
2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

1

Predicting Workflow Task Execution Time in the
Cloud using A Two-Stage Machine Learning

Approach
Thanh-Phuong Pham, Juan J. Durillo, and Thomas Fahringer

Abstract—Many techniques such as scheduling and resource provisioning rely on performance prediction of workflow tasks for
varying input data. However, such estimates are difficult to generate in the cloud. This paper introduces a novel two-stage machine
learning approach for predicting workflow task execution times for varying input data in the cloud. In order to achieve high accuracy
predictions, our approach relies on parameters reflecting runtime information and two stages of predictions. Empirical results for four
real world workflow applications and several commercial cloud providers demonstrate that our approach outperforms existing
prediction methods. In our experiments, our approach respectively achieves a best-case and worst-case estimation error of 1.6% and
12.2%, while existing methods achieved errors beyond 20% (for some cases even over 50%) in more than 75% of the evaluated
workflow tasks. In addition, we show that the models predicted by our approach for a specific cloud can be ported with low effort to new
clouds with low errors by requiring only a small number of executions.

Index Terms—Performance Prediction, Workflow Tasks Execution Time, Machine Learning

F

1 INTRODUCTION

THE cloud computing paradigm offers various advan-
tages for scientific applications , including rapid provi-

sioning of resources, pay-per-use and elasticity of a flexible
amount of resources. Nowadays, many scientists also use
scientific workflows to compose their applications to be
executed on clouds. Workflow applications [1] consist of
a possible large number of components, also known as
workflow tasks, such as legacy programs, data analysis
or computational methods, complex simulations or even
smaller subworkflows. These components are connected by
data and control flow dependencies. Formally, a workflow
is a directed graph, often a directed acyclic graph, such that
vertices represent the tasks of the workflow and the edges
define data or control dependencies among tasks.

Scientific workflow applications are often time-
consuming and running them on cloud infrastructures
can be economically costly. A crucial aspect for scien-
tific workflows is the effective optimization of runtimes,
resource usage and economic costs. These goals can be
achieved through the use of different techniques; in par-
ticular, scheduling or determining the resource on where to
execute each workflow task and resource-provisioning that
determines how many resources of which type are needed
[2] . Many scheduling and resource-provisioning techniques
usually require or can benefit from information about the
execution time of workflow tasks. Task execution times,
however, are not widely available for various reasons. Cloud
infrastructures offer a wide variety of computing resources,
thus execution times may only be known for a subset of
cloud providers and for a restricted set of workflow input
data.

• Thanh-Phuong Pham, Juan J. Durillo, and Thomas Fahringer are with the
Institut für Informatik, University of Innsbruck, Austria
E-mail: phuong,juan,tf@dps.uibk.ac.at

In this paper, we propose a novel method to predict
the execution time of workflow tasks with varying input
data. We model such execution times as functions that
depend on workflow inputs as well as on cloud features.
Such models are built using regression methods based on
historical executions of that workflow in the cloud. Cloud
features describe properties of the virtual machine (VM)
type in which the task is executed. As a VM can be launched
on different physical servers, resulting in different execution
times, we also collect runtime information for different
clouds. Our approach uses two stages of predictions to esti-
mate the execution time of a task on a particular VM. Firstly,
it considers the workflow input data, the VM type1, and the
cloud provider where a workflow task will be executed. In
the first stage, our approach derives the runtime parameters
for that execution. These parameters may be available as
historical data if that task has been executed before. If not,
the runtime parameters will be predicted from the workflow
input data and VM type using a regression method. In the
second stage, the outcome of the first stage together with the
workflow input data and the VM information are used as
input for a final regression method to predict the execution
time of that task.

This paper explores the use of different As regression
methods from the Machine Learning (ML) domain. In
particular, we select a set of machine learning methods
explored for performance prediction in related work. This
set includes linear regression, neural networks, regression
trees and bagging using regression trees. We also explore
the use of random forest [3], which is another regression
technique that has provided more accurate results than any
other regression method in several fields. To the best of

1. For example, by the end of 2015, Amazon EC2 offered 19 virtual
machine types https://aws.amazon.com/ec2/instance-types/)

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

2

our knowledge, random forest has not been applied for
workflow task predictions.

Experiments show that our two-stage approach outper-
forms state-of-the-art prediction methods, which are exclu-
sively based on a single stage for estimating the execution
time of tasks. In addition, when coupled with random
forest, our proposal achieves prediction errors between 1.6%
and 12.2%, while existing methods result in errors beyond
20% for most of the tasks of several evaluated workflow
applications.

