Journal article Open Access

Detection of Leaks in Water Mains Using Ground Penetrating Radar

Alaa Al Hawari; Mohammad Khader; Tarek Zayed; Osama Moselhi

JSON Export

  "files": [
      "links": {
        "self": ""
      "checksum": "md5:af7fb11ac3743ffb9c2fc5a062159fc8", 
      "bucket": "5e6842c8-4cad-4ee8-87b7-03738a398918", 
      "key": "10004124.pdf", 
      "type": "pdf", 
      "size": 456437
  "owners": [
  "doi": "10.5281/zenodo.1123685", 
  "stats": {
    "version_unique_downloads": 121.0, 
    "unique_views": 119.0, 
    "views": 120.0, 
    "version_views": 119.0, 
    "unique_downloads": 121.0, 
    "version_unique_views": 118.0, 
    "volume": 56141751.0, 
    "version_downloads": 123.0, 
    "downloads": 123.0, 
    "version_volume": 56141751.0
  "links": {
    "doi": "", 
    "conceptdoi": "", 
    "bucket": "", 
    "conceptbadge": "", 
    "html": "", 
    "latest_html": "", 
    "badge": "", 
    "latest": ""
  "conceptdoi": "10.5281/zenodo.1123684", 
  "created": "2018-01-16T12:23:35.805233+00:00", 
  "updated": "2020-01-20T16:43:45.979363+00:00", 
  "conceptrecid": "1123684", 
  "revision": 5, 
  "id": 1123685, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1123685", 
    "description": "Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imaging analyzing strategy based on image refinement, reflection polarity and reflection amplitude that would ease the process of interpreting the collected raw radargram image.", 
    "language": "eng", 
    "title": "Detection of Leaks in Water Mains Using Ground Penetrating Radar", 
    "license": {
      "id": "CC-BY-4.0"
    "relations": {
      "version": [
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1123684"
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1123685"
    "communities": [
        "id": "waset"
    "version": "10004124", 
    "references": [
      "Cataldo A, Persico R, Leucci G, De Benedetto E, Cannazza G., 2014. Time Domain Reflectometry, Ground Penetrating Radar and Electrical Resistivity Tomography: A Comparative Analysis of Alternative Approaches for Leak Detection in Underground Pipes. NDT&E International, 62: 14-28.", 
      "Kingdom B, Liemberger R, Marin P., 2006. The Challenge of Reducing Non-Revenue Water (NRW) in Developing Countries. The International Bank for Reconstruction and Development, Paper Series 8, 1-52.", 
      "Xu Q, Liu R, Chen Q, Li R., 2014. Review on water leakage control in distribution networks and the associated environmental benefits. Journal of Environmental Sciences, 26: 955-961.", 
      "Kuiper N, Rowell C, Shomar B., 2015. High levels of molybdenum in Qatar's groundwater and potential impacts. Journal of Geochemical Exploration, 150: 16-24.", 
      "Liu Z, Kleiner Y. 2013. State of the art review of inspection technologies for condition assessment of water pipes. Measurement. 46(1):1-15.", 
      "Liu, Z., Kleiner, Y., Rajani, B., Wang, L., & Condit, W. 2012. Condition Assessment Technologies for Water Transmission and Distribution Systems. United States Environmental Protection Agency (USEPA), Washington DC.", 
      "Costello SB, Chapman DN, Rogers CDF, Metje N. 2007. Underground asset location and condition assessment technologies. Tunnel Underground Space Technol. 22(5\u20136): 524-542", 
      "B. conyers, L. 1997. Ground Penetrating Radar for Archeology.Rowman & Littlefield Publishers, Inc. ISBN:9780759123489.", 
      "Gehrig, M., Morris, D., Bryant, J. 2004. Ground penetrating radar for concrete evaluation studies. Available at: (Accessed June 2015).\n[10]\tFahmy, M., Moselhi, O. 2010. Automated Detection and Location of Leaks in Water Mains Using Infrared Photography. Journal of Performance of Constructed Facilities. Vol24:242-248"
    "keywords": [
      "Water Networks", 
      "Water pipelines", 
      "Ground Penetrating Radar."
    "publication_date": "2016-02-05", 
    "creators": [
        "name": "Alaa Al Hawari"
        "name": "Mohammad Khader"
        "name": "Tarek Zayed"
        "name": "Osama Moselhi"
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    "related_identifiers": [
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1123684", 
        "relation": "isVersionOf"
All versions This version
Views 119120
Downloads 123123
Data volume 56.1 MB56.1 MB
Unique views 118119
Unique downloads 121121


Cite as