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1 Abstract—This paper proposes a low complexity based
spectrum partitioning (SP) - ESPRIT for noncontact vital radar
as a diagnostic tool for sleep apnea and other respiratory
disorders. In the vital radar, the high precision and accuracy of
the Doppler frequency is needed for the heart and respiration
rates of the human body. However, because of smearing
problems caused by limited data length and low SNR
environments of the heartbeat signal, conventional fast Fourier
transform (FFT) suffers from decreased performance of the
Doppler frequency. To improve the parameters of radar
measurement data such as the precision and accuracy, many
super-resolution based algorithms, e.g., the SP method, have
been proposed. Nevertheless, in order to apply the SP based
super resolution algorithm into vital radar systems, a number of
practical issues related to increased computational load should
be addressed. Especially, compared with the conventional
super-resolution algorithm such as estimation of signal
parameters via rotational invariance techniques (ESPRIT), the
complexity of the SP-ESPRIT is increased dramatically by
performing multiple algorithms. Therefore, in this paper, we
propose a scheme that is modified from the conventional
SP-ESPRIT technique with the aim of reducing the
computational load for vital detection. From Monte-Carlo
simulation results with a SNR of 6 dB, the root mean square
error (RMSE) of the proposed method is about 11 times lower
than that of the conventional ESPRIT method.

Index Terms—ESPRIT; spectral partitioning; FFT; low
complexity vital radar.

I. INTRODUCTION

Non-contact vital detection applications such as medical
monitoring [1] and [2], sensor network applications [3] and
rescue recently have attracted strong interest for microwave
radar. In medical applications, research on the application of
microwave Doppler radar has focused on detecting of
diagnose sleep apnea and other respiratory disorders such as
sudden infant death syndrome. In the case of military
applications, these techniques can be used to find hidden
enemies behind walls, or rapidly unveil the positions of
victims on the battlefield. In search and rescue operations,
these techniques can detect victims in disaster situations such
as an earthquake, fire, etc. In order to obtain the Doppler
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spectrum of a vital signal, the fast Fourier transform (FFT)
algorithm is widely used. However, the conventional FFT for
noncontact vital radar suffers from decreased performance in
terms of accuracy and resolution due to smearing problems
caused by the limited data length. The harmonic components
of the respiration signal conceal the heartbeat signal in the
Doppler spectrum estimation of the FFT. Furthermore, the
FFT requires a long processing window to analyse the
time-varying received signals of the vital radar. In the case of
urgent situations such as intensive care units, postoperative
recovery of patients, severe trauma, etc., the FFT can not
analyse the vital Doppler spectrum with high accuracy and
resolution. For frequency estimations, parametric approaches
can be employed. Well-known parametric methods are
relaxation (RELAX) [1], multiple signal classification
(MUSIC) [4], estimation of signal parameters via rotational
invariance techniques (ESPRIT) [5], and the spectral
partitioning (SP) based super resolution algorithm [6].
Among them, the SP based super resolution algorithm is the
most recent algorithm. It provides the estimation of
parameters directly and can operate in a low signal-to-noise
ratio (SNR) environment. Nevertheless, in order to apply the
SP based super resolution algorithm such as ESPRIT to vital
radar systems, a number of practical issues related to
increased computational load should be addressed. In this
paper, we choose the super-resolution algorithm as ESPRIT
because it is the most recent algorithm that provides the
estimation of parameters directly and achieves good
performance and is thus widely used. Compared with the
conventional ESPRIT, the complexity of the SP-ESPRIT is
increased dramatically by running multiple ESPRIT
algorithms. Therefore, in this paper, we propose a scheme
that is modified from the conventional SP-ESPRIT technique
with the aim of reducing the computational load for vital
signal detection.

