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Abstract—To accelerate the solution for large scale traveling
salesman problems (TSP), a parallel 2-opt local search algorithm
with simple implementation based on Graphics Processing Unit
(GPU) is presented and tested in this paper. The parallel scheme is
based on technique of data decomposition by dynamically assigning
multiple K processors on the integral tour to treat K edges’ 2-opt
local optimization simultaneously on independent sub-tours, where
K can be user-defined or have a function relationship with input size
N . We implement this algorithm with doubly linked list on GPU.
The implementation only requires O(N) memory. We compare this
parallel 2-opt local optimization against sequential exhaustive 2-opt
search along integral tour on TSP instances from TSPLIB with more
than 10000 cities.

Keywords—Doubly linked list, parallel 2-opt, tour division, GPU.

I. INTRODUCTION

HEURISTICS optimization algorithms like 2-opt or 3-opt

have been widely proved useful to optimize permutation

problems, like Traveling Salesman Problem (TSP) or Vehicle

Routing Problem (VRP), and have been widely used for

various applications.

When applying classical sequential 2-opt local search

optimization algorithm with the first evaluation strategy (first

optimization, first accept) for large scale TSP instances

possessing N edges (N > 1000), only one edge is being

locally optimized at one time. While many other edges do

not participate in current edge’s local optimization if they are

not in the range of current edge’s local optimization. One

straightforward solution for this problem is to make multiple

2-opt local search happened simultaneously and independently

for different edges’ local optimization. Comparing different

parallel techniques base on various computing platforms, we

present a parallel 2-opt local search by using technique of

data decomposition working on Graphics Processing Unit

(GPU). The reasons are following: Firstly, parallel granularity

of data decomposition is determined by the volume of data

and can be very large [1]; secondly, GPU provides efficient

multi-threading read/write operation on shared memory.

Any parallel implementation of 2-opt local search needs to

consider one nature attribute of 2-opt for permutation problems

that have ordering, like TSP tour order. This attribute is shown

in Fig. 1: After any one execution of 2-exchange, tour order of

all cities between the related two 2-opt edges has been totally

inverted. Instead of making parallel 2-opt algorithm work on

1-dimension buffer memory where the ordering of cities in

memory represents current TSP tour at any time [2], as shown

in Fig. 2 (a), we propose to make this parallel 2-opt local
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Fig. 1 After each execution of 2-exchange, tour order of all cities between
the related two 2-opt edges has been totally inverted

search algorithm work on doubly linked list for large-scale

TSP. Comparison of these two representation methods are

shown in Fig. 2, parallel 2-opt local search with doubly linked

list only takes O(N) memory.

The paper is organized as follows: Section II presents related

work on parallel 2-opt; Section III reviews advantages of

using doubly linked list as representation for TSP; Section IV

presents our strategy of parallel 2-opt local search algorithm

working on that doubly linked list; Section V includes

experiments and comparison.

II. RELATED WORK

Even though researchers have studied possible parallel

strategies for heuristic 2-opt optimization algorithms since

more than two decades, the principles to explain “parallel

computing” should be classified. Johnson [3], [4] discussed

parallel schemes like “geometric partitioning and tour-based

partitioning” and Verhoeven et al. [5] distinguished parallel

algorithms between data and function parallelism [5] in which

he proposed a tour repartitioning scheme that guarantees their

algorithm will not halt until it has found a minimum for the

complete problem [5]. Luong [6] and Rocki [7] adopt parallel

strategies similar to “function parallelism” which means one

sequential step is executed in parallel, as Rocki [7] tries to

distribute the calculation for one edge’s 2-opt optimization

between threads, but only the first edge’ optimization has

finished, the second edge begins its optimization.

Here, according to the problems presented in Section I, we

propose to adopt a parallelism much like “data parallelism”

as Verhoeven [5] distinguished, but not exactly the same to

dynamically separate the entire tour into disconnected parts

and check 2-opt in these parts simultaneously. Besides, our

parallelism of 2-opt local search optimization algorithm works

on doubly linked list, which economizes memory occupancy

on parallel devices as well as allows two directional local

search.

In our method, to make sure there is no interaction between

massive parallel 2-exchanges, which may cut the integral tour

into disconnected parts, our parallel implementation of 2-opt
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local search exactly follows the concept of local search along

one same tour direction. In this strategy, massive K edges

check their independent 2-opt optimization simultaneously

along the same TSP tour direction, but each edge only checks

its optimization in its closest N/K neighboring edges along

the tour. After these K edges have been optimized locally

in one tour direction, the algorithm begins next K edges’

optimization separately on next independent N/K neighboring

edges until all edges have a chance to be locally optimized.

