Journal article Open Access

A Study on the Power Control of Wind Energy Conversion System

Mehdi Nafar; Mohammad Reza Mansouri


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Brahim Nait-kaci, Mamadou L. Doumbia, "Active and Reactive power control of a doubly fed induction generator for wind applications", IEEE 2009.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Arantxa Tapia, Gerardo Tapia, J. Xabier Ostolaza, "Modeling and Control of a Wind Turbine Driven doubly fed Induction Generator", IEEE 2003.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">J. Ben Alaya, A Khedher and M. F. Mimouni, "DTC, DPC and Nonlinear Vector Control Strategies Applied to the DFIG operated at Variable Speed", Journal of Electrical Engineering (IEEE), vol.6, no II, pp. 744-753, 2011.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">A. Nassani, A. Ghazal, and A L. Elshafei, "Speed sensorless control of DFIG based MRAS observer", 14th International Middle East Conference, pp. 476-481. 2010.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">A Luna, F. K. A Lima, P. Rodriguez, E. H. Watanabe and R. Teodorescu, "Comparison of Power Control Strategies for DFIG Wind Turbines", IEEE Trans on Energy Conversion, pp. 2131-2136, 2008.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M. Singh, V. Khadkikar, A. Chandra. Grid synchronization with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system. IET Power Electronics 2011; 41:122e30.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Z. Chen, Compensation schemes for a SCR converter in variable speed wind power systems. IEEE Transactions on Power Delivery 2004; 192:813e21.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">S. Engelhardt, I. Erlich, C. Feltes, J. Kretschmann, F. Shewarega. Reactive power capability of wind turbines based on doubly fed induction generators. IEEE Transactions on Energy Conversion 2011; 261:364e72.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Kayikçi. M, J. Milanovic. Reactive power control strategies for DFIG-based plants. IEEE Transactions on Energy Conversion 2007; 222:389e96.
[10]	M. Machmoum, A. Hatoum, T. Bouaouiche. Flicker mitigation of a doubly-fed induction generator for wind energy conversion system. Mathematics and Computers in Simulation 2010; 812:433e45.
[11]	M. Shahbazi, P. Poore, S. Saadate, M.R Zalghadri. Five-leg converter topology for wind energy conversion system with doubly fed induction generator. Renewable Energy 2011; 3611:3187e94.
[12]	O. Soares, H. Gonçalves, A. Martins, A. Carvalho. Nonlinear control of the doubly fed induction generator in wind power systems. Renewable Energy 2010; 358:1662e70.
[13]	F. Poitiers, T. Bouaouiche, M. Machmoum. Advanced control of a doubly-fed induction generator for wind energy conversion. Electric Power Systems Research 2009; 797:1085e96. 
[14]	T.K.A. Brekken, N. Mohan. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions. IEEE Transaction on Energy Conversion 22 (March (1)) (2007) 129–135. 
[15]	Z. S., Changliang Xia, T. Shi. Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect. Applied Energy 87 (2010) 3283–3293. 
[16]	A. Gaillard, P. Poure, S. Saadate, M. Machmoum. Variable Speed DFIG Wind Energy System for Power Generation and Harmonic Current Mitigation. Renewable Energy 34, 2009 pp 1545-1553. 
[17]	B. Robyns, B. Francois, P. Degobert, J. P. Hautier, Vector control of induction machines, Springer-Verlag London 2012. 
[18]	P.C. Krause Analysis of electric machinery. New York: McGraw-Hill; 1986. 
[19]	H. M. Jabr and N. C. Kar, "Neuro-fuzzy vector control for doubly-fed wind driven induction generator," in Proc. of the IEEE Electrical Power Conference, pp. 236 - 241, 2007.
[20]	H. M. Jabr and N. C. Kar, "Leakage flux saturation effects on the transient performance of wound-rotor induction motor," Journal of Electric Power Systems Research, Vol.78, No.7, pp.1280-1289, 2008.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">DFIG</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">power quality improvement</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">wind energy conversion system</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">WECS</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">fuzzy logic</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">RSC</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">GSC</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">inverter.</subfield>
  </datafield>
  <controlfield tag="005">20190409132454.0</controlfield>
  <controlfield tag="001">1130465</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Mohammad Reza Mansouri</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">357743</subfield>
    <subfield code="z">md5:1a6f4c4a6135e2bb054342edf41356b8</subfield>
    <subfield code="u">https://zenodo.org/record/1130465/files/10007112.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-04-05</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-waset</subfield>
    <subfield code="o">oai:zenodo.org:1130465</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Mehdi Nafar</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Study on the Power Control of Wind Energy Conversion System</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-waset</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">The present research presents a direct active and reactive power control (DPC) of a wind energy conversion system (WECS) for the maximum power point tracking (MPPT) based on a doubly fed induction generator (DFIG) connected to electric power grid. The control strategy of the Rotor Side Converter (RSC) is targeted in extracting a maximum of power under fluctuating wind speed. A fuzzy logic speed controller (FLC) has been used to ensure the MPPT. The Grid Side Converter is directed in a way to ensure sinusoidal current in the grid side and a smooth DC voltage. To reduce fluctuations, rotor torque and voltage use of multilevel inverters is a good way to remove the rotor harmony.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1130464</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1130465</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
24
13
views
downloads
All versions This version
Views 2424
Downloads 1313
Data volume 4.7 MB4.7 MB
Unique views 2323
Unique downloads 1313

Share

Cite as