
1
Abstract—The present paper addresses to the research in the area

of regression testing with emphasis on automated tools as well as
prioritization of test cases. The uniqueness of regression testing and
its cyclic nature is pointed out. The difference in approach between
industry, with business model as basis, and academia, with focus on
data mining, is highlighted. Test Metrics are discussed as a prelude to
our formula for prioritization; a case study is further discussed to
illustrate this methodology. An industrial case study is also described
in the paper, where the number of test cases is so large that they have
to be grouped as Test Suites. In such situations, a genetic algorithm
proposed by us can be used to reconfigure these Test Suites in each
cycle of regression testing. The comparison is made between a
proprietary tool and an open source tool using the above-mentioned
metrics. Our approach is clarified through several tables.

Keywords—APFD metric, genetic algorithm, regression testing,

RFT tool, test case prioritization, selenium tool.

I. INTRODUCTION

S distinct from unit testing, integration testing, and user
acceptance testing that take place during development

phase, regression testing takes place during the maintenance
phase. It is estimated that some 60% of project cost is
associated with maintenance. A great deal of research has
therefore been conducted about regression testing both in
academia and industry. An important milestone is the
availability of software tools that support regression testing.
While RFT is an IBM tool that integrates with its Rational
Manager, Selenium is an open source tool. Initial automation
was confined to capturing key strokes of testers in a computer
terminal; there has been rapid progress in building a
comprehensive database of test data with these tools and
consequent data mining. This is even more critical with agile
software development methodology. Our research makes
extensive use of such databases. For projects completed by us,
we dealt with test cases and detected faults. For severity
rating, we relied on our testers. The severity classification was
kept unchanged in subsequent cycles of maintenance. The
priority of test cases was established with a formula that is

K. Hema Shankari is Research Scholar, Bharath University, Assistant

Professor, Department of Computer Science, Women’s Christian College
Chennai, India (e-mail: hems_banu@yahoo.com).

R. Thirumalaiselvi is Research Supervisor, Assistant Professor, Govt. Arts
College (Men), Nandhanam, Chennai, Indian (e-mail: sarasselvi@gmail.com).

N. V. Balasubramanian is Formerly founding Head of Computer Science
Department, Professor at City University of Hong Kong, Professor Emeritus
at R.M.K. Engineering College, Chennai, India (e-mail:
laks.balu@gmail.com).

explained later. In our discussions with industry, it became
apparent that the number of test cases is so large that they
have to be grouped as 'Test Suites'.

Consequently, the formula presented must be applied to
Test Suites rather than to test cases. Another important
observation was the industry's focus on building business
models to describe software functionality, and generation of
Test Suites based on business model. This means that a
manufacturing industry will approach regression testing
differently to retail industry. Software development companies
in India like Infosys and TCS divided their organizations into
so called 'verticals'. This made our task difficult since we
attempt to develop a generic approach to regression testing
irrespective of the industry. The next sections of this paper
elaborate the building of business model and the methodology
developed by us for regression testing. A case study is
discussed to illustrate our approach. The genetic algorithm
described in this paper is meant for larger industrial projects,
and is thus a proposal only.

II. ISSUES FOR REGRESSION TESTING IN INDUSTRY
APPLICATION

A. Issues

Large scale business systems cannot accurately define
changes made to it. The number of test cases expands
dramatically with combination of several parameters [2].
Complete regression testing is thus impractical [3], [4].
Automated tools are helpful. But, they do not come with any
Regression Test Framework. Testing Tools integrate with
Software Development Frameworks like IBM Eclipse.
Functional testing, based on specific business needs of
industry, does require considerable human intervention. With
limited time and resources, a methodology is needed for test
planning based on risk assessment and cost estimation so that
revisions can be completed by given deadlines [8].

1. Methodology

Test models that we surveyed in the literature make too
much reliance on software development process. They do not
consider the uniqueness of regression testing. Different from
unit testing, integration testing, and performance testing,
regression testing is based primarily on accumulation of data
and careful analysis subsequently. Regression testing is also
cyclic.

