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Abstract—Background subtraction is a fundamental video analysis tech-
nique that consists of creation of a background model that allows distin-
guishing foreground pixels. We present a new method in which the image
sequence is assumed to be made up of the sum of a low-rank background
matrix and a dynamic tree-structured sparse matrix. The decomposition
task is then solved using our approximated Robust Principal Component
Analysis (ARPCA) method which is an extension to the RPCA that can
handle camera motion and noise. Our model dynamically estimates the
support of the foreground regions via a superpixel generation step, so
that spatial coherence can be imposed on these regions. Unlike conven-
tional smoothness constraints such as MRF, our method is able to obtain
crisp and meaningful foreground regions, and in general, handles large
dynamic background motion better. To reduce the dimensionality and the
curse of scale that is persistent in the RPCA-based methods, we model
the background via Column Subset Selection Problem, that reduces the
order of complexity and hence decreases computation time. Comprehensive
evaluation on four benchmark datasets demonstrate the effectiveness of our
method in outperforming state-of-the-art alternatives.

Index Terms—Approximated RPCA, structured-sparse, moving camera,
dynamic background, cohesive foreground segmentation.

F

1 INTRODUCTION

Background subtraction can be defined as segmentation of
a video sequence into the foreground and the background.
It is typically used as a pre-processing step for higher level
problems, such as automated surveillance, action recognition,
and intelligent environments. Background subtraction poses
a number of challenges in realistic environments, such as,
presence of noise, illumination changes, background motions
or dynamicity, camouflage, moved object, camera motion, and
foreground aperture. To address these challenges, a number of
considerations in designing a background model, as well as
modeling the behavior of foreground objects must be made; in
complex applications this is still an open problem.

Here the noise is modeled by the residual error of the
approximation of the original data by the background plus
foreground. Illumination changes are handled to some extent
via a robust background model that is capable of adapting
itself to global variations of luminance. On account of dynamic
nature of the background, both the background model and the
foreground classification mechanisms must be able to correctly
classify a range of pixels. Camouflage is when a foreground
object due to its similarity to the background persists absorbing
into the background. Noting this challenge, there is a need
for two semantic foreground layers, one containing genuine
foreground regions, and the other ambiguous and noise-like
pixels. Then, the amount to lean onto which layer for detecting
foreground objects must be adaptively controlled by a robust
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mechanism in the model. On the other hand, a desirable back-
ground model must be able to learn a variety of modes from the
video feed, such that it handles variations in the background,
moved objects, and noise without compromising its ability to
detect camouflaged regions.

Denote the set of video frames as {Ik}nk=1 for n frames. Ik
contains frames of a video sequence, with each image being
concatenated as a column vector. We can put all the frames of
a video together to form a large matrix A = [I1, I2, . . . , In] ∈
Rm×n. Given the matrix A, RPCA [1] solves the matrix decom-
position problem

min
L,S
‖L‖∗ + λ‖S‖1 s.t. A = L+ S, (1)

as a surrogate for the actual problem

min
L,S

rank(L) + λ‖S‖0 s.t. A = L+ S, (2)

where L is the low-rank component corresponding to the
background and S is the sparse component containing the fore-
ground part. To overcome some inherent limitations of RPCA
for background subtraction and foreground segmentation, we
propose to an approximated form of the Robust Principal Com-
ponent Analysis (RPCA) method. We are interested in the case
where we can decompose the matrix A into three components,
namely a low-rank partL, a sparse component S, and a residual
noise part E. That is, the target is to decompose A as

A = L+ S + E, (3)

where E is the residual error of the approximation of A by
L + S, that attempts to capture noise and ambiguous pixels.
The decomposition above can be solved via our approximated
RPCA, that we will introduce later. Observe that we expect L
to be a genuine low-rank matrix, thus rank(L) � rank(A).
Moreover, by decomposing all the extra noise that contaminates
the background, and storing it into E we are able to reduce
the rank of the matrix L beyond what (1) is capable of. As a
consequence of our decomposition strategy, the L in (3) is much
more well-suited for background subtraction applications, or in
general where lower dimensional models are more desirable.

Despite the promising effects of using a low-rank approxi-
mation for obtaining the background model, a sparse constraint
for foreground objects, can be far too generic. In addition,
processing per-pixel basis from the foreground, is not only
time-consuming, but also can dramatically affect foreground
region detection, if region cohesion and contiguity is not con-
sidered in the model. The foreground regions are spatially
coherent clusters. Thus, we prefer to detect contiguous regions
of various sizes in the matrix representing the foreground. With
this objective in mind, we propose structured-sparsity inducing
norms that are effective in the context of a novel dynamic group
structure, by which the natural structure of foreground objects
in the sparse matrix is preserved. The dynamicity of group
structures is either controlled via a patch-based group selection
algorithm, or derived from the natural shape of objects in the
scene – by selecting clusters of pixels via the SLIC superpixels
[2], and dynamically refining the size of these clusters in an
iterative process. This is effective in reducing the foreground
aperture problem with rigorous experimental evaluations.

