Presentation Closed Access
Georgios Balokas; Steffen Czichon; Raimund Rolfes
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2017-12-18</subfield> </datafield> <controlfield tag="005">20200120150047.0</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-ecfunded</subfield> </datafield> <controlfield tag="001">1117784</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-ecfunded</subfield> <subfield code="o">oai:zenodo.org:1117784</subfield> </datafield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="d">4-7 September 2017</subfield> <subfield code="g">ICCS20</subfield> <subfield code="a">20th International Conference on Composite Structures</subfield> <subfield code="c">Paris, France</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Probabilistic analysis in engineering sciences takes into account the uncertainties that may exist and affect a certain physical system in an a priori unknown manner. As the design of structures gets increasingly complex over the years, the impact of those uncertainties onto the system response has to be studied in order to implement numerical procedures for virtual testing platforms. Especially the variations in the output of a model with regards to some inputs are of much interest. For all the above reasons, quantifying the relative importance of each uncertain input parameter through sensitivity analysis becomes a necessity.<br> This work implements global sensitivity analysis to study the effect of uncertainties on multiscale analysis of braided composite materials. Several surrogate models (or meta-models e.g. neural networks, polynomial chaos expansions and Gaussian process expansions or Kriging models) are used to overcome the excessive cost of sensitivity analysis for a high-fidelity engineering simulation. Attention is given to non-intrusive approaches and order reduction techniques. The curse of dimensionality is handled through special truncation schemes aiming for a limited set of runs of the original multiscale model. Applicability of the selected modeling techniques is discussed as well as error monitoring and training procedures. All mathematical tools used in this study account for nonlinearities, hence strength prediction is feasible and probabilistic models of failure processes through the scales can also be developed.<br> Results offer a perspective on the variability influence of the random parameters, an overview of the performance of several surrogate models and also highlight the importance of realistic uncertainty quantification. Moreover, this paper provides a useful guidance for training and handling advanced non-intrusive metamodeling techniques for uncertainty propagation assessment.</p></subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Structure Development Department, ELAN-AUSY GmbH</subfield> <subfield code="a">Steffen Czichon</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Institute of Structural Analysis, Leibniz Universität Hannover</subfield> <subfield code="a">Raimund Rolfes</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">closed</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">presentation</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Structure Development Department, ELAN-AUSY GmbH</subfield> <subfield code="a">Georgios Balokas</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">braided composites</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">multiscale analysis</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Monte Carlo simulation</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">probabilistic analysis</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">neural networks</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">polynomial chaos expansions</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Kriging modeling</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.1117784</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Multiscale analysis of braided composites via surrogate modeling</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.1117783</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="b">Società Editrice Esculapio</subfield> <subfield code="z">9788893850414</subfield> <subfield code="t">ICCS20 - 20th International Conference on Composite Structures</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">642121</subfield> <subfield code="a">FULLY INTEGRATED ANALYSIS, DESIGN, MANUFACTURING AND HEALTH-MONITORING OF COMPOSITE STRUCTURES</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 56 | 56 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 54 | 54 |
Unique downloads | 0 | 0 |