

PMT : Physique Moleculaire Theorique, Reims, France IOA Acad.Sci. & Tomsk State University, Russia

New approach for spectroscopic data reduction using *ab initio* calculations and experimental lines: application to methane

Vladimir TYUTEREV, Sergei TASHKUN, Michael REY, Andrei NIKITIN,

Roman KOCHANOV, Thibault DELAHAYE

PMT : Physique Moleculaire Theorique, Reims, France IOA Acad.Sci. & Tomsk State University, Russia

New approach for spectroscopic data reduction using *ab initio* calculations and experimental lines: application to methane

Vladimir TYUTEREV, Sergei TASHKUN, Michael REY, Andrei NIKITIN,

Roman KOCHANOV, Thibault DELAHAYE

First-principl variational spectra predictions for astro / planeto

M.Rey, A.Nikitin, and V.Tyuterev

PMT : Physique Moleculaire Theorique, Reims, France IOA Acad.Sci. & Tomsk State University, Russia

New approach for spectroscopic data reduction using *ab initio* calculations and experimental lines: application to methane

Vladimir TYUTEREV, Sergei TASHKUN, Michael REY, Andrei NIKITIN,

Roman KOCHANOV, Thibault DELAHAYE

Data base accuracy issue

First-principl variational spectra predictions for astro / planeto

M.Rey, A.Nikitin, and V.Tyuterev

Data base completeness issue

Main theoretical methods for vib-rot data reduction in spectroscopy

Effective models: polyad Hamiltonians & trans. moments

Variational calculations from PES & DMS

Main theoretical methods for vib-rot data reduction in spectroscopy

Databases that aim at approaching exp. accuracy HITRAN / GEISA S&MPO (ozone) : GSMA / IOA TDS, STDS, MeCaSDa (methane): Dijon CDSD (CO₂)

Problems

Non complete Extrapolations, isotopic effects Poorly determined parameters

Databases providing a complete set of lines:

(« bird's eye view ») Partridge&Schwenke, HITEMP, IUPAC (water) ExoMol (Tennyson, Yurchenko), Lee, Huang-Schwenke (NH₃,CO₂), Csazar et al,

Reims-Tomsk lists (CH₄ : ApJ 789, 1 (2014))....

Problems

Accuracy Spectroscopic assignment Scaling with N (dimension pb)

Example log scale : example ¹³CH₄

10^{-20} HITRAN 2012 Intensity / cm.mol 10⁻²² 10⁻²⁴ 10⁻²⁶ 0 1000 2000 3000 4000 5000 6000 7000 8000 10⁻²⁰ Variational Intensity / cm.mol⁻¹ 10⁻²² 10⁻²⁴ 10⁻²⁶ 0 1000 2000 3000 4000 5000 6000 7000 8000 cm^{-1} <u>x 1</u>0⁻⁷ ¹²CH₄ **Obs. CRDS Grenoble** З -2 -3 Ab initio 7000 7100 7200 7300 7400 7500 7600 77(

 cm^{-1}

methane isotopic spectra

Ab initio PES & DMS : Nikitin, Rey, Tyuterev, CPL 2011, 565, 5 (2013)

variational preds: Rey, Nikitin, Tyuterev, PCCP 15, 10049 (2013), JCP (2014)

T=300 K : 2 million lines

T=2000 K : 20 billion lines : ApJ 789, 1 (2014).

Example log scale : example ¹³CH₄

methane isotopic spectra

Ab initio data base accuracy issues

$I_{\rm cutoff}$	CB/HB	#Lines	RMS (cm ⁻¹)	RMS (%)
$\mathrm{cm/molecules}$			$\operatorname{Positions}^\dagger$	Intensities
10^{-23}	CB	7912	0.057	4.1
	HB	863	0.016	1.0
10^{-24}	CB	14810	0.070	4.8
	HB	2335	0.026	1.3
10^{-25}	CB	21556	0.087	4.8
	HB	5585	0.039	2.2
10^{-26}	CB	27493	0.10	5.1
	HB	10119	0.06	3.1

Accuracy of our room-temperature predictions (T=296 K) in the range [0 - 5000] cm⁻¹ compared to HITRAN for the rotational dependence of line positions and for intensities.

Ab initio variational Rey, Nikitin, Tyuterev, PCCP (2013)

Ab initio data base accuracy issues

$I_{\rm cutoff}$	CB/HB	#Lines	RMS (cm ⁻¹)	RMS (%)
cm/molecules			$\mathbf{Positions}^{\dagger}$	Intensities
10^{-23}	CB	7912	0.057	4.1
	HB	863	0.016	1.0
10^{-24}	CB	14810	0.070	4.8
	HB	2335	0.026	1.3
10^{-25}	CB	21556	0.087	4.8
	HB	5585	0.039	2.2
10^{-26}	CB	27493	0.10	5.1
	HB	10119	0.06	3.1

Accuracy of our room-temperature predictions (T=296 K) in the range [0 - 5000] cm⁻¹ compared to HITRAN for the rotational dependence of line positions and for intensities.

Ab initio variational Rey, Nikitin, Tyuterev, PCCP (2013)

Line position accuracy need to be improved by one or two orders of magnitude !