The matrix A can become humongous when processing
large or long videos. To alleviate the dimensionality and the
curse of scale with an RPCA-based problem we use the Column
Subset Selection Problem (CSSP) [3] that selects a handful of
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the most representative and important columns of a matrix.
Assuming that we have a long video of a scene at our disposal
with hundreds or even thousands of frames, only a handful
of these frames determine a model of the background; the rest
will either contaminate the background or will be redundant to
process. To this end, we propose to model the background of
the sequence using a low-rank approximation from the output
of the CSSP. Not only does this algorithm reduce the complexity
and the computation time, but also alleviates the bootstrapping
challenge, making it possible to still be able to obtain a robust
model of the background without needing to observe a clean,
foreground-absent frame.

In a nutshell contributions of this paper are: low-rank ap-
proximation of the background to accommodate small scene
and illumination changes to some extent; inducing structured-
sparsity in a novel group structure, namely a dynamic block
structure and a dynamic superpixel structure; insensitivity to
foreground object size, as a result of using within-patch nor-
malization; assumption of a noise part in decomposition for
reducing false positive pixels (false alarms); and a dimensional-
ity reduction for RPCA problem via the Column Subset Selection
Problem that alleviates bootstrapping, and reduces computational
complexity and cost, and an analysis of the efficacy of this
method. Finally, an exhaustive evaluation using four datasets
[4], [5], [6], [7], demonstrating top performance in comparison
with the state-of-the-art alternatives is presented.

2 RELATED WORK

In the recent years, global models such as principal component
analysis (PCA) [8], [9], [10] have gained popularity due to
their simple implementation and effectiveness in camera shake.
They attempt to model the background as a low-dimensional
subspace of the vectorized input, with the foreground identified
as outliers. In practice such approaches have struggled, due to
high computational requirements and limited capability to deal
with many common problems, e.g., camouflage. Recent vari-
ants have resolved part of these issues, notably [11] proposed
a non-SVD based fast solution. However, still no spatial distri-
bution of outliers were considered. In an effort to incorporate
such prior an MRF-based solution [12] has been proposed. But
the result of imposing such smoothness constraint is that the
foreground regions tend to be over-smoothed; as an example,
the details in the silhouette of hands and legs of a moving
person is sacrificed in favor of a more compact blob.

Our idea is established in the so-called structured-sparsity
or group-sparsity measures to incorporate the spatial prior.
Structural information about nonzero patterns of variables have
been developed and used in sparse signal recovery, and many
approaches have been applied to these problems successfully,
such as [13], [14]. However, related methods [15] typically
assume that the block structure and its location is known or
will suffer in regularization or bootstrapping. To lift up some
difficulties [16] instead detects the block size and location by
iteratively alternating between updating the block structure of
the dictionary and updating the dictionary atoms to better fit
the data. Nevertheless, both the number of blocks and the max-
imal block size are assumed to be known. In [17] and [18] the
sparsity structure is estimated automatically. Parameter tuning
is required in [13] to control the balance between the sparsity
prior and the group clustering prior for different cases. These
methods also need a clean background to train backgrounds

for sequences. A two-pass RPCA framework was used in [15],
where the first pass determines a saliency map generation that
corresponds to locations of the outliers, and then the second
pass uses pre-defined salient blocks in the image, to favor
spatially contiguous outliers. In another effort [19], a group
sparse structure was used, in which overlapping pre-defined
groups of pixels in a region of an image are used in conjunction
with a maximum norm regularization to take into account the
spatial connection of foreground regions. In a recent work [20]
a superpixel-based max-norm matrix decomposition approach
has been proposed, in which homogeneous static or dynamic
regions of image are classified as a graph partitioning problem,
via Generalized Fused Lasso (GFL). In contrast, our method
does not assume a prior size or location or structure for sparsity,
and dynamically updates these to best fit the natural object
shape in the scene, without a separate training phase.

3 APPROXIMATED RPCA WITH TREE-STRUCTURED
SPARSITY
As discussed in the introduction, our proposed approach is
based on an approximated RPCA process, that takes advantage
of natural structure of objects in the scene. In our model a series
of structured-sparsity inducing norms are defined which act in
a tree structure that is a representation of the scene components.
The approximated decomposition problem stated in (3) can be
solved by minimizing the decomposition error

min
L,S
‖A− L− S‖2F + λ‖S‖1 s.t. rank(L) ≤ r � rank(A), (4)

where ‖ · ‖F is the Frobenius norm, defined as ‖A‖F =√
m∑
i=1

n∑
j=1
|aij |2 where aij are the elements inA. In the Frobenius

norm, the set of feasible solutions is restricted to matrices L that
have a rank smaller than or equal to r. It means that if r is much
smaller than min(m,n), the solution for L is necessarily a low-
rank matrix. λ is a tuning parameter set at a value that helps
recovering all genuine foreground regions. We find that using
λ = 3/

√
max(m,n) (where m × n is the dimensions of A)

is adequate to identify all foreground regions in our test data.
The choice of λ is justified by observations in our experiments,
where λ controls a good trade-off between the sparsity of S+E
and structured-sparsity of S. The matrixE contains the residual
error (noise) of the approximation of A by L+ S.