To set up an application description model, expert
knowledge of the industry is needed [5]. Rule based engine is

Performance Analysis of Proprietary and
Non-Proprietary Tools for Regression Testing Using

Genetic Algorithm
K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:5, 2017

573International Scholarly and Scientific Research & Innovation 11(5) 2017 scholar.waset.org/1307-6892/10007131

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:1
1,

 N
o:

5,
 2

01
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

00
71

31

http://waset.org/publication/Performance-Analysis-of-Proprietary-and-Non-Proprietary-Tools-for-Regression-Testing-Using-Genetic-Algorithm/10007131
http://scholar.waset.org/1307-6892/10007131

prevalent in the industry. Risk assessment model is also
concurrently needed. These drive regression test
implementations. The steps in Regression Testing include
scanning and analysis of source codes in the new version,
analysis of changes based on business model, impact analysis,
determination of test ranges by expert analysts, grouping of
test cases as Test Suites, risk analysis, cost estimation, and
supplementing existing test cases in the library with new ones.

2. Limitations of the APFD Metric

As pointed out in our previous paper [1], the APFD metric
relies on two assumptions; namely, all faults are treated
equally in terms of severity, and the costs associated with test
cases are the same. Neither of these assumptions are valid
leading to unsatisfactory results. The various alternative
metrics have also been included in [1] such as Average
Percentage Block Coverage, Average Percentage Decision
Coverage, Average Percentage Statement Coverage, Average
Percentage Loop Coverage, and Average Percentage
Condition Coverage. The Problem Tracking Reports (PTR)
Metric is another way that the effectiveness of a test
prioritization may be analyzed. PTR is calculated as:

Ptr(t,p) = nd / n (1)

Let t- be the test suite under evaluation, n- the total number
of test cases in the total number of test cases needed to detect
all faults in the program under test p.

III. REGRESSION TESTING METHODS FOR INDUSTRY-

ORIENTED APPLICATION

For regression testing of industrial applications, we need a
platform that supports decision making; the platform should
include, but not limited to, business system rules, description
of the application (Use Case diagrams), analysis of changes
based on requirements, cost assessment, risk assessment, and
management of test cases.

A. Extraction and Loading of Business Rules

Business rules are defined as constraints and norms or
business structure and operation. They are important resources
for enterprise business operations and management decisions.
For more details on sources for business rules, see [1]. All
these rules are added to a rule based engine that basically
operates on If-Then-Op format. In addition, there are software
tools that examine source code and highlight changes made in
the new version.

By and large, software development in these days takes
place under the umbrella of a Development Environment
(Haskell for example uses Cabal). Unit testing is included in
such an environment (HUnit is Haskell testing platform).
Regression testing too makes use of IDE (Haskell uses
QuickCheck for such testing, and it includes randomized
testing for enhancing tester's productivity). The Eclipse
Environment from IBM is comprehensive in that it spans
several programming languages. We thus see the dichotomy
between business model on one hand and programming

support environment on the other hand, making it difficult for
researchers to strike a common ground [6].

IV. CASE STUDY

A. Simple Case Study

This was developed in Java by students and tested using
Selenium Tool Tester. Six test cases were used to test its
functionality and they were prioritized by using the formula
for test case ranking:

TCR = (S * N) / time (2)

In this formula, N is the number of faults detected while

using the test case, time is the number of minutes of testing
with this test case, and S is the severity value of the fault
detected (as assigned by the tester). When more than one fault
is detected, a weighted summation is used in the formula. Full
explanation for the formula is given in our previous paper [1]
presented at the Multi Conference of Engineers and Computer
Scientists 2016. There were six test cases and eight faults were
detected during these tests. The table gives in binary format
which of the faults were detected during the six tests (zero
representing absence of detection and one representing
detection). However, once risk severity and time for testing
are included, the priority sequence became T4, T2, T5, T1,
T6, T3 as explained in our paper [1].