To enlarge the possibility of accessing one edge’s local

optimization position, we also propose to check each edge’s

optimization among its another N/K neighboring edges in

opposite tour direction. In this way, the algorithm reduces

complexity of original problems and there exist no chance

to divide the tour into disconnected parts or one edge’s 2-opt

optimization would influence another.

III. DOUBLY LINKED LIST AS REPRESENTATION OF TSP

Most TSP tours are represented by using 1-dimension

buffer memory or unidirectional list. A drawback of using

1-dimension memory is shown in Fig. 2 (a), all cities’ memory

position marked by blue color need to be inverted after each

2-opt to begin next 2-opt local search. While the drawback of

using unidirectional list is that the neighborhood local search

for one edge only goes in one direction from this edge.

Here, we propose to use doubly linked list to represent

permutation problems, with which 2-exchange can be easily

executed just by changing the related four cities’ links and

the 2-opt local search can go easily in two directions from

this edge. As shown in Fig. 2 (b), every node (city) is

connected with two and only two neighbor nodes, while

these neighbor cities are not necessary to be adjacency on

memory of a hardware. Doubly linked means that if node A
connects node B, node B should necessarily connect node

A. For TSP applications, every node has one father-link

and son-link, they are used to construct TSP tour solution

and execute 2-exchanges only by operations on links. Here,

which neighbor node acts as father-link or son-link is not

unchangeable because it is the staring node and tour direction

that decide which neighbor node acts as father or son. As

shown in Fig. 2 (b), starting from city V0 as a father node and

V1 as its second visiting city, all nodes marked in blue circles

act as son-links in current TSP tour.

IV. PARALLEL 2-OPT WITHIN TOUR DIVISION

When applying sequential 2-opt local search optimization

algorithm with the “first evaluated, first accept” strategy for

large scale TSP instances, many other edges do not have

chances to participate in current edge’s local optimization.

Here, with the parallel technique of data decomposition,

we test a simple parallel scheme to check K active edges’

possible 2-exchanges on separate N/K sub-tours along the

same tour direction, which also follows the idea of local

search. And we execute the firstly accepted 2-exchanges for

these K active edges simultaneously on GPU side. The overall

parallel scheme is shown in Fig. 3 and the detailed Kernel

function for optimization is presented in Algorithm 1. Before

(a) Permutation order represented by using 1-dimension buffer
memory

(b) Permutation order represented by using doubly linked list

Fig. 2 Comparison of memory operation after one same 2-exchange using
different representation methods for TSP tour order (a): Tour order
represented by using 1D buffer memory. The algorithm needs extra

temporary memory to invert all cities’ position between these two related
2-opt edges because their tour order has been totally inverted. (b): Tour

order represented by doubly linked list. The algorithm just needs to change
links of the related four cities and can go easily in two opposite directions

from current edge

starting the algorithm, initial TSP tour solution has already

been presented by using doubly linked list.

Figs. 3 and 4 explain well about this simple parallel 2-opt

local search strategy. As shown in Fig. 3, for a TSP instance

with N size, the algorithm starts with a random active node

pi acting as the first father-node in the tour. To make sure that

multiple 2-opt optimization happens at correct direction and do

not create independent sub-tours, the algorithm needs to mark

every node’s tour ID : ipi
, which is named as step of “refresh

TSP tour order” in Fig.3 and done easily by using a simple

operation that each city finds its next connected but unvisited

link taking advantage of the doubly linked list. For example,

start from node pi,(i=0,1,...,N−1) with tour ID : ipi = 0, then,

choose one of the two links of pi as the second visiting city

with tour ID : ip1
= 1 and assign every remaining node a

specific tour ID : ip = 2, 3, 4, ...(N − 1) increasing one after

another. For opposite direction, starting from the same node pi
but marking its another link as its son-link, then the integral

tour is inverted by just finding every unvisited son-link. After

this step, the new tour information is copied to GPU global

memory.

Before beginning multiple K edges’ 2-opt optimization on

GPU side, we should activate these K edges. This is easy

by using CUDA programming [8], we begin with a random

non-activated node pa0 as the first active node and mark

other nodes whose ip = ipa0 + k ∗ (N/K), k = 1, 2, ...,K
as the rest active nodes. With every node’s tour ID being

known already, K edges are activated to search and execute

2-opt simultaneously on device side exactly as what the kernel

function shows in Alg. 1.