3.1 Modeling with Structured-Sparsity Inducing Norms
We can exploit the natural shape of the objects in the scene
to best describe the location and distribution of foreground re-
gions; as such, we employ structured-sparsity inducing norms
in the context of tree-structured groups. Also, we take into
account the global background motion induced by camera
motion in our model. Suppose A is an observed matrix that
is not in register with the training images Ik. To recover well-
aligned images A′ = A ◦ τ such that they can be readily used
for robust background subtraction we propose to solve the fol-
lowing optimization problem to seek the correct transformation
τ (e.g., 2D affine transformation for correcting misalignment,
or 2D projective transformation for handling some perspective
change), low-rank component L, and sparse part S

min
rank(L)≤r,S,τ

‖A ◦ τ − L− S‖2F + λ‖S‖2,1, (5)

where `2,1-norm is a group sparsity inducing norm. Motivated
by recent advances in structured sparsity [21], in this work,
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we consider a tree-structured sparsity-inducing norm, that
involves a hierarchical partition of the m variables in S into
groups. The leaf nodes in the tree are defined to be single-
ton groups corresponding to individual pixels, and internal
nodes/groups correspond to local patches of varying size. Thus
each parent node contains a hierarchy of child nodes that are
spatially adjacent to each other and constitute a local part in
the sparse image S. Also when a parent node goes to zero
all its descendants in the tree must go to zero. Consequently,
the nonzero or support patterns are formed by removing those
nodes forced to zero. This is exactly the desired effect of
structured sparse patterns. We can represent a scene using a
tree structure by subdivision. In such a tree structure each child
node is a subset of its parent node and the nodes of the same
depth level do not overlap. Denote G as a set of groups from the
power set of the index set {1, . . . ,m}, with each group G ∈ G
containing a subset of these indices. The aforementioned tree-
structured groups used in this paper are formally defined as fol-
lows: A set of groups G is said to be tree-structured in {1, . . . ,m}
if G = {. . . , Gi1, Gi2, . . . , Gibi , . . . } where i = 0, 1, 2, . . . , d, d is
the depth of the tree, b0 = 1 and G0

1 = {1, 2, . . . ,m}, bd = m
and correspondingly {Gdj}mj=1 are singleton groups. Let Gij be
the parent node of a node Gi+1

j′ in the tree, we have Gi+1
j′ ⊆ Gij .

We also have Gij ∩ Gik = ∅,∀i = 1, . . . , d, j 6= k, 1 ≤ j, k ≤ bi.
Similar group structures are also considered in [22], [23]. With
the above notation, a general tree-structured sparsity-inducing
norm can be written as

ψ(S) =

d∑
i=0

bi∑
j=1

wij‖SGi
j
‖2,1, (6)

where SGi
j

is a vector with entries equal to those of S for the in-
dices in Gij and 0 otherwise. wij are positive weights for groups
Gij . It is chosen as wij = 1/max(AGi

j
) to overcome sensitivity

of the regularization scheme to illumination variance across
patches. As for optimizing τ , each frame in A is sequentially
aligned to each frame Ik instead of the whole training set I,
mainly due to the difficulty of optimization associated with the
latter case, as discussed in [24]. Thus, the objective function in
the optimization program is modified to the following

min
rank(L)≤r,S,τ

‖A ◦ τ − L− S‖2F + λ
d∑
i=0

bi∑
j=1

wij‖SGi
j
‖2,1 (7)

The problem (7) is a difficult, nonconvex optimization prob-
lem. Fortunately, we can find a good initialization by pre-
aligning all frames in the sequences to the middle frame, before
the main loops of minimization. The pre-alignment is done by
the robust multiresolution method proposed in [25], [26]. This
practice is successful in most cases given that a drastic scene
change does not occur in the sequence. We can then solve
(7) by repeatedly linearizing about the current estimate of τ ,
and seeking a deformation step ∆τ . In other words, at each
iteration, we update τ by a small increment ∆τ and linearize
A ◦ τ as A ◦ τ + J∆τ , where J denotes the Jacobian matrix
J = ∂A

∂τ . Thus, τ can be updated via the following minimization

τ t ← τ + arg min
∆τ

‖A ◦ τ − Lt−1 − St−1 + J∆τ‖2F (8)

The minimization over ∆τ in (8) is a weighted least-squares
problem that has a closed-form solution [26]. In practice, the
update of τ for each frame can be done separately since the
transformation is applied on each image individually. Thus
the update of τ is efficient. We then proceed by minimizing

alternatively the function for two parameters L and S one at a
time until convergence

