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4 INTRODUCTION N[ RESULTS N
In this contribution different mathematical models describing the heat transfer mecha- 60 1
nisms through porous materials were analyzed. They were compared respectively fitted | | @ = | 7777 r
to measured thermal conductivities of different free flowing vacuum insulation materials. 50 + ------ Ar t+ A,
Thus the models that fit the measured values the best way could be determined. —— A HA A
The aim of this work Is to identify respectively develop a mathematical model that can 0 T 4 A+ A+ A
r S g C

determine the i1deal mixture of different thermal Insulation materials for a certain
application, depending on temperature, vacuum pressure and bulk density.
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Fig. 2 Results of measurements and calculations for cep at 50 °C. Measurements by

Fig. 1 Investigated thermal insulation materials: left: coarse grained expanded

perlite (cep); right: fine grained expanded perlite(fep) DEMHARTER in parallel plate setup

70 | |
Table 1  Most relevant material properties of the investigated thermal insulation ~ A,
- <
materials cep and fep = 60 + A+ A,
: : L <
Material mean pore size bulk density Rosselan(_al mean extinction S 50 - —— AFA A
[um] [kg/m3] coefficient [m2/kg] = LA+ A+
cep 44 767 43" 2 40 + ro s g e
2 X Measurements
fep 30 183 437) ‘g 20
*) Beikircher, T. et al. Superisolierter Heil3wasser-Langzeitwarmespeicher, project report, Garching, D, 2013. 2
**) assumed to be the same for cep and fep. 5 20
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MATHEMATICAL MODELS £ T
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A widespread method to describe the effective thermal conductivity A, of porous media 0,01 0.1 1 10 100 1000

IS the superposition of thermal conductivities representing the occurring heat transfer

_ alr pressure [mbar]
mechanisms (s. Eq.1).

Fig. 3 Results of measurements and calculations for fep at 48 °C. Measurements by

At = Ag + A+ AL+ A (Eq. 1) the corresponding author in a guarded cylinder apparatus.
with:
A, Thermal conductivity representing the heat transfer through the gas phase [W/(m-K
o T ity o gh the gas phase [W/(m-10)] CONCLUSIONS
A, Thermal conductivity representing the heat transfer through the solid phase [W/(m-K)]
A, Thermal conductivity representing the heat transfer by thermal radiation [W/(m-K)] The selected models suitably quantify the heat transfer mechanisms in free-flowing
A, Thermal conductivity representing the heat transfer by coupling effect [W/(m-K)] vacuum thermal insulation materials (see Figures 2 and 3). However, It Is necessary to

find measurable or predictable parameters to create predictive models for the heat

. . . . . transfers through the solid phase and for the coupling effect.
Following mathematical models, with air assumed as residual gas, show the best results J P pHng

compared to other investigated models (see corresponding paper):

SYMBOLS
Agi o o
A, = T (Eq. 2) Symbol Description Symbol Description
g pl/z,alr _ _ -
1+ Dair d Mean pore diameter [m] g, Accomodation coefficient [-]

T E Modulus of elasticity [Pa] B Gas-dependent factor [-]

. kg-T Coxmass Mass-specific extinction coefficient I Weighting factor for the contributions

P1/2,air =B - (Eq. 3) ’ [m2/kg] of the coupling effect [-]
V2-00-d kg Boltzmann constant [J/K] K Adiabatic exponent [-]
and: n Refractive Index [-] Agir Thermal conductivity of still air
5-m 2—a; 9-k—5 P1/2,qir Half-value pressure of the thermal R, - _
= % : - : — (Eq. 4) conductivity of air in pores [Pa] /15’0 Tvr:/e/rma}l(conductlwty of the solid
« P1/2,c Half-value pressure of the coupling [ _ (m-' )] _
Schwab, H. Vakuumisolationspaneele- Gas- und Feuchteeintrag sowie Feuchte- und Warmetransport, Eq. 2- ’ effect [Pa] Vv Poisson's ratio [-]
1 28 2 e eh R iAol CEisi], 2004 Dair Absolute air pressure [Pa] I1 Modified porosity which only includes
Deoxt External pressure [Pa] pores [-]
p Densitiy [kg/m?3]
(1 1/2) . 1/3 (Eq. 5) T Temperature [K]
- ' t : _ 2. K4
A = As,o 3,4 (1 — 1/})4/3 : ( ex ) g T. Reduced Temperature [K] o Stefan-Boltzmann constant [W/(m?2-K%)]
E g, Collision cross section [mZ2]

Kaganer, M. G. (1969). Thermal insulation in cryogenic engineering, Jerusalem, ISBN 13: 9780706506075 " Porosity [-]

h ~16-0 0% T (Eq. 6)
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