II. SIGNAL MODEL

The mathematical form of the continuous wave (CW)
transmitted signal for the vital measurement [7] is defined as
follows

 ( ) cos 2 ( ) ,s t ft t   (1)
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where f is the carrier frequency and σ(t) is the time-varying
phase noise of the CW transmitted signal. Consider a target’s
nominal distance d0 with the time-varying displacement x(t)
by the body movement, for which the total distance between
the radar and body d(t)= d0 + x(t), and x(t) can be represented
by

h r h h r r( ) ( ) ( ) sin( ) sin( ),x t x t x t a t a t     (2)

where xh(t) and xr(t) denote the body movements of the
heartbeat and the respiration signal in the human body, which
can be expressed by sinusoids with amplitude ah and ar and
angular frequency ωh and ωr, respectively.

In the received part, when the transmitted signal s(t) is
reflected by the human body, we can obtain the received
signal y(t) as

0 04 24 ( )( ) cos 2 ( ),
d dx ty t ft t t

C
   
 

         
  

(3)

where C denotes the propagation speed, λ=C/f is the
wavelength, and ψ(t) is the additive white Gaussian noise
(AWGN) signal. By down-converting y(t) [2], the baseband
quadrature signals p(t) are represented including the
respiration harmonics due to the nonlinear phase modulation
and body movement as
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where xr,m(t) represents the m-th harmonic component of
respiration with amplitude ar,m and angular frequency ωr,m for
m = 1, 2,…, M, e.g., the original respiration component with
m = 1, and θ denotes the total accumulated phase residual.
Through an analog-to-digital converter (ADC), e.g., fs = 1/Ts,
the phase value q[n] of the discrete time model p[n] for n = 0,
1, …, N-1 can be described as follows
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where Re(∙) and Im(∙) are the real value and imagery value,
respectively; atan(∙) denotes the arctangent operator and ζ[n]
is the arctangent result of the AWGN noise.

III. CONVENTIONAL ALGORITHM

The conventional SP based ESPRIT method is composed
of a two-step approach consisting of the SP stage and general
ESPRIT stage, as shown in Fig. 1. The conventional
algorithm presents a super resolution algorithm that can
operate in the low SNR environment. Each block is
connected by the bus signal with N channels. Given the
received signal, the algorithm’s 1st step is to transform the
signal into the frequency spectrum. We can define the
Doppler FFT as a frequency transform

 T[0], [1],..., [ 1]R R R N R such that

1 2 /

0
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where l denotes an index of the discrete frequency for the
Doppler spectrum and (·)T is the transpose. After the
frequency spectrum has been achieved, it is partitioned to
multiple sub-bands according to the number of Z. We can
describe a spectral partition matrix SZ for the z-th sub-band
z=0, 1,…, Z-1, as

 0 1 1diag , ,..., ,z z z
z Ns s s S  (7)

where diag(·) means a matrix with the elements of vector on
the main diagonal in which the off-diagonal elements are all
zero and the diagonal element is given by
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where, Iz is a set of indexes defined as

1
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where A is the size of sub-bands, that is, A = N/L, and integer
values and , (( 1) )z ji z A j   .

Fig. 1. Block diagram of the conventional SP based ESPRIT algorithm.

Each partitioning part performs Z times of the super
resolution algorithm such as ESPRIT iteratively. After
partitioning, each partitioning part obtains the low power of
noise even though it does not degrade the accuracy
performance. Finally, the conventional algorithm can achieve
high resolution results in a low SNR environment. However,
in terms of complexity, the conventional algorithm has Z
times greater computation power than the general ESPRIT
algorithm.

IV. PROPOSED ALGORITHM

The proposed method is a ‘two – stage method’ (Fig. 2),
consisting of the received ‘sample reduced spectrum
partitioning stage’ (stage 1) and ‘ESPRIT stage’ (stage 2). As
described in the previous section, Doppler FFT is performed
and window partitioning is processed. Up to this point, there
is no difference from the conventional algorithm. However,
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after spectrum partitioning, the proposed algorithm enables
the frequency of z-th window signal to shift into the baseband
region. The baseband signal of z-th window signal Rf,z is
described such as

, ,diag( ) ,f z z s zR S R F (10)

where the frequency shift vector of z-th sub-band
T
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where fc,z means the centre frequency of the z-th window
signal. After frequency shift, the baseband signal is processed
by down sampling with an integer factor D. The size of the
Doppler spectrum is reduced from N samples to P samples
(P << N), D = N/P and the characteristics of down sampling
operation are linear and time invariant. Next, the frequency
signal is transformed into a time signal through P point
inverse FFT (IFFT). The time signal is fed into the ESPRIT
block.