This parallel 2-opt local search optimization method works

in a way shown in Fig. 4, each active node only checks its

first 2-opt optimization along the same tour direction until

it encounters next active city. In the opposite tour direction,

every edge gets a chance to be optimized among its another
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Fig. 3 Overall algorithm flow of our parallel 2-opt local search algorithm
with dynamic tour division: One inner loop optimize K edges

simultaneously; every edge has been optimized once after finishing the inner
loops, namely one outer loop; edges have chances to be optimized twice

along its two neighboring directions after two outer loops, which makes up
one run in our test. We search and execute 2-exchanges without cutting the

integral TSP tour in the kernel function

Fig. 4 Parallel 2-opt local search with dynamic tour division:
Simultaneously check 2-opt local optimization for different edges (bold

arrows) along the tour. This check stops once the first 2-opt optimization is
found or it reaches to the edge marked by dash line before the next active
red node. Then, invert tour order and check these edges’ local optimization

in another tour direction

local N/K neighboring edges.

To reduce the time taken for copying data from GPU to

CPU side, we propose to refresh tour order directly on GPU

side, shown as “Kernel call 2” in Fig. 3. As we optimize

these K edges in the same tour direction without cutting the

tour, the original tour order is influenced only inside each

independent N/K sub-tours. So we refresh the tour order of

each sub-tour beginning with the tour ID of each pak on GPU

side. After this step, the algorithm begins with next K edges’

optimization in next inner loop until all nodes have one chance

to be optimized in one outer loop.

After the inner loop, the algorithm inverts the tour direction

from the same starting node pi, and provides a chance

that edges can be locally optimized among their another

neighboring N/K edges in the second outer loop.

Algorithm 1 Kernel function: Parallel 2-opt local optimization

on doubly linked list with dynamic tour division along

the same tour direction. Input TSP instance (N size) is

oriented with every node having its unique tour order ip =
0, 1, 2...(N − 1) increasing one by one according to the tour

direction. For each active node pak,k=(0,1,...k), each thread

runs the following same code

Require: Current active node pak , marked as the first node p1;
1: Choose one of the two links from p1 to be p2 according to

current tour direction;
2: Mark exchange link positions for p1 and p2 separately;
3: Choose one of the two links from node p2 to be pt, make sure

pt �= p1;
4: if pt = pak+1 then
5: return
6: else
7: p3 ← pt;
8: while p3 �= pak+1 do
9: Choose one of the two links from node p3 to be p4

according to current tour direction;
10: Mark exchange link positions for p3 and p4 separately;
11: if dis(p1, p3) + dis(p2, p4) less than dis(p1, p2) +

dis(p3, p4) then
12: Execute 2-exchange;
13: break;
14: else
15: p3 ← p4
16: end if
17: end while
18: end if

The complexity of this parallel 2-opt local optimization

method depends on the length of local search for each edge.

For a TSP instance with size N and the number of active

threads is K, for example K = 10, there are totally K edges

are optimized at the same time. The length of local search for

every node equals to N/K. So the total complexity in one run

of this algorithm, which makes sure all edges can be optimized

once, reduces with a division factor of k2 while the step of

refreshing TSP order on GPU side should also be considered,

because it needs maximum O(N/K) complexity.

V. EXPERIMENT

The parallel 2-opt local search optimization methods

presented in this paper work well with user-defined local
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search range (namely the length of N/K). We test this parallel

strategy based on GPU with CUDA programming. However,

different local search ranges for each edge produce various

optimization result for the same initial TSP solution.

In our tests for each TSP instance, we try to find the

best performance of this parallel 2-opt local search algorithm.

So the length of N/K is randomly tested for different TSP

instances at first. we begin with the initial TSP solution

provided by original TSP files from TSPLIB. Visual result of

one test using this parallel 2-opt local search algorithm with

dynamic tour division strategy is shown in Fig. 5, from initial

TSP solution with total distance 261879 in Fig. 5 (a), each

inner loop of the algorithm in Fig. 3 optimizes two or three

edges simultaneously on GPU side with local search range

N/K = 322; after eight runs, the TSP solution for lu980.tsp

reduces to 12460 and can not be optimized further using this

method, as shown in Fig. 5 (i). This process is called one test
in our experiments, which is automatically finished. Average

values of ten tests using this algorithm to optimize the same

initial TSP solutions are shown in Table 1, in which each test

makes sure the tour can not be further optimized. In Table 1,

“distance” indicates the length of final TSP solution; “time(s)”