The main contributions of this paper are:
• characterization of workflow task executions on the

cloud by using a set of parameters that reflect workflow
input data, VM type on which the task is executed, and
hardware-dependent runtime information;

• a novel fully automatic two-stage approach to predict
task execution times for varying input data across dif-
ferent cloud providers evaluated for various real-world
workflows applications;

• an experimental evaluation of our proposal using dif-
ferent machine learning regression methods, including
random forest which to the best of our knowledge has
not been evaluated before for workflow tasks execution
time prediction; and

• an analysis that examines the portability of our ap-
proach to predict for new cloud providers.

This paper is organized as follows: the next section
describes related work. Section 3 describes background in-
formation on which our work is based on. Section 4 intro-
duces our novel two stage prediction approach. In section
5, empirical evaluation is described. Section 6 analyses the
obtained results of our approach, compares them with ex-
isting methods, and evaluates the ability of our approach to
port predicted models to new clouds. Finally, we conclude
the paper with a summary and an outlook of future work.

2 RELATED WORK

Research on performance prediction for clusters, grids, or
clouds has been an active field for several decades. Al-
though the problem has been approached in different ways,
a taxonomy consisting of only three non-exclusive cate-
gories of performance prediction models was proposed [4].
In this section, we use this taxonomy to classify our proposal
as well as related work. We describe advantages and disad-
vantages of every category and the difficulties of methods
for every category when applied for performance prediction
of applications running on clouds.

The three aforementioned categories for performance
prediction methods are: (1) Analytic Modeling, (2) Simulation
and Emulation, and (3) Empirical Evaluation. Analytic model-
ing encompasses methods based on high-level abstractions
of applications and architectures that are easy and quick
to evaluate. The second category is based on the idea of
simulating/emulating how an application runs on a given
target architecture. Simulator/emulators allow a high fi-
delity model of hardware details, but are computationally
expensive to generate. Typical simulator/emulators require
the applications’ source code and accurate hardware in-
formation based on which estimations of the number of
machine instructions and their execution time is computed.

Finally, empirical evaluation relies on a faster prototype of
the hardware model to evaluate and measure the applica-
tion runtime. The applicability of this category of methods
depends on the availability of such hardware prototypes.
For clouds it is difficult to determine the hardware on
which a task runs; hence, methods of this latter category are
not applicable in our case. Next, we further analyze some
related work that falls within the first two categories.

Some prediction approaches are based on a regression
function that estimates the runtime of an application from
a set of independent variables. Regression-based prediction
methods fall into the analytic modeling category. Related
work differs in the way the regression function is deter-
mined and the variables on which it depends. The most
popular regression method is Machine Learning which can
be found in the form of simpler versions such as Linear
regression [5], [6]. But there are also more advanced methods
such as Nearest Neighbors [7], Instance Model Learning [8],
Regression Trees [9], [10], or the combination of several of
these methods [11] which have been used for runtime pre-
diction. Simple regression methods such as linear regression
assume a linear (or another) relation between the runtime
and the independent variables. More advanced methods do
not assume any specific relation and can be used to model
to any function.

Typical examples for independent variables on which
performance prediction methods depend, are the applica-
tion input data, the number of cores, and other specific hard-
ware details. Application and hardware features can be used
as variables in the regression method. The only restriction
is that their values should be available prior to predict. For
example, job names, user names, and submission times have
been used to predict the execution time in clusters [8], [12].
Other works require system performance attributes (CPU
micro-architecture, size, memory and storage speed) [11]
that might not be available for the cloud, and it has been
reported [13], [14] that CPU architecture, memory and stor-
age speed are important properties to improve the accuracy
of predicted application execution times. In the context of
clouds, Chikrin et. al. [15] and Pietri et. al. [16] estimate
execution times of tasks using only task input data and no
runtime information. Monge et. al. [17] use, in addition to
task input data, provenance and resources features obtained
from benchmarks. Most of the variables used by related
work are, however, not available for commercial clouds.
For example, commercial clouds usually have no queues to
which users submit their tasks and commercial providers
rarely provide information about their physical hardware.