Using the IFFT signal d[k] with P samples, the
autocorrelation matrix Rdd of L by L is defined as

H

0
,

P L
dd

m




 R dd (12)

where the sequence  T[ ],..., [ 1]d m d m L  d and (·)H is
the Hermitian transpose. In order to reduce the correlation
effect, the forward-backward technique is used, which is
given as follows

*1 ( ),
2fb dd dd R R JR J (13)

where J is the L  L exchange matrix.

Fig. 2. Block diagram of the proposed SP based algorithm.

The eigenvalue decomposition (EVD) of
forward-backward autocorrelation Rfb has a form given by
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where the signal eigenvector matrix S = [s0, …, sM] has M + 1
eigenvectors that span the signal subspace of the correlation
matrix, the noise eigenvector matrix N = [n0, …, nL-M-2]
represents L-M-1 eigenvectors spanning the noise subspace
of the correlation matrix, and λn denotes the n-th eigenvalues
of Rfb. Here, M + 1 means the total number of the respiration
and heart frequency. The largest M + 1 eigenvalues of λ0, …,
λM correspond to the M + 1 eigenvectors of S. The other
eigenvalues λM+1, …, λL-1 correspond to the eigenvectors of N
such that λM+1 = …= λL-1=σ2. Let us define the S1 and S2

matrices, removing the last row vector and the first row
vector, respectively, such that S1 = [IL-1 01×L-1]S, S2 = [01×L-1

IL-1]S, IM denotes a M × M identity matrix, and 0M×N is a M ×
N zero matrix. Sub-matrices S1, S2 are solved such that:

1 1 1 1[ ] ,L L  S I 0 AT (15)

2 1 1 1[ ] ,L L  S I 0 AΦT (16)

where A = [a(ωr,0) a(ωr,1) … a(ωr,M-1) a(ωh)], a(ωr,m) = [1
e-jωr,m …e-j(L-1)ωr,m]T, a(ωh) = [1 e-jωh …e-j(L-1)ωh]T, Φ = diag[e-jωr,0

e-jωr,1… e-jωr,M-1 e-jωh] and T denotes the non-singular
transformation matrix of M + 1 by M + 1. The sub-matrices
are achieved by a pseudo inverse as follows

†
1 2 ,C S S (17)

where 1C T ΦT and † denotes the Moore-Penrose
pseudo inverse. We can then obtain the heartbeat frequency fh

with the last element of Φ and the eigenvalues of C as follows

hh
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where ( )  denotes the phase angles for a complex signal.

V. SIMULATION AND EXPERIMENTAL RESULTS

We obtained a snapshot of the Doppler spectrum and we
conducted a Monte-Carlo simulation averaged over 10,000
estimates to verify the performance of the proposed algorithm.
According to the harmonic model of vital signs, the simulated
respiration and heartbeat signals were set to 18 beats/min
(0.3 Hz) and 63 beats/min (1.05 Hz), respectively, and M = 5
harmonics of the respiration were included with amplitudes
satisfying the following: ar1 : ar2 : ar3 : ar4 : ar5 : ah = 10 : 4 : 0.1 :
0.02 : 0.05 : 2. We used the FFT, the conventional ESPRIT,
the conventional SP-ESPRIT and the proposed algorithm to
detect the vital signs. In the case of spectrum partitioning, the
number of samples (M), after down sampling, is 25. A
reflected signal sampled at 20 Hz was generated. To be
consistent with practical laboratory experiments, additive
Gaussian noise was imported with a SNR of 1 and 50 dB.
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The Doppler spectrum for the FFT, conventional ESPRIT,
conventional SP-ESPRIT and the proposed method was
respectively derived and presented in Fig. 3 and Fig. 4. In
Fig. 3, in the case of a low SNR, the heartbeat peak of the
conventional ESPRIT and the FFT deviates from the real
value, while the heartbeat peak of the proposed algorithm and
conventional SP-ESPRIT method is accurately detected. The
simulation results in Fig. 4 show that the detection
performance of the proposed method and conventional
SP-ESPRIT is quite similar to that of the FFT and the
conventional ESPRIT with a SNR of 50 dB. Therefore, the
proposed algorithm yields good performance in a low SNR
situation, especially in the case of the heartbeat signal.