is the average total time taken in one test, including necessary

time for generating random non-activated starting node, time

for refreshing TSP tour order and time for copying data from

GPU to CPU; “%PDM” is the percentage deviation between

the mean solution and the optimum solution; “%PDB” is

the percentage deviation between the best solution and the

optimum solution; “Runs” indicates the average quantity of

runs in one test to get the final TSP solution; “N/K” is the

experimental local search range for each edge. Besides that,

we also build sequential 2-opt exhaustive search algorithm

working on doubly linked list as comparison. For sequential

exhaustive 2-opt optimization, we also begin with random

starting node pa0, make sure every edge is optimized once

in one run and the TSP solution can not be further optimized

using this 2-opt strategy in one test. The results are shown

in TABLE 2, where “2-opt FIRST” indicates that we adopt

“first optimized first accept” strategy for sequential exhaustive

2-opt optimization algorithm along the tour, and “2-opt BEST”

indicates that the evaluation strategy is “the best optimized,

the first accept”. The time taken in each test also includes

time for generating random non-optimized edges and time

for refreshing TSP tour after each 2-opt optimization. These

tests are executed on laptop with CPU: Inter(R) Core(TM)

i7-4710HQ 2.5GHz, GPU: GeForce GTX 850M.

Compared with Tables 1 and 2, we can conclude that with

appropriate local search range (N/K) for each edge, our

parallel 2-opt local search algorithm with tour division has

the ability to produce similar (see %PDM) or even better

(see %PDB) results compared with sequential exhaustive 2-opt

optimization along the integral tour for each edge. Further

more, the total running time is decreased by using this

parallelism of 2-opt local search algorithm even though we

also count the time for copying data from GPU to CPU.

Three factors affect the final TSP solution when using this

parallel scheme. The first one is the choice of K that can be

user-defined or varied with the input size. The choice of K

should ensure the length of local search (N/K) that should

not be too short for each edge’s local optimization. The second

one is the random choice of staring nodes in Fig. 3. And the

last factor is the initial status of TSP instance, here we use the

given sequence of cities provided in original tsp files.

TABLE I
STATISTICS OF PARALLEL 2-OPT LOCAL SEARCH WITH DYNAMIC TOUR

DIVISION WORKING ON GPU

instance distance time(s) % PDM % PDB Runs N/K
lu980 12724 3.12 12.20 10.03 7.4 437

rw1621 29407.87 14.01 12.89 10.77 8.3 837
mu1979 97603 14.05 12.33 10.68 8.6 837
nu3496 109624.2 28.08 14.03 12.24 9.3 973
tz6117 455373.8 75.86 15.36 13.21 8.7 2000
eg7146 196279.8 121.46 13.85 12.49 9.6 2347
fi10639 596419.8 207.76 14.57 13.38 8 2837

TABLE II
STATISTIC OF SEQUENTIAL EXHAUSTIVE 2-OPT

TSP
Instances

2-opt FIRST
(Sequential)

2-opt BEST
(Sequential)

t(s) %PDM %PDB t(s) %PDM %PDB

lu980 4.35 12.93 11.22 3.81 13.11 11.16
rw1621 14.33 15.06 12.87 13.54 14.52 13.55
mu1979 17.720 11.57 9.61 15.73 13.25 11.56
nu3496 64.19 14.76 13.35 59.02 14.32 12.20
tz6117 176.20 14.99 14.47 170.32 15.53 14.53
eg7146 257.37 13.46 11.11 234.51 13.43 11.53
fi10639 541.73 14.62 13.68 540.88 14.68 14.18

∗ 2-opt FIRST : Sequential 2-opt along the integral tour for each edge with
strategy of first optimized first accepted;

∗ 2-opt BEST : Sequential 2-opt along the integral tour for each edge with
strategy of best optimized first accepted.

(a) Initial (b) 1st run (c) 2nd run (d) 3rd run

(e) 4th run (f) 5th run (g) 6th run (h) 7th run

(i) 8th run

Fig. 5 TSP solution for lu980.tsp after different runs of Fig.3 in one test: (a)
Initial TSP solution according to original TSP files from TSPLIB; (i) After
eight runs of Fig. 3, the TSP solution can not be further optimized by using

this algorithm and reaches to final distance of 12460 in this test.

VI. CONCLUSION

This paper presents a parallel 2-opt local search algorithm

for TSP using doubly linked list to achieve two directional
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local optimization while remaining less memory occupancy.

The TSP tour is partitioned into multiple sub-tours, each

managed by a single processor. The algorithm assigns massive

processors along the tour to treat various edges’ 2-opt local

optimization simultaneously. Experiments show that with

appropriate 2-opt local search range for each edge, our

algorithm performs better than 2-opt exhaustive search along

the integral tour with substantial acceleration factor as the

instance’s size grows. We think that this straightforward GPU

implementation of the parallel 2-opt local search allows for

further experiments on very large problems to get increasing

acceleration factor as the number of physical cores will grow

in GPU systems.
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