Lt = arg min
rank(L)≤r

‖A ◦ τ t − L− St−1‖2F (9)

St = argmin
S

‖A ◦ τ t − Lt − S‖2F + λ

d∑
i=0

bi∑
j=1

wij‖SGi
j
‖2,1 (10)

Both these subproblems have nonconvex constraints. Their
global solutions Lt and St exist. In particular, the two sub-
problems can be solved by updating Lt via singular value
hard thresholding of A − St−1 [27], and updating St via our
structured-sparsity inducing norms with a soft-thresholding
or shrinkage operator for scalars with λ. The penalty term in
(10) assures the structured-sparsity of S w.r.t. the defined tree-
structured groups. The thresholding operator is defined as

Pλ(x) =

{
sign(x) max(|x| − λ), |x| > λ,

0, |x| ≤ λ.
(11)

3.2 Tree-Structured Groups in Meaningful Regions

There is a need for some mechanism that can take into account
the natural shape and structure of objects in the scene, in
the structured-sparse solution with the tree-structured group
ψ(·). Each group must take into account connected components
belonging to a semantically or texturally connected region. For
example, a region of pixels with the same color and texture be-
longing to part of an object (a wheel of a car) must be assigned
to a single group. The structured-sparse inducing framework
defined in the previous section can then be used within the
group class to decide whether it belongs to foreground or must
be classified as background.

A trend in recent literature has been shifting towards a
very common approach in video coding technology, where
the test image is divided into square-shaped regions of pixels
called blocks, with pre-determined sizes. To achieve even more
sophisticated sectioning, each block can be further divided into
smaller blocks each time halving the size of the block. This can
be done until a block of size 1 (a single pixel) is reached; this is
called the quad-tree decomposition. This approach is not very
complex and can be implemented with low order of computa-
tion in the framework we described in the previous sections.
In this example a region of 8 × 8 pixels is chosen as a group.
If there are no elements with large magnitude in this region,
the sparsity-inducing norms will classify the whole region to
background; otherwise it is divided into 4 smaller regions of
4× 4 pixels. Similarly, each of the smaller regions are put to the
test of sparsity-inducing norms, and the regions belonging to
background are left-off, while the regions hinting foreground
elements are divided into 4 smaller regions once again. This
is done until a singleton group (a single pixel) is reached. We
call this procedure induction, division, and discarding. There are
two immediate benefits from defining such a block structure:
firstly, the amount of computation needed for classification is
lowered, as classifying larger regions to background is much
faster compared to single pixel assignment, while for blocks
containing foreground objects the subdivisions will allow more
meticulous investigation in these regions. Large region classifi-
cation can be safely done in our model; this is the direct impact
of our sparsity-inducing norms definition, since despite other
RPCA-based methods our algorithm is not sensitive to the size
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of the region in question. Secondly, the recursive division of
regions down to one pixel will result in a very crisp and well-
defined foreground segmentation. We refer to this approach
in this paper as DBSS model, short-hand for Dynamic Block
Structured Sparse. Depth of each tree in this model is set to d = 3
and m = 64, therefore G = {. . . , Gi1, Gi2, . . . , Gibi , . . . } where
i = {0, 1, 2, 3}, b0 = 1 and G0

1 = {1, 2, . . . , 64}, bd = 64 and
correspondingly {Gdj}64

j=1 are singleton groups. The general
tree-structured sparsity-inducing norm becomes

ψ(S) =
3∑
i=0

bi∑
j=1

wij‖SGi
j
‖2,1 (12)

As mentioned before, DBSS bears two limitations that the
size and location of the blocks need to be set in advance, and it
is hard to see how each block is adapting its shape to the natural
structure of objects in the scene. Motivated by these limitations,
we propose a new group structure, in which the sparse part
derives its structure from the natural object structure in the
scene. In a test image, the scene can be classified into multiple
superpixels. Recent advances in image segmentation have made
a plethora of superpixel algorithms becoming available, that
promise state-of-the-art ability to adhere to image boundaries,
speed, memory efficiency, and segmentation performance. A
good superpixel must obtain perceptually meaningful atomic
regions, which can be used to replace the rigid structure of the
pixel grid. Moreover, as these results will be used as a pre-
processing step in our foreground detection framework, they
should be fast to compute, memory efficient, and simple to use.
Also, in our segmentation scenario, superpixels should both
increase the speed and improve the quality of the results.

We therefore, adopt the Simple Linear Iterative Clustering
(SLIC) algorithm based on the empirical comparison of six
state-of-the-art superpixel methods [2]. SLIC adapts k-means
clustering to generate superpixels, and is freely available1. By
default, the only parameters of the algorithm are the desired
number of approximately equally-sized superpixels, and a com-
pactness factor controlling adherence of each superpixel region
to object boundaries. It seems that for our test images, 800
superpixels are sufficient to adhere well to all object boundaries.