Fig. 3. Doppler spectrum of various algorithms at SNR = 1 dB.

Fig. 4. Doppler spectrum of various algorithms at SNR = 50 dB.

In Fig. 5, the root mean square error (RMSE) as a function
of SNR, for each algorithm was calculated for C times in the
case of heartbeat Doppler signals with a short duration. The

RMSE is defined by 21 h, h1 ˆ( )C
nnC    , where C is set

to 104 and τ0,n is the angular frequencies of the heartbeat
estimation in the n-th Monte-Carlo trial, respectively.

Based on Fig. 5, with a low SNR, the proposed algorithm
performs better than the other algorithms, and the ESPRIT
shows the worst performance for the heartbeat signal. For a
SNR of 6 dB, the RMSE of the proposed algorithm is about
11 times lower than that of the conventional ESPRIT
algorithm.

To evaluate the performance of the proposed method in a
real situation, we conducted various experiments using
iMotion radar [8] at Texas Tech University. We used a
2.4 GHz CW RF module with a transmitted channel and a

received channel. CW radar signal s(t) is reflected from the
human body. After down-converting, the baseband
quadrature signals p(t) can be analysed. We conducted
experiments to evaluate the proposed method for a human
body in a room. When the target was placed at R = 0.2 m, the
following Doppler spectrum of the heartbeat rate was
obtained, as shown in Fig. 6, because the heartbeat is
sensitive with a low SNR. As seen in Fig. 6, the proposed
method can estimate the peak of the heartbeat frequency well
compared with the reference [9] while the conventional
ESPRIT and FFT methods could not estimate it accurately
relative to the exact heartbeat frequency at one randomly
chosen frame.

Fig. 5. RMSEs of the respiration and heartbeat signals.

Fig. 6. One randomly chosen frame: the experimental results from iMotion
radar in the case of the heartbeat signal.

VI. COMPUTATIONAL COMPLEXITY

In order to assess the processing time of the proposed and
conventional algorithm, we design and implement both
methods. Conventional algorithms such as ESPRIT and
spectrum partitioning ESPRIT are developed with matrix
computation, which involves EVD and matrix inversions by
MATLAB code. The total processing time of the
implemented algorithms was verified by MATLAB with
debugging and analysing. MATLAB can observe the output
of algorithms through a CPUTIME. The FMCW chirp
parameters used in the preceding section for Monte-Carlo
simulations are applied to assess the computation complexity
in the same manner. In Fig. 7, in the case of the conventional
spectrum partitioning algorithm, Z times computation time is
needed compared with the general ESPRIT. Therefore, the
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proposed algorithm has much less complexity to reduce
number of samples of the received signal using frequency
shift and down sampling.

Fig. 7. MATLAB CPU execution time for both the conventional ESPRIT
and the proposed SP-ESPRIT.

VII. CONCLUSIONS

We have proposed a low complexity based spectrum
partitioning super resolution method for noncontact vital
radar. It uses a combination of the sample reduced spectrum
partitioning stage and the ESPRIT stage. The suggested
approach is designed to maintain the performance of the
Doppler resolution in a low SNR environment and to be
applied to real time processing systems. From Monte-Carlo
simulation results and experimental results with a SNR of
6dB, the RMSE of the proposed algorithm is about 11 times
lower than that of the conventional ESPRIT algorithm. The
proposed method is applicable to vital radar due to its high
performance of parameter estimation.
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