B. Factors Consider for New Proposed Approach

Three factors that were considered for prioritization [1]
include Rate of Fault Detection, Percentage of Fault Detected,
and Risk Detection Ability [7]. To every fault, a Risk value
has been allocated based on a 10-point scale expressed as
 Very High Risk: RV of 10
 High Risk: RV of 8
 Medium Risk: RV of 6
 Less Risk: RV of 4
 Least Risk: RV of 2.

For test case, Tk and RDAk have been computed using
severity value Sk. Nk is the number of defects found by Tk,
and time k is the time needed by Tk to find those defects. The
equation for RDA can be expressed as:

RDAk = (Sk * Nk) / time k (3)

B. Test Case Ranking

For ranking the test cases, all we need to do is sum up the
three different components that are RFD, PFD, and RDA. This
is given below in the form of an equation:

TCRk = RFDk + PFDk + RDAk (4)

C. IIGRTCP (Improvised Industry Oriented Genetic
Algorithm for Regression Test Case Prioritization)

The proposed prioritization technique can be expressed as
Input: Test suite TK and test case ranking (TCR) for every

test case are inputs of the algorithm.
Output: Prioritized order of test cases.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:5, 2017

574International Scholarly and Scientific Research & Innovation 11(5) 2017 scholar.waset.org/1307-6892/10007131

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:1
1,

 N
o:

5,
 2

01
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

00
71

31

http://waset.org/publication/Performance-Analysis-of-Proprietary-and-Non-Proprietary-Tools-for-Regression-Testing-Using-Genetic-Algorithm/10007131
http://scholar.waset.org/1307-6892/10007131

Algorithm: A web based project had a total of 244 test
cases. Here, these test cases were made into several sets, and
each set of test cases is called a 'Test Suite'. So, while Tn is
Test Suite n, tjk is the test case j in Test Suite k. For
prioritization, a genetic algorithm was used.
1. Organize, manually, test cases as sets in Test Suites
2. Carry out Regression Testing, tracking defects, measuring

test time, and assigning severity manually (very high risk
= 10 etc. to least risk = 2)

3. Select Test Suites for mutation based on the formula
4. Perform mutation of selected Test Suites
5. Repeat steps 2, 3, 4

Only the top 80% of Test Suites were selected for mutation,
bottom 20% being left untouched. Mutation involved a simple
(and random) swap of test cases between pairs of Test Suites.
So, the genetic algorithm did not increase the number of Test
Suites or the number of test cases, but merely the way the
grouping was done. Another approach is mentioned in [9].

V. SELENIUM TOOL
A. Features of Selenium Tool

For web applications, we have a portable software called
Selenium. We use this tool for both recording and subsequent
playback; for authoring test cases, we do not need to learn
Selenium IDE; we need, however, to learn a test-specific
language Selenese; with this, we can write tests in a number of
popular programming languages, including C#, Groovy, Java,
Perl, PHP, Python, Ruby, and Scala. The tests can then be run
against most modern web browsers. Selenium deploys on
Windows, Linux, and OSX platforms. It is open-source
software, released under the Apache2.0 license, and can be
downloaded and used without charge.

Selenium is at present the most powerful freeware of open
source automation tool. It is developed by Jason Huggins and
his team. This is release under the Apache2.0 license and can
be downloaded and used without any charge. Selenium is easy
to get started with for simple functional testing of web
application. It supports record and playback for testing web
based application. Selenium supports multithreading feature,
i.e. multiple instance of script can be run on different
browsers.

Test Maker integrates Selenium to provide the important
features and benefits:
1. Selenium supports languages such as Java, Perl, Python,

C# Ruby, Groovy, Java Script, and VBScript etc.
2. Selenium support many operating systems like Windows,

Macintosh, Linux, Unix etc.
3. Selenium supports many browsers like Internet explorer,

Chrome, Firefox, Opera, and Safari etc.
4. Selenium can be integrated with ANT or Maven kind of

framework for source code compilation.
5. Selenium can be integrated with Test NG testing

framework for testing our applications and generating
reports.

