Poster Open Access

Explicit Parallelization of Robert-Bonamy Formalism

Styers, John M.; Gamache, Robert


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.11186</identifier>
  <creators>
    <creator>
      <creatorName>Styers, John M.</creatorName>
      <givenName>John M.</givenName>
      <familyName>Styers</familyName>
      <affiliation>University of Massachusetts Lowell, Lowell, MA, U.S.A.</affiliation>
    </creator>
    <creator>
      <creatorName>Gamache, Robert</creatorName>
      <givenName>Robert</givenName>
      <familyName>Gamache</familyName>
      <affiliation>University of Massachusetts Lowell, Lowell, MA, U.S.A.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Explicit Parallelization Of Robert-Bonamy Formalism</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2014</publicationYear>
  <subjects>
    <subject>Poster Session</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2014-08-05</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/11186</alternateIdentifier>
  </alternateIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Robert-Bonamy formalism has long been employed in computational spectroscopy. As a method, it presents a fine balance between accuracy, and computational viability. While within the bounds of present-day computational resources, its calculations still constitute a significant amount of computational overhead. The vast majority of said computational demand, is in the computing of the resonance functions. Major aspects of the calculation of the resonance function are extremely repetitive in nature&amp;mdash;presenting a problem which is almost &amp;ldquo;embarrassingly parallel&amp;rdquo; in nature. The computation of the resonance functions has been explicitly parallelized, resulting in an order of magnitude speed-up on local Macintosh machines&amp;mdash;and multiple orders of magnitude speed-up on two Cray Supercomputers (Darter and MGHPCC). This will facilitate further scientific investigation.&lt;/p&gt;</description>
    <description descriptionType="Other">Poster Session II: June 24, 2014.</description>
  </descriptions>
</resource>
7
0
views
downloads
All versions This version
Views 77
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 77
Unique downloads 00

Share

Cite as