Once the superpixels are obtained in the pre-processing
step, the same procedure for structured sparsity inducing
norms is applied to groups, that are this time each super-
pixel region in the test image. For recursive division how-
ever we cannot follow the naı̈ve recursive block division of
DBSS. We have adapted SLIC to be able to dynamically divide
each superpixel region into approximately equal-sized smaller
superpixels. Each initial superpixel region is divided into 4
smaller superpixels that best adhere to object boundaries. These
smaller superpixels are further divided into 4 regions, again
and again. Our experiments have shown that at this depth
the classification can be performed without having to perform
any further divisions, as the regions are both small enough to
safely discard non-foreground regions, and large enough to
crisply classify all foreground objects in the scene with fine
details correctly. We denote this model as DSPSS short for
Dynamic SuperPixel Structured Sparse. Similarly the parameters
for the tree-structured sparsity-inducing norm ψ(s) are defined
as follow. Depth of each tree in this model is d = 3 and m =M
is dynamically decided by SLIC, since it depends on image

1. http://ivrl.epfl.ch/research/superpixels

Algorithm 1 Pseudo-code for DBSS and DSPSS with back-
ground motion parameter estimation and Tandem initialization
1: Input: A, rank, λ, ε, maxIter
2: Output: S, L, E, τ
3: Tandem initialization: τ0 = 0, L0 = rank-r approximation of A,
S0 = A− L0

4: while ‖A ◦ τ t − Lt − St‖2F /‖A‖
2
F > ε or t < maxIter do

1) Form the matrix A ◦ τ calculating the parameters τ ti that infer the
mapping that transforms the column vector Ai to the i-th column
vector of the matrix Lt−1 + St−1.

2) Calculate Lt =
∑rank
i=1 σiUiV

T
i where svd(A ◦ τ t − St−1) =

UΣV T .
3) Calculate St = Pλ(ψ(A ◦ τ t − Lt)) where Pλ(x) =

sign(x) max(|x| − λ, 0).
4) Calculate the residual noise E = A− L− S.

5: end while

size, and the natural shape of the objects in the scene. There-
fore G = {. . . , Gi1, Gi2, . . . , Gibi , . . . } where i = {0, 1, 2, 3},
b0 = 1 and G0

1 = {1, 2, . . . ,M}, bd =M and correspondingly
{Gdj}Mj=1 are the smallest superpixel groups. A summary of
DBSS and DSPSS methods is described in Algorithm 1; the
operator ψ determines which algorithm is used. To initialize
values for the matrices L and S in both DBSS and DSPSS we
use a novel Tandem initialization method [28] that results in
faster convergence of the iterative process, yields more stable
results, and increases the segmentation accuracy.

3.3 Dimensionality Reduction for Decomposition
Computational cost of RPCA methods lies mainly in the SVD
calculation step for low-rank minimization. As the resolution of
the images or the length of the video increase, RPCA becomes
progressively computationally inefficient. There exist determin-
istic algorithms for solving the Column Subset Selection Problem
(CSSP), that use probability distributions to find the most
representative columns in a matrix [3]. The CSSP is defined
as: Let A ∈ Rm×n and let c� n be a sampling parameter. Find
c columns of A – denoted as C ∈ Rm×c – that minimize

‖A− CC†A‖F or ‖A− CC†A‖2, (13)

where C† denotes the Moore-Penrose pseudo-inverse. We can
equivalently write C = AA, where the sampling matrix is
A ∈ Rn×c. A simple but extremely successful deterministic
strategy is proposed [29] which is based on sampling columns
of A that correspond to the largest leverage scores `κi , for some
κ < rank(A). As the number of columns to be selected is
not known a priori, the algorithm selects the c columns of A
that correspond to the largest c leverage scores `κi such that
their sum

∑c
i=1 `

κ
i is more than an “energy” parameter θ with

c = θ × n. We choose θ such that rank(V Tκ A) = κ; where
Vκ ∈ Rn×κ contains the top κ right singular vectors of the
matrix A ∈ Rm×n with rank r = rank(A) ≥ κ. Then, The
rank-κ leverage score of the i-th column of A is defined as

`κi = ‖Vκ(i, :)‖22, i = 1, 2, . . . , n, (14)

Here, Vκ(i, :) denotes the i-th row of Vκ. Based on the presented
methodology, we perform the background modeling using the
output of CSSP algorithm, where a lot of redundant information
is discarded, as it does not contribute to the background model,
if even worse, does not contaminate it [30].

4 EXPERIMENTS AND ANALYSIS

We present qualitative and quantitative results for two algo-
rithms proposed in this paper, DBSS and DSPSS both with tan-
dem initialization [28] and CSSP for background modeling. All
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(a) campus                 (b) fountain             (c) water surface         (d) curtain           (e) lobby            (f) shopping mall         (g) airport       (h) bootstrap            (i) escalator 

Fig. 1: i2R [6] results: top row is the original image, second row is the ground truth, the third row is DBSS results, and the last
row is DSPSS output. We used the same frames as [20], [19], [31], [32], [33], and [34], for qualitative comparison.