There are numerous works that fall in the first and
second category mentioned before. Examples of these
works are ASPEN [4], COMPASS [18], PALM [19], or PE-
MOGEN [20]. All of them have tried to tackle the problem in
a similar way: they define a domain specific language that
is used to annotate the source code of applications. These
annotations have to be provided by expert analysts and
are used to obtain an estimate of the number of machine
instructions that are executed by that application. These
estimates are based on regression-like methods and simu-
lations of machine instruction executions. These methods
differ by how they deal with various hardware architectures.
For example, in PALM the obtained estimates are hardware

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

3

specific. In other cases, a model describing the hardware
in detail is required. For example, COMPASS and ASPEN
require detailed information about each CPU core, such
as whether it supports double precision instructions and
the presence of multiply-add instructions; capacity, latency
and memory bandwidth; cache information (shared cache
between cores, as well as their capacity), and type of links
between cores within a same socket (Quick Interconnect
(QPI), HyperTransport or PCI). Although these methods
can achieve low prediction errors, their usability for our
purposes is limited. Firstly, in our work we do not assume
that the source code of applications is available; for cases
where code is available, we do not limit applications written
in a specific language, which hardens the use of annotations.
Secondly, we do not want to rely on expert analysts, but
we aim to provide a fully automated method. Lastly, we
cannot rely on architecture specific methods since the target
architecture in the cloud on which the application runs is
in general not known beforehand. In the context of clouds,
CloudProphet [21] is a representative of the second category,
which uses agents to emulate a task’s execution behavior.

In this work, we propose a performance prediction
method that falls into the first category of analytically mod-
eling to predict the execution time of workflow tasks for
clouds. Our method is fully automated and does not require
any expert analyst.

3 PREREQUISITES

In this section we present background information required
to describe our approach. Firstly, we introduce some back-
ground in Machine Learning for prediction of workflow task
execution times. Afterwards, we introduce basic concepts
for cloud computing systems. Finally, we formally describe
a workflow application and present the four scientific work-
flows used in our work.

3.1 Machine Learning Background
Machine learning (ML) methods generally learn the relation
between a set of input data and an output. This relation is
usually learned after observing a set of data for which input
and output values are known2. In the field of ML, this set of
data is usually referred as training set or simply training
data. The output can be any function or set of values.
ML commonly uses historical data about past executions
of workflows as training data. The output to learn for the
research problem of this paper is the task execution times.

Predicting the execution time of workflow tasks has been
considered by previous work in the field of distributed
systems and ML. Various methods have been evaluated by
these approaches which led to different prediction accuracy
for different problems [10], [11]. No single ML method has
outperformed others in terms of prediction accuracy for all
types of problems [9]. Some of the methods commonly used
for execution time prediction are Linear Regression [22],
Regression Trees [23], Bagging using regression trees [17]
and Artificial Neural Networks [24]. In this paper, we eval-
uate these ML methods, as well as another ML ensemble
method called random forest [3], which usually provides

2. In this work we focus on supervised learning.

better prediction accuracy in the presence of noisy data.
We also apply clustering techniques to the data in order
to identify subsets of the historical data exposing a high
correlation with the execution time.

Linear Regression. Linear regression assumes a linear de-
pendence between the input and the output– in our case,
execution time, and the considered variables (workflow
input, VM type, and runtime parameters). Linear regression
models the output by using the formula y = ~aT~x+ b, where
y is the desired output, and ~x the vector of independent vari-
ables (i.e., input). Linear regression determines the values of
~a and b which minimize the error over a set of observed
data. This method is reasonable to predict simple tasks
where the execution time is linear regarding the considered
variables [22]. In situations where such a linearity between
input and output does not exist, the accuracy of the method
can be unsatisfactory.

Regression Tree. As indicated in its name, it is a regression
technique. It works by building a tree-based structure in
which each node represents one parameter. Each branch de-
scending from that node corresponds to one of the possible
values for the parameter and the leaf node represents the
decision achieved following that branch [23].

Artificial Neural Network. ANN is a machine learning
technique that simulates the structure of biological neural
systems. This technique constructs a network of computa-
tional nodes where each node operates as a function that
takes a number of inputs and produces a single output. This
process emulates the operation of neurons in the human
brain. ANNs usually compete with decision trees in noisy
data [25]. In this work we consider a specific type of ANN
called Multi-Layer Perceptron (MLP).

Ensemble methods. Ensemble methods internally use sev-
eral algorithms in order to achieve more accurate predic-
tions than any of these algorithms could yield in isola-
tion [26]. In order to do this, they usually apply “bootstrap-
ping”, which consists in generating different subsets out of
the training set by applying sampling with replacement.
This means that some samples are never considered and
some are repeated across different subsets which are used as
the training set for the different ML algorithms considered.