Empirical corrections:

« unstable lines » issue Potential $U(r_i)$

Empirical corrections:

« unstable lines » issue Potential $U(r_i)$

Empirical corrections:

« unstable lines » issue

 Ψ_1

 Ψ_2

$$\widetilde{\Psi}_2 = \Psi_2 + \frac{\langle \Psi_1 | H | \Psi_2 \rangle}{E_1^0 - E_2^0} \Psi_1 + \cdots$$

$$\tilde{\Psi}_2 = \Psi_2 + \frac{H_{12}}{H_{11} - H_{22}} \Psi_1 + \cdots$$

Not always !

$$\widetilde{\Psi}_2 = \Psi_2 + \frac{\langle \Psi_1 | H | \Psi_2 \rangle}{E_1^0 - E_2^0} \Psi_1 + \cdots$$

$$\widetilde{\Psi}_2 = \Psi_2 + \frac{H_{12}}{H_{11} - H_{22}} \Psi_1 + \cdots$$

$$\widetilde{\Psi}_2 = \Psi_2 + \frac{\langle \Psi_1 | H | \Psi_2 \rangle}{E_1^0 - E_2^0} \Psi_1 + \cdots$$

$$\widetilde{\Psi}_2 = \Psi_2 + \frac{H_{12}}{H_{11} - H_{22}}\Psi_1 + \cdots$$

Not always !

Not always !

Not always !

Not always !

« Blind » fit : mathematically ill-defined inverse problem !!!

Key of the new data reduction approache: accurately compute the coupling from ab initio PES

<u>"Inverse problem"</u> for a 2×2 matrix:

determine parameters of a matrix H from experimental energies

Poorly defined problem:

Ab initio contraints => Regularization of ill-defined inverse problem

"Global" (variational) and "local" (effective) calculation in spectroscopy *PES* = *ab* initio potential energy surface

Direct global calculations

Infinite dimension, « integro-differential » technique (methodes : variationnal, DVR,...)

« Locale » methods: Finite dimension, talgebraic techniques H ¶∕efi

Effective Hamiltonians *Ajustable parameters = Spectroscopic Constants*

polyades of closely lying states

 $E_{n_{s}}$

ob

"Global" (variational) and "local" (effective) calculation in spectroscopy *PES* = *ab* initio potential energy surface

Effective Hamiltonians *Ajustable parameters = Spectroscopic Constants*

of closely lying states

 E_{n}_{s}

ob

Direct MOL_CT calculations for methane:

Direct MOL_CT calculations for methane:

Р	vib	S	E	Emp - CT		
	Dyad		cm⁻¹	cm ⁻¹		
	0001	F2	1310.81	-0.05		
	0100	E	1533.41	-0.08		
Pentad						
	0002	A1	2587.28	-0.24		
	0002	F2	2614.31	-0.05		
	0002	E	2624.81	-0.20		
	0101	F2	2830.64	-0.32		
	0101	F1	2846.20	-0.13		
	1000	A1	2916.38	0.11		
	0010	F2	3019.47	0.03		
	0200	A1	3064.00	-0.35		
	0200	E	3065.35	-0.20		
	lcosad					
	0005	E	6507.77	-0.38		
	0005	F2	6508.02	-0.47		
	0005	F1	6530.34	-0.56		
	0005	F2	6539.91	-0.73		
	1011	F2	7158.22	-1.49		
	0120	F2	7511.10	-0.13		
Triacontad						
	1012	F2	8421.60	-0.60		
	0030	F2	8907.77	-0.47		
	0030	F2	9046.6 7	-0.71		
RN	IS/cm	-1		0 74		

RMS vib-rot (Dyad) = 0.06 cm⁻¹

Ab initio dipole moment surface (DMS) transformations:

Methane

Ab initio => CT

Hitran 08

Fixed: all resonance coupling parameters computed by CT from PES Fitted: 128 diagonal polyad parameters up to Octad + tr. mom parameters

Octad (2–3 μm) : 8 vibrational levels, 24 vibrational sublevels

 $u_1 + \nu_2/\nu_1 + \nu_4/\nu_2 + \nu_3/\nu_3 + \nu_4/3\nu_2/3\nu_4/2\nu_2 + \nu_4/\nu_2 + 2\nu_4,$

Criteria of improvement of resonance couplings and wave-functions:

RMS fit of Octade intensities, 3500 lines :

11.2 % (with pure empirical H^{eff}) => 7.5% (with ab initio couplings)

~ 600 res parameters fitted

No res parameters fitted

Better wave functions => better model for intensity borrowing

Another option: fit with this model variational ab initio intensities

Output: line lists with line positions to experimental precision With ab initio intensities sitting on them

Another option: fit with this model variational ab initio intensities

Output: line lists with line positions to experimental precision With ab initio intensities sitting on them

Do we want databases with such lists ?

Combined «CT-polyads / abinitio » model , Dyad range

Combined «CT-polyads / abinitio » model , Pentad range

Further work, applications \Leftrightarrow *astro* \Leftrightarrow *planeto*

High energies / hot bands

High energies / hot bands

Collaborations:

ab initio: P.Szalay (Budapest)

Methane analyses / databases: V.Boudon, C.Wenger, J.P.Champion (Dijon)

CRDS spectroscopic experiments: A.Campargue, S.Kassi, D.Mondelain, Grenoble University FT spectroscopic experiments for methane: L.Brown (NASA), X.Thomas, L.Daumont, L.Regalia, Reims University

High-T methane spectra: R.Georges, Rennes University

Applications planeto / astro: B.Bezard, A.Coustenis (Obs Meudon), P.Rannou (Reims), A.Kutepov (Washington)

Acknowledgements: « IDEO » ANR, PNP CNRS, « SAMIA » GDRI projects Computer centers: «Romeo/ Clovis» Reims, IDRIS/CINES France