Poster Open Access

TOWARDS A FRAMEWORK FOR PREDICTIVE MATHEMATICAL MODELING OF THE BIOMECHANICAL FORCES CAUSING BRAIN TUMOR MASS-EFFECT

Abler, Daniel; Rockne, Russell; Büchler , Philippe


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1127747</identifier>
  <creators>
    <creator>
      <creatorName>Abler, Daniel</creatorName>
      <givenName>Daniel</givenName>
      <familyName>Abler</familyName>
      <affiliation>University of Bern / Beckman Research Institute, City of Hope</affiliation>
    </creator>
    <creator>
      <creatorName>Rockne, Russell</creatorName>
      <givenName>Russell</givenName>
      <familyName>Rockne</familyName>
      <affiliation>Beckman Research Institute, City of Hope</affiliation>
    </creator>
    <creator>
      <creatorName>Büchler , Philippe</creatorName>
      <givenName>Philippe</givenName>
      <familyName>Büchler</familyName>
      <affiliation>University of Bern</affiliation>
    </creator>
  </creators>
  <titles>
    <title>TOWARDS A FRAMEWORK FOR PREDICTIVE MATHEMATICAL MODELING OF THE BIOMECHANICAL FORCES CAUSING BRAIN TUMOR MASS-EFFECT</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-11-06</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1127747</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.1093/neuonc/nox168.999</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1127746</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;GBMs present with different growth phenotypes, ranging from invasive lesions without notable mass-effect to strongly displacing lesions that induce mechanical stresses and result in healthy-tissue deformation, midline shift or herniation. Biomechanical forces, such as those resulting from displacive tumor growth, are recognized to shape the tumor environment and to contribute to tumor progression. We therefore expect that biomechanical forces exerted by lesions on the brain parenchyma have implications on the biophysical level, and that they may affect treatment response and outcome. To better understand the role of biomechanics in the formation of different GBM phenotypes we started developing a framework for the predictive mathematical modeling of mechanical tumor-healthy tissue interaction on the macroscopic level. The tumor&amp;rsquo;s mass-effect is represented by a solid-mechanics model of brain tissue that computes tumor-induced strain based on local tumor cell concentration. The framework allows to seed tumors at multiple locations in a human brain atlas. It simulates tumor evolution over time and across different brain regions using literature-based parameter estimates for tumor cell proliferation, as well as isotropic motility, and mechanical tissue properties. Despite its simplicity, the mathematical model yielded realistic estimates of the mechanical impact of a growing tumor on intra-cranial pressure. However, comparison to publicly available GBM imaging data showed that asymmetric shapes could not be reproduced by isotropic growth assumptions. Here we present and evaluate an extended version of this mechanically-coupled reaction-diffusion model that takes into account tissue anisotropies based on MRI diffusion tensor imaging (MR-DTI). Structural anisotropies in brain tissue have been found to affect the directionality of tumor cell migration and are critical to mechanical behavior. This makes them likely to play a role also in the development of GBM phenotypes.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/753878/">753878</awardNumber>
      <awardTitle>Patient-specific tumour growth model for quantification of mechanical 'markers' in malignant gliomas: Implications for treatment outcomes.</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/600841/">600841</awardNumber>
      <awardTitle>Computational Horizons In Cancer (CHIC): Developing Meta- and Hyper-Multiscale Models and Repositories for In Silico Oncology</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
13
9
views
downloads
All versions This version
Views 1313
Downloads 99
Data volume 56.6 MB56.6 MB
Unique views 1111
Unique downloads 88

Share

Cite as