In this paper, we consider two ensemble methods called
Bagging [27] and Random Forest [3]. The former has been
already applied to performance prediction in the Cloud [17].
The latter, is an extension of the former, which requires to
train several regression trees with different subsets of the
input data, and with possible subsets of the input features.
The output of an ensemble method is the value proposed by
most of these trained ML algorithms. The combination of
many algorithms allows the ensemble method to achieve
better prediction accuracy than any single algorithm in
isolation [28]. In particular, RF is well suited to generate
models with good prediction accuracy compared with other
regression techniques if the training data set is small and its
content is noisy.

Clustering Techniques. Clustering is the task of grouping
similar objects into groups called clusters. Clustering tech-
niques group objects based on information found in the data
that describe the object’s properties or their relationships.
The goal is that the objects in a cluster are as similar as
possible. The greater the similarity within a cluster, the

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

4

better the clustering technique.

3.2 Cloud Computing

Cloud computing is a model for enabling on-demand net-
work access to a shared pool of configurable computing
services that can be rapidly provisioned and released with
minimal management effort or service provider interac-
tion. Our work concentrates on Infrastructure as a
Service (IaaS) clouds, which provide user access to
computing resources.

Our cloud model used in this paper resembles commer-
cial clouds such as the Amazon Elastic Compute Cloud
(EC2), Google Computing Engine (GCE) and RackSpace
Cloud (RS). In this model, the computing resources are pro-
vided to users by using virtualization, which is a technology
that allows to run one or multiple VMs on top of a single
physical server. A VM is the representation of a physical
machine by software and defines its own set of virtualized
hardware (RAM, virtual CPU (vCPU), hard disk, etc.) upon
which an operating system and applications are loaded.

A physical server can run several VMs isolated from
each other depending on its capacity. A VM can be in-
stantiated from a set of different VM types3. These types
define the amount and performance capabilities of resources
which are allocated to the VM. Commercial cloud providers
usually offer several VM types. For example, the t2.small
VM type of Amazon EC2 defines a VM which will use a
single CPU core and two Gigabyte of RAM.

3.3 Scientific Workflows

A workflow application can be modeled as a graph, W =
(T,D) consisting of n tasks T =

⋃n
i=1 {ti}, interconnected

through dependencies D = {(ti, tj , dij) | (ti, tj) ∈ T × T},
where dij represents the size of the data, which needs to
be transferred from task ti to task tj . Formally, we use
pred(ti) = {tk| (tk, ti, dki) ∈ D} to denote the predecessor
set of task ti, (i.e. tasks to be completed before starting ti).

t1

tnt2

t2n

d12 d1n

dn+12n+1 d2n2n+1

t3

tn+1 tn+2

t2n+1

…

…

d13 d1k

d2n+1 d3n+2 dkn+k dn2n

dn+22n+1 dn+k2n+1

Fig. 1: Example workflow

3. Therefore, sometimes a VM is also referred as a VM instance.

Figure 1 shows an example workflow consisting of
2n + 1 tasks (T = {t1, t2, ..., t2n+1}). The set D =
{(t1, t2, d12), (t1, t3, d13), ..., (tn+1, t2n+1, dn+12n+1),
(t2n, t2n+1, d2n2n+1)} includes the dependencies among of
these tasks (some of which are also depicted in the picture).

In order to evaluate the approach proposed in this work,
we have used the following real world workflows:

Montage [29] is a portable software toolkit that allows
to construct mosaic images out of astronomical sources.
The workflow contains nine different tasks in charge of
obtaining data, projecting and shrinking them, composing a
mosaic out of different tiles, or transforming to JPEG format.
The size of the workflow depends on the number of images
required to build the mosaic.

Wien2k [30] is a material science workflow for per-
forming electronic structure calculations of solids using
density functional theory based on the full-potential (lin-
earized) augmented plane-wave ((L)APW) and local orbital
(lo) method. Wien2k consists of two parallel sections with
sequential synchronization tasks in between them resulting
in five different tasks.

