-1}, y^{-1}) = \min \{A(x^{-1}), A(y^{-1})\} = \min \{A(x), A(y)\} = \mu_A(x, y)$

- (ii) $\mu_A(e, e) = \min \{A(e), A(e)\} = \min \{1, 1\} = 1$
- μ_A forms a strong fuzzy group α cut on S.

Proposition 4.14:

Let λ and μ be strong fuzzy soft α - cuts on S. Then $\lambda \times \mu$ is a strong fuzzy soft group α - cut.

Proof: Let x,y ϵ S and λ : x×x \rightarrow [0,1] be any function.

(i) $(\lambda \times \mu) (x, y) = \min \{\lambda (x), \mu (y)\} \ge \min \{\alpha, \alpha\} \ge -\alpha$

(ii) $(\lambda \times \mu) (x^{-1}, y^{-1}) = \min \{\lambda (x^{-1}), \mu (y^{-1})\} = \min \{A(x), A(y)\} = (\lambda \times \mu) (x, y)$

(ii)
$$(\lambda \times \mu)$$
 (e,e) = min { λ (e), μ (e)} = min {1,1}=1

 $(\lambda \times \mu)$ forms a strong fuzzy soft group α -cut on S.

Remark 4.15: i) min $(a,b)^i = min \{a^i,b^i\}$ for all Positive integer 'i'}

ii) $\mu_A i(x,y) = (\mu_A(x,y))^i = \min \{A(x), A(y)\}^i = \min \{A^i(x), A^i(y)\}$

Proposition 4.16:

Let $\mu_A{}^i$ and $\mu_A{}^j$ be two strong fuzzy soft relations and $A_{\alpha}{}^+$ be strong fuzzy soft α - cut . Then $\mu_A{}^i{}_{UA}{}^j$ forms a strong fuzzy soft α -cut on S.

Proof:

Since i<j

 $\mu_{A}^{j} {}_{UA}{}^{j}(x,y) = \{ (A^{i}UA^{j}, (x), (A^{i}UA^{j}) (y) \} = \min \{ \max \{ A^{i}(x), A^{j}(x) \}, \max \{ A^{i}(y), A^{j}(y) \}$ $= \max \{ \min \{ A^{i}(x), A^{i}(y) \}, \min \{ A^{j}(x), A^{j}(y) \}$ $= \max \{ \min \{ A(x), A(y) \}^{I}, \min \{ A(x), A(y) \}^{J} \}$ $\ge \max \{ \min \{ \alpha, \alpha \}^{i}, \min \{ \alpha, \alpha \}^{j} \}$ $\ge \max \{ \min \{ \alpha^{i}, \alpha^{i} \}, \min \{ \alpha^{j}, \alpha^{j} \} \}$ $\ge \max \{ \alpha^{i}, \alpha^{i} \}, \min \{ \alpha^{j}, \alpha^{j} \} \}$

 $\mu_A^{i}{}_{UA}^{j}$ is a strong fuzzy soft α -cut on S.

Remark 4.17: Let $\mu_A{}^i$ and $\mu_A{}^j$ be two strong fuzzy soft relations and $A_{\alpha}{}^+$ be strong fuzzy soft α -cut. Then $\mu_A{}^i{}_{nA}{}^j$ is a strong fuzzy soft α -cut on S.

Proof: It is obvious

Definition 4.18 : A fuzzy soft binary relation μ on a semi group 'S' is called P-fuzzy soft compatible iff μ (ac, bd) $\geq \min \{\mu (a,b), \mu(c,d)\}$ for all a,b,c,d ϵ S.

Preposition 4.19:

Let μ_A be the strongest fuzzy soft relation on S. Then A_{α}^{+} is a strong α -cut then μ_A forms P-fuzzy soft compatible.

