Thesis Open Access

From heuristics-based to data-driven audio melody extraction

Bosch, Juan J.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Melody Extraction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Automatic</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">MIR</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Music</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Retrieval</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Symphonic</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Instrument</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Agreement</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Tonality</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Timbre</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Stereo</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Source-filter</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Separation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">NMF</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Visualisation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Evaluation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Dataset</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Contour</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Salience</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Pitch</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Supervised</subfield>
  </datafield>
  <datafield tag="502" ind1=" " ind2=" ">
    <subfield code="c">Universitat Pompeu Fabra, Barcelona</subfield>
  </datafield>
  <controlfield tag="005">20200319113300.0</controlfield>
  <controlfield tag="001">1120334</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universitat Pompeu Fabra, Barcelona</subfield>
    <subfield code="4">ths</subfield>
    <subfield code="a">Gómez, Emilia</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">10313726</subfield>
    <subfield code="z">md5:7bdca96e9b76245f494abdc46a51ef47</subfield>
    <subfield code="u">https://zenodo.org/record/1120334/files/phdthesis_bosch.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-27</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-mdm-dtic-upf</subfield>
    <subfield code="p">user-mir</subfield>
    <subfield code="o">oai:zenodo.org:1120334</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Universitat Pompeu Fabra, Barcelona</subfield>
    <subfield code="0">(orcid)0000-0003-4221-3517</subfield>
    <subfield code="a">Bosch, Juan J.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">From heuristics-based to data-driven audio melody extraction</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-mdm-dtic-upf</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-mir</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;The identification of the melody from a music recording is a relatively easy task for humans, but very challenging for computational systems. This task is known as &amp;quot;audio melody extraction&amp;quot;, more formally defined as the automatic estimation of the pitch sequence of the melody directly from the audio signal of a polyphonic music recording. This thesis investigates the benefits of exploiting knowledge automatically derived from data for audio melody extraction, by combining digital signal&amp;nbsp;processing and machine learning methods. We extend the scope of melody extraction research by working with a varied dataset and multiple definitions of melody. We first present an overview of the state of the art, and perform an evaluation focused on a novel symphonic music dataset. We then propose melody extraction methods based on a source-filter model and pitch contour characterisation and evaluate them on a wide range of music genres. Finally, we explore novel timbre, tonal and spatial features for contour characterisation, and propose a method for estimating multiple melodic lines. The combination of supervised and unsupervised approaches leads to advancements on melody extraction and shows a promising path for future research and applications.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Datasets:&amp;nbsp;&lt;/strong&gt;&lt;br&gt;
&lt;br&gt;
The symphonic music dataset proposed in this thesis (Orchset) is available at:&lt;/p&gt;

&lt;p&gt;&lt;a href="https://zenodo.org/record/1289786#.XnNV15P0mL8"&gt;https://zenodo.org/record/1289786#.XnNV15P0mL8&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;Orchset is intended to be used as a dataset for the development and evaluation of melody extraction algorithms. This collection contains 64 audio excerpts focused on symphonic music. with their corresponding annotation of the melody.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Code:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;The source code of the melody extraction algorithms proposed in this thesis is available at:&lt;/p&gt;

&lt;p&gt;&lt;a href="https://github.com/juanjobosch/SourceFilterContoursMelody"&gt;https://github.com/juanjobosch/SourceFilterContoursMelody&lt;/a&gt;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">http://mtg.upf.edu/node/3737</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1120333</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1120334</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
</record>
128
124
views
downloads
All versions This version
Views 128128
Downloads 124124
Data volume 1.3 GB1.3 GB
Unique views 107107
Unique downloads 111111

Share

Cite as