6. Selenium can be integrated with Jenkins or Hudson for
continuous integration.

7. Selenium can be integrated with other open Source tools
for supporting other features

8. Selenium can be used for Android, IPhone, Blackberry
etc. based application testing.

9. Selenium supports very less CPU and RAM consumption
for script execution.

10. Selenium comes with different component to provide
support to its parent which is Selenium IDE, Selenium
Grid and Selenium Remote Control (RC).

VI. EXPERIMENT AND ANALYSIS

It is best to describe the analysis in the form of tables.

TABLE I
FAULT MATRIX

Faults /
Test Cases

F1 F2 F3 F4 F5 F6 F7 F8

T1 X X X X X X X

T2 X

T3 X X

T4 X X X

T5 X X X

T6 X X X

In Table I, the regression test suite T contains six test cases

with the initial ordering as T1, T2, T3, T4, T5, T6.

TABLE II
BINARY REPRESENTATION OF TEST CASES

Test cases Binary form

T1 11011111
T2 10000000
T3 10001000
T4 01100001
T5 00010101
T6 01010100

TABLE III

NUMBER OF FAULTS, EXECUTION TIME AND RISK SEVERITY OF FAULTS FOR

EVERY TEST CASE

Test Cases No of faults covered Execution time Risk severity
T1 2 12 8
T2 3 14 10
T3 1 11 4
T4 4 10 20
T5 2 10 12
T6 2 13 6

This example in Table III assumes a priori knowledge of the

faults detected by T in the program P.

TABLE IV
RFD, PFD, RDA for Test Cases T1 .. T6

Test cases RFD PFD RDA

T1 1 2 1.333

T2 1.285 3 2.142

T3 0.54 1 0.3636

T4 2.4 4 8

T5 1.2 2 2.4

T6 0.9 2 0.923

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:5, 2017

575International Scholarly and Scientific Research & Innovation 11(5) 2017 scholar.waset.org/1307-6892/10007131

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:1
1,

 N
o:

5,
 2

01
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

00
71

31

http://waset.org/publication/Performance-Analysis-of-Proprietary-and-Non-Proprietary-Tools-for-Regression-Testing-Using-Genetic-Algorithm/10007131
http://scholar.waset.org/1307-6892/10007131

The values of RFD, PFD, and RDA for test cases T1 ... T6
are calculated by using (1), (2) and (4), respectively. Table IV
represents the values for all three factors which are RFD, PFD,
RDA for testcaseT1 .. T6, respectively.

TABLE V

TEST CASE RANKING FOR T1 .. T6 RESPECTIVELY

Test cases
Test case ranking

TCR=RFD+PFD+RDA
T1 4.33

T2 6.427

T3 1.909

T4 14.4

T5 5.6

T6 3.8

In Table V, the test case ranking for each test case is

calculated.

TABLE VI
TEST CASES ORDERING FOR PROPOSED APPROACH AND PREVIOUS WORK

Test cases Prioritized order
T1 T4

T2 T2

T3 T5

T4 T1

T5 T6

T6 T3

In Table VI, the Test cases are arranged in decreasing order

of TCR for the purpose of execution. Test cases are ordered in
such a manner that those with greater TCR value execute first.

A. Industry Based Case Study

APGPCL, the First Gas Power Plant in A.P. and South
India APGPCL is the first gas based power plant to be set up
in Andhra Pradesh and South India – a tribute to the
pioneering efforts of APSEB and the entrepreneurial spirit of
Industries in Andhra Pradesh. APGPCL is an innovative
business model of Public-Private Partnership. APGPCL is the

lowest cost Gas based electricity generating station in the
country. Both Stage-I and Stage-II Plants of APGPCL were
built ahead of the scheduled time and within the estimated
costs. This case study presents a complex industry application.
They exemplify, based on a concrete case study, how test
engineers can now work with the Integrated Test
Environment.