TABLE 1: Description of the parameters for DBSS and DSPSS.

D
BS

S

λ Tuning parameter. 3/
√

max(m,n)

d Depth of each tree. 3
m # singleton groups. 64
θ Energy value for CSSP. .25

D
SP

SS

λ Tuning parameter. 3/
√

max(m,n)

d Depth of each tree. 3
M # singleton groups. Dynamic
k clusters # superpixels per image. 800
c factor Compactness factor 20
θ Energy value for CSSP. .25

the tests were conducted on the temporal region of interest of the
sequences, meaning no training stage with clean background
was used to obtain the background model. The algorithms
are implemented in MATLAB and run on a desktop machine,
using a single core on an Intel Core i7-4770 CPU and 32 GB
of RAM. The average processing time for a sequence of 100
RGB frames with resolution 600 × 800 with image alignment
and background motion estimation, and without CSSP is about
665 seconds for DBSS and 1674 seconds for DSPSS excluding
the superpixel generation step. With CSSP these times decrease
accordingly to 195 seconds for DBSS and 488 seconds for
DSPSS, meaning that time consumption is decreased more than
3.4 times. It is worth mentioning that the amount of time
required for RPCA-based methods substantially increases with
the number of frames, and one would eventually run out of
memory. Hence, without CSSP, the time consumption trend is
non-linear and going to explode.

Four datasets are used in our experiments: SABS [5],
WallFlower [4], i2R [6], and Change Detection (CDnet) 2012 [7].
We perform extensive tests using these datasets comprised of
a total of 49 videos, allowing us to compare our method to a
large number of alternative methods. For all the tests the same
set of parameters are used (reported in table 1).

4.1 CDnet 2012 Dataset
The results for these sequences can be seen in figure 2.

Quantitative results can be found in table 2. In addition to this
list, we have included the DP-GMM [32] and five RPCA-based

methods PCP [35], DECOLOR [12], LSD-GSRPCA [19], SPGFL
[20], and very recent 2-pass RPCA [15]. For LSD-GSRPCA [19]
and SPGFL [20] only a fraction of the results were reported
in their papers, therefore they are included where results are
reported. For PCP we use our pre-alignment step for the camera
jitter sequences and refer to it as PCP+Alignment. The online
version of CDnet combines many different scoring mechanisms,
and then combines them in a non-linear rank based system.
Instead, we present the F-measure scores, as it is the most used
metric. The F-measure is defined as the harmonic mean of the
recall and precision

recall =
tp

tp+ fn
, precision =

tp

tp+ fp
, (15)

F-measure = 2
recall · precision

recall + precision
, (16)

where fp is the number of false positives, tn the number of true
negatives, etc. Overall, we win on average for the extremely
challenging CDnet dataset both for DBSS and DSPSS. This is be-
cause our model can handle backgrounds that are complex and
dynamic. This ability, in combination with the tree-structured
sparsity inducing mechanisms allows it to effectively segment
genuine well-outlined foreground regions.
4.2 SABS Dataset
As can be seen in the results in table 3, our DSPSS algorithm
takes the first place in all the scenarios except for light switch.
Our background model slowly adapts to changes in the scene,
and this takes its toll on our method in this challenge. The
DSPSS wins on average, and DBSS stands 3rd after DP-GMM.

4.3 i2R and WallFlower Datasets
The i2R dataset [6] and WallFlower [4] datasets share 2 videos,
therefore, we report their results together. The testing procedure
is similar to before. We have reported for DBSS and DSPSS
results with and without parameter tuning per problem, since
some methods in comparison have used tuning and some have
not. The qualitative results can be seen in figure 1 and F-
measure results can be seen in table 4. We achieve top per-
formance again in all categories except for lb sequence, that
contains abrupt lighting changes, which is compensated for
slowly by our background model. Our DBSS algorithm without
parameter tuning in this table achieves a modest 5th place as a
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(d) Intermittent Object Motion 

(c.3) fall                    (c.4) fountain01        (c.5) fountain02       (c.6) overpass (d.1) abandoned box (d.2) parking        (d.3) sofa              (d.4) street light    (d.5) tram stop     (d.6) winter driveway 

(a) Baseline (b) Camera Jitter (c) Dynamic Background 

(b.1) badminton        (b.2) boulevard       (b.3) sidewalk          (b.4) traffic (a.1) highway        (a.2) office                (a.3) pedestrians     (a.4) PETS2006 (c.1) boats            (c.2) canoe 

(e) Shadow (f) Thermal 

(e.1) backdoor      (e.2) bungalows       (e.3) bus station       (e.4) copy machine  (e.5) cubicle            (e.6) people in shade (f.1) corridor          (f.2) dining room  (f.3) lake side        (f.4) library            (f.5) park 

Fig. 2: CDnet 2012 [7] results: identical layout to figure 1 with multiple rows. The ground truth includes is marked with various
shades of gray – dark gray to indicate shadows, mid gray for ignored regions for evaluation, and light gray for areas ignored per
frame, usually the outline of objects where foreground/background assignment is ambiguous.

result of suffering during lb, but the DSPSS remains at the top
place regardless.

5 CONCLUSION

A new background subtraction method was presented and
its efficacy and effectiveness was validated with extensive
testing. The method is an extension to an existing model,
namely RPCA, but with additional noise and motion transfor-
mation components, new sparsity-inducing norms, and group-
structured sparsity constraints. Our sparsity models dynam-
ically evolve to best describe genuine foreground objects in
the scene, which gives them a significant advantage when
it comes to handling dynamic backgrounds, or foreground

aperture. To make the problem computationally scalable we
proposed using deterministic and randomized CSSP for low-
rank matrix estimation and analyzed its efficacy rigorously.
Moreover, a novel tandem initialization method is used to
speed up convergence and remove ghosting effects persisting
in RPCA-based methods. Specifically, our model is able to learn
a robust background model that can change over time, to cope
with a variety of scene changes, in comparison with the existing
more heuristic RPCA-based methods. It proves itself to have
excellent performance in dealing with heavy noise, thanks to
the approximated RPCA model where the residual error (noise)
is discarded into a third matrix in the decomposition. In addi-
tion, estimation of background motion induced by a jittering
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TABLE 2: CDNet 2012 [7] dataset: F-measure results of all the categories for the most competitive methods. Table accurate as of
August 2017, with results from CDnet http://changedetection.net/. The online chart keeps updating.

method Baseline Camera Jitter Dynamic Background Intermittent Motion Shadow Thermal mean
LSD-GSRPCA [19] .7173 (19) - - - - - -

SPGFL [20] .9469 (3) - .8519 (5) .6988 (7) - .8156 (5) -
SGMM [36] .8594 (18) .7251 (13) .6380 (18) .5397 (16) .7944 (14) .6481 (18) .7008 (17)

ViBe+ [37] .8715 (17) .7538 (10) .7197 (11) .5093 (18) .8153 (9) .6646 (17) .7224 (16)
SC-SOBS [38] .9333 (7) .7051 (16) .6686 (17) .5918 (12) .7786 (17) .6923 (16) .7283 (15)

PCP+Alignment [35] .9109 (16) .7218 (15) .6941 (14) .5371 (17) .7885 (16) .7192 (12) .7286 (14)
PSP-MRF [39] .9289 (8) .7502 (11) .6960 (13) .5645 (14) .7907 (15) .6932 (15) .7372 (13)

PBAS [40] .9242 (13) .7220 (14) .6829 (15) .5745 (13) .8597 (6) .7556 (9) .7532 (12)
DECOLOR [12] .9215 (15) .7776 (9) .7084 (12) .5945 (11) .8317 (7) .7081 (14) .7570 (11)

SGMM-SOD [41] .9223 (14) .6988 (17) .6826 (16) .6957 (8) .8613 (5) .7081 (13) .7624 (10)
DP-GMM [32] .9286 (11) .7477 (12) .8137 (7) .5418 (15) .8127 (10) .8134 (6) .7763 (9)

2-pass RPCA [15] .9281 (12) .8152 (6) .7818 (10) .6826 (9) .8063 (13) .7597 (8) .7956 (8)
MBS V0 [42] .9287 (10) .8367 (5) .7904 (9) .7092 (6) .8063 (12) .8115 (7) .8092 (7)

MBS [43] .9287 (9) .8367 (4) .7915 (8) .7568 (5) .8262 (8) .8194 (3) .8217 (6)
SuBSENSE [44] .9500 (2) .8150 (7) .8180 (6) .6570 (10) .8990 (3) .8170 (4) .8260 (5)

PAWCS [45] .9397 (6) .8137 (8) .8938 (4) .7764 (4) .8710 (4) .8324 (2) .8545 (4)
CDet [46] .9458 (4) .8367 (3) .8991 (3) .8039 (1) .8122 (11) .8337 (1) .8552 (3)

DBSS .9430 (5) .8804 (1) .9005 (2) .7837 (3) .9107 (2) .7195 (11) .8563 (2)
DSPSS .9664 (1) .8662 (2) .9057 (1) .7870 (2) .9177 (1) .7328 (10) .8626 (1)

TABLE 3: SABS [5] dataset: F-measure results for nine challenges; only the most competitive algorithms were included.

method basic dynamic bootstrap darkening light noisy camouflage no H264, mean
background switch night camouflage 40kbps