Proof:

Now $\mu_A(ac, bd) = \min \{A(ac), (A(bd))\} \ge \min \{\min \{A(a), A(c)\}, \min (A(b) A(d))\}$

 $\geq \min \{ \mu_A(a,b), \mu_A(b,d) \}$

3.18 Proposition:

Let μ_A be a P-fuzzy soft compatible. Then μ_A is a strong fuzzy soft α -cut.

Proof:

Now μ_A (ac, bd) $\geq {\mu_A (a, b), \mu_A(b, d)} = \min {\min (A(a), A(b)), \min {A(b), A(d)}} > \min {\min {\alpha, \alpha}, \min {\alpha, \alpha}} > \alpha$. Hence μ_A is P-fuzzy soft compatible forms a strong fuzzy soft α -cut. **Conclusion:**

Here we introduce the notion of pseudo compatible P-fuzzy soft relations of a subgroup, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups. One can obtain the similar ideal into Soft G-modular and L- fuzzy structures.

References:

- 1. J. M. Anthony and H. Sherwood, Fuzzy groups redefined J. Math. Anal. Appl.69 (1979), 124-130.
- 2. Acar U., Koyuncu F., Tanay B., Soft sets and soft rings, Comput. Math. Appl., 59(2010), 3458-3463.
- 3. Aktas. H., C. agman N., Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
- 4. Ali M.I., Feng F., Liu X., Min W.K., Shabir M., On some new operations in soft set theory, Comput. Math. Appl., 57(2009), 1547-1553.
- Atagun A.O., Sezgin A., Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(3) (2011), 592-601.
- 6. Babitha K.V., Sunil J.J., Soft set relations and functions, Comput. Math. Appl., 60(7)(2010), 1840-1849.
- 7. Feng F., Jun Y.B., Zhao X., Soft semirings, Comput. Math. Appl., 56(2008), 2621–2628.
- Feng F., Liu X.Y., Leoreanu-Fotea V., Jun Y.B., Soft sets and soft rough sets, Inform. Sci., 181(6) (2011), 1125-1137.
- 9. Jun Y.B., Soft BCK/BCI-algebras, Comput. Math. Appl., 56(2008), 1408 -1413.
- 10. Jun Y.B., Park C.H., Applications of soft sets in ideal theory of BCK/ BCI-algebras, Inform. Sci., 178(2008), 2466-2475.
- 11. Jun Y.B., Lee K.J., Zhan J., Soft p-ideals of soft BCI-algebras, Comput. Math. Appl., 58(2009), 2060-2068.
- 12. Kazancı O., Yılmaz S., Yamak S., Soft sets and soft BCH-algebras, Hacet. J. Math. Stat., 39(2)(2010), 205-217.
- 13. Majumdar P., Samanta S.K., on soft mappings, Comput. Math. Appl., 60 (9)(2010), 2666-2672.
- 14. Molodtsov D., Soft set theory-first results, Comput. Math. Appl., 37(1999), 19-31.
- 15. A. Rosenfeld, Fuzzy groups, J.math.Anal.Appl.35 (1971), 512-517.
- 16. S. Sessa, on fuzzy subgroups and fuzzy ideals under triangular norms, Fuzzy sets and fuzzy systems, 13, (1984), 95-100.
- 17. H. Sherwood, Product of fuzzy subgroups, Fuzzy sets and systems, 11, (1983), 79-89.
- 18. F. I. Sidky and M. Atif Misherf, Fuzzy cossets and cyclic and abelian fuzzy subgroups, Fuzzy sets and systems, 43, (1991), 243-250.
- 19. Sezgin A., Atagun A.O., Ayg un E., A note on soft near-rings and idealistic soft near-rings, Filomat, 25(1)(2011), 53-68.
- 20. Sezgin A., Atagun A.O., on operations of soft sets, Comput. Math. Appl., 61(5) (2011), 1457-1467.
- 21. Zhan J., Jun Y.B., Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(6) (2010), 2037-2046. Fuzzy sets and systems, 43, (1991), 243-250.
- 22. L.A.Zadeh, Fuzzy sets, Inform and control, 8, (1965), 338-353.