Here, the test cases were made into several sets, each set of
test cases being called a Test Suite. So, while Tn is Test Suite
n, tjk is the test case j in Test Suite k. For prioritization, a
genetic algorithm was used.

The process includes:
Step 1. Organize manually the test cases as sets in Test
Suites
Step 2. Identify the scope of the next release and determine
which change requests will be included in the next build.
Step 3. Document the system requirements, functional
requirements, functional specification, and implementation
plans for each grouping of change requests.
Step 4. Implement the change.
Step 5. Test or verify the change. Unit testing is done by the
person whom and the change, usually the programmer.
Function testing tests a functional area of the system to see
that everything works as expected.
Step 6. Release.

Only the top 80% of Test Suites were selected for mutation,
the remaining 20% being left untouched. Mutation involved a
simple (and random) swap of test cases between pairs of Test
Suites. So, the genetic algorithm did not increase the number
of Test Suites or the number of test cases, but merely the way
the grouping was done.

The table give the number of faults detected, execution
times, and weighted risk severity for the Test Suites when
Regression Testing was done the first time, and Test Case
Ranking of the Suites based on the formula presented in the
industry case study.

For want of space, only six of the 244 test cases, randomly
selected, are presented in the Table VII.

TABLE VII

TEST CASES FOR THE INDUSTRY CASE STUDY

Test Case Test Case Name Description Test Case Priority

1 Login Access – APGPCL Control Panel – Valid Credentials Control Panel of APGPCL application with valid credentials 5

2
Login Access – APGPCL Control Panel – Invalid

Credentials
Control Panel of APGPCL application with invalid credentials 5

3 Accessing APGPCL Webpage Control Panel Application
Accessing the Actual APGPCL application from the Control

Panel Application
2

4 Password Reset Page -APGPCL Control Panel Password reset for the APGPCL Control Panel 3

5
Password Reset Page-APGPCL Control Panel – With Valid

email
Password reset for a valid APGPCL User 4

6
Password Reset – APGPCL Control Panel - With Invalid

email
Password reset for an invalid APGPCL User 3

B. Comparison with the Previous Work

In this section, the proposed prioritized order is compared
with the previous work.

TABLE VIII
APFD % FOR RFT TOOL AND SELENIUM TOOL

Prioritization Technique APFD %

IIGRTCP with RFT Tool 88%

IIGRTCP with Selenium Tool 91%

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:5, 2017

576International Scholarly and Scientific Research & Innovation 11(5) 2017 scholar.waset.org/1307-6892/10007131

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:1
1,

 N
o:

5,
 2

01
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

00
71

31

http://waset.org/publication/Performance-Analysis-of-Proprietary-and-Non-Proprietary-Tools-for-Regression-Testing-Using-Genetic-Algorithm/10007131
http://scholar.waset.org/1307-6892/10007131

Fig. 1 APFD percentage for RFT Tool and Selenium Tool

VII. CONCLUSION

The difference between Industry approach and that adopted
by researchers has been highlighted; while business model
forms the backbone for regression testing, data mining of test
data gathered with software tools is used to test hypotheses of
researchers. For simple case studies, use of a formula
proposed by us is sufficient to prioritize test cases; for
industry-sized software, a genetic algorithm developed by us
is needed in addition to the reconfiguration of Test Suites
comprising of test cases before our formula can be applied.
We need to use software tools to make use of our proposal; we
have discussed two of them - IBM's RFT and open source
Selenium tool. For quantifying data, metrics are needed, and
this aspect has been elaborated.

There is an urgent need to introduce automation for
assigning weight to severity of defects discovered during
testing. Work is in progress to use artificial neural networks,
but this must be done sector by sector. The finance sector
seems to be the best starting point since software for this
sector is constantly undergoing modification not only to meet
increasing demand from bank clients but also the ever-
changing government legislation. Training of ANN may be
done by different professional testers, and it would be
interesting to see if the weighting assigned by the software for
defect severity varies with training.

Other approaches to grouping test cases under Test Suites
are also under scope for future research [10]-[12].

REFERENCES
[1] K Hema Shankari, R. Thirumalai Selvi, and N. V. Balasubramanian,

"Industry Based Regression Testing Using IIGRTCP Algorithm and
RFT Tool," Lecture Notes in Engineering and Computer Science:
Proceedings of The International Multi Conference of Engineers and
Computer Scientists 2016, 16-18 March, 2016, Hong Kong, pp473-478.

[2] G. Rothermel, R. Untch, C. Chu and M. Harrold, “Test case
prioritization: An empirical study,” In Software Maintenance, 1999.
(ICSM’ 99) proceedings. IEEE International conference, on pages 179-
188 IEEE, 1999.

[3] A. Pravin and Dr. S. Srinivasan, “An Efficient Algorithm for Reducing
the Test Cases which is Used for Performing Regression Testing,” 2nd
International Conference on Computational Techniques and Artificial
Intelligence (ICCTAI'2013) March 17-18, 2013.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing test cases
for regression testing,” Proc. The 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis, Portland, Oregon,
U.S.A., August 2000, 102–112.

[5] W. Wong, J. Horgan, S. London and H. Agrawal, “A study of effective
regression testing in practice,” In Proc. of the Eighth Intl. Symp. On
Softw Rel. Engr., pages 230–238, Nov. 1997.

[6] R. Beena, Dr. S. Sarala, “Code Coverage Based Test Case Selection And
Prioritization,” International Journal of Software Engineering &
Applications (IJSEA), Vol. 4, No.6, November 2013.

[7] R. Kavitha, N. Sureshkumar, “Test Case Prioritization for Regression
Testing based on Severity of Fault,” College of Engineering and
Technology Madurai, Tamilnadu, India (IJCSE) International Journal on
Computer Science and Engineering 2010.

[8] Samaila Musa, Abu Bakar Md Sultan, Abdul Azim Bin Abd Ghani,
Salmi Baharom, “A Regression Test Case Selection and Prioritization
for Object-Oriented Programs using Dependency Graph and Genetic
Algorithm” Research Inventry: International Journal of Engineering And
Science Vol.4, Issue 7 (July 2014), PP 54-64 Issn (e):2278-4721, Issn
(p):2319-6483.

[9] Sujatha, Mohit Kumar and Varun Kumar, (2010) "Requirements based
Test Case Prioritization using Genetic Algorithm", International Journal
of Computer Science and Technology, Vol.1, No, 2, pp.189-191.

[10] Q.-u.-a. Farooq, M. Z. Z. Iqbal, Z. I. Malik, and A. Nadeem. An
approach for selective state machine based regression testing. In
Proceedings of the 3rd International Workshop on Advances in Model-
based Testing (A-MOST 2007), pages. 44–52, New York, NY, USA,
2007.ACM.

[11] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. “Test case
prioritization: an empirical study” Testing European Journal of Scientific
Research, ISSN 1450-216X Vol.55 No.2 (2011), pp.261-274.

[12] S. Elbaum, A. G. Malishevsky and G. Rothermel, (2001), “Incorporating
varying test costs and fault severities into test case Prioritization”, 23rd
International Conference.

APFD percentage

IIGRTCP with RFT Tool

IIGRTCP with Selenium
Tool

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:5, 2017

577International Scholarly and Scientific Research & Innovation 11(5) 2017 scholar.waset.org/1307-6892/10007131

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:1
1,

 N
o:

5,
 2

01
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

00
71

31

http://waset.org/publication/Performance-Analysis-of-Proprietary-and-Non-Proprietary-Tools-for-Regression-Testing-Using-Genetic-Algorithm/10007131
http://scholar.waset.org/1307-6892/10007131