Stauffer [47] .800 (4) .704 (6) .642 (6) .404 (8) .217 (7) .194 (7) .802 (5) .826 (5) .761 (7) .594 (8)
Maddalena [34] .766 (6) .715 (4) .495 (8) .663 (6) .213 (8) .263 (6) .793 (6) .811 (6) .772 (6) .610 (7)

Li 1 [48] .766 (6) .641 (7) .678 (5) .704 (4) .316 (4) .047 (8) .768 (7) .803 (7) .773 (5) .611 (6)
Barnich [49] .761 (7) .711 (5) .685 (4) .678 (5) .268 (6) .271 (5) .741 (8) .799 (8) .774 (4) .632 (5)

Zivkovic [50] .768 (5) .704 (6) .632 (7) .620 (7) .300 (5) .321 (4) .820 (4) .829 (4) .748 (8) .638 (4)
DP-GMM [32] .853 (2) .853 (2) .796 (3) .861 (2) .603 (1) .788 (2) .864 (3) .867 (3) .827 (2) .812 (2)

DBSS .823 (3) .701 (3) .798 (2) .850 (3) .496 (3) .715 (3) .878 (2) .890 (2) .806 (3) .784 (3)
DSPSS .867 (1) .871 (1) .822 (1) .907 (1) .570 (2) .897 (1) .894 (1) .913 (1) .841 (1) .842 (1)

TABLE 4: i2R [6] and WallFlower [4] dataset F-measure results. We report DBSS* and DSPSS* without parameter tuning, although
the dataset allows this.

method cam ft ws mc lb sm ap br ss mean
Li 2 [6] .1596 (11) .0999 (14) .0667 (14) .1841 (14) .1554 (14) .5209 (14) .1135 (14) .3079 (14) .1294 (14) .1930 (14)

SSGoDec [27] .0903 (12) .2574 (12) .4473 (13) .4344 (13) .3602 (13) .6554 (11) .5713 (10) .3561 (13) .2751 (12) .3830 (13)
Stauffer [47] .7570 (6) .6854 (9) .7948 (10) .7580 (11) .6519 (8) .5363 (13) .3335 (13) .3838 (12) .1388 (13) .4842 (12)
Culibrk [33] .5256 (8) .4636 (11) .7540 (11) .7368 (12) .6276 (11) .5696 (12) .3923 (12) .4779 (11) .4928 (11) .5600 (11)

DECOLOR [12] .3416 (10) .2075 (13) .9022 (8) .8700 (6) .646 (10) .6822 (8) .8169 (4) .6589 (7) .7480 (6) .6525 (10)
Maddalena [34] .6960 (7) .6554 (10) .8247 (9) .8178 (10) .6489 (9) .6677 (10) .5943 (8) .6019 (9) .5770 (9) .6760 (9)

DP-GMM [32] .7876 (4) .7424 (8) .9298 (5) .8411 (8) .6665 (7) .6733 (9) .5675 (11) .6496 (8) .5522 (10) .7122 (8)
PCP [35] .5226 (9) .8650 (5) .6082 (12) .9014 (5) .7245 (6) .7785 (6) .5879 (9) .8322 (6) .7374 (7) .7286 (7)

LSD-GSRPCA [19] .7613 (6) .8371 (6) .9050 (7) .8357 (9) .7313 (5) .7362 (7) .7222 (7) .5842 (10) .7214 (8) .7594 (6)
SPGFL [20] .8574 (4) .9322 (2) .9856 (1) .9744 (1) .8840 (1) .8265 (4) .7739 (5) .8394 (5) .8029 (5) .8751 (4)

DBSS* .8173 (5) .7842 (7) .9282 (6) .8565 (7) .5838 (12) .8071 (5) .7379 (6) .8645 (4) .8586 (4) .8042 (5)
DBSS, tuned .9277 (2) .8808 (4) .9535 (4) .9093 (4) .7563 (4) .8950 (2) .8343 (3) .9196 (2) .9377 (2) .8904 (2)

DSPSS* .8993 (3) .9105 (3) .9674 (3) .9228 (2) .7680 (3) .8499 (3) .8593 (2) .8922 (3) .9163 (3) .8873 (3)
DSPSS, tuned .9610 (1) .9575 (1) .9719 (2) .9093 (3) .8725 (2) .9156 (1) .9098 (1) .9440 (1) .9561 (1) .9331 (1)

or moving camera is performed simultaneously with low-rank
approximation, that results in excellent performance in videos
with large camera-induced motion. Our model is however, yet
another batch method, as the frames need to be stored for
obtaining a background model; although we alleviated this
limitation to some extent by the CSSP, further optimization is
required to achieve real-time performances. This could include
a learning stage followed by incremental updates as the frames
arrive. Spatio-temporal constraints are also another area for
future studies. Our model fails to handle some sudden illumi-
nation and lighting changes as the background model slowly
adapts to these. Furthermore, our model could take advantage
from a mechanism to handle shadows with more sophisticated
processing.
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