The Persistence Of Vision Raytracer (POV-Ray) work-
flow is based on a free tool for creating three-dimensional
graphics and movies [31]. This creation is known to be a
time and resource consuming process used not only by
hobbyists and artists, but also in biochemistry research,
medicine, architecture and mathematical visualization. The
POV-Ray workflow is composed of two different tasks:
povray:Render2 which renders a set of frames (i.e. im-
ages) from a three-dimensional scene descriptor file and
povray:Convert which encodes the rendered images into
an animated GIF.

The Blender application is an integrated 3D suite
for modeling, rendering, animation, production, post-
production of movies. The Blender workflow [32] consists
of two main parts. A first phase where a set of parallel tasks
render different frames of a movie. A second phase where
all the rendered frames from the previous phase are merged
together to a movie.

4 A TWO-STAGE PREDICTION APPROACH

4.1 Problem Motivation
Let us formalize a set of IaaS clouds C = {c1, c2, . . . , cp}
and a set of VM types V = {v1, v2, . . . , vt}. Each type
consists of a number of virtual cores, a specific memory
size, and a given version of the Linux operating system.
All of the evaluated cloud providers (see Section 5.2) offer
a VM resembling each of the considered types in this work
(see Table 2). Given a workflow W = (T,D), our goal is
to predict the execution time of a task ta ∈ T , on a virtual
machine type vv ∈ V of the cloud cr ∈ C.

IaaS clouds are composed of different physical servers
with different hardware (CPU, memory, etc.) A cloud
provider is in charge of selecting the physical server in
which each VM instance runs. Instances of the same VM
type may always run on the same type of physical hardware,
but nothing prevents the provider to use different physical
machines for different instances of the same VM type as long
as the service agreements (SLA) with users are not violated.
Therefore, executions of the same task in the same cloud

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

5

TABLE 1: Parameters used to model task execution times

Pre-Runtime
Parameters

Workflow input data Input parameters of workflow
VM types Number of vCPU, Memory capacity

Runtime
Parameters

uCPU CPU used time at user level
sCPU CPU used time at system level
Memory usage Memory used by task
Write operations Number of written blocks of task
Read operations Number of read blocks of task
File transfer Size of transferred files by task
Bandwidth Bandwidth used by task

can run on different hardware, regardless of the selected
VM type, leading to different execution times. This aspect
increases the complexity to predict task execution times on
the cloud.

Related work suggests the inclusion of hardware param-
eters to improve prediction accuracy [11]. These approaches
are appropriate for grid and cluster systems, however, for
IaaS clouds, hardware information is not always accurate
or accessible. Even if a provider enables access to accurate
description of their hardware systems, the physical server
on which a VM runs may not always be reported in advance
to the user.

In this work, we propose a novel offline approach to
provide accurate time predictions for workflow tasks for
clouds. This means we build our prediction model using
some prior workflow executions (referred as training data
in the rest of this work), and once the model is built, we use
it for the next execution of the workflow (with unseen input
data, cloud infrastructure, or virtual machine).

We use machine learning to build our model. As training
data we consider some executions of the workflow for
different input data on a number of virtual machines on
various clouds. For each task execution covered in our
training data, we record a set of parameters which are used
by the ML method to build a corresponding execution time
model.

Similarly to previous work, we use the workflow input
as part of our training data. This information is required
to predict the execution time of a task since varying the
workflow input may lead to different execution times of
the tasks composing that workflow. For each task execution
included in our training data set we need to provide in-
formation describing the virtualised environment in which
the task is executed. For our approach we use parameters
describing the VM type such as the number of virtual
CPUs or the amount of virtual memory provided by that
VM. These parameters are used by the cloud provider to
assign physical resources to each virtual machine instance,
which impacts the execution time of that task. Finally, in our
training data we include a set of parameters that describe
the execution behavior of that task in a given virtualised
environment on a cloud. We refer to this set as runtime pa-
rameters since they can only be obtained by executing a task
on a cloud. This set includes information such as the CPU
user time, CPU system time, number of I/O operations,
network bandwidth, etc.

Our approach considers runtime parameters whose val-
ues are architecture dependent. These parameters can be
used to characterize the hardware on which a virtualised
environment is executed on a given cloud. In this paper we

propose a novel approach that uses a two-stage machine
learning prediction technique. The first stage generates a
model for each of the runtime parameters. These models are
generated by using machine learning techniques and aim
to learn the information about the hardware assigned by a
cloud to run a given VM type. This is learned indirectly by
a ML method which correlates the workflow input with in-
formation of the VM type with the runtime parameters. The
second stage uses the runtime parameter models generated
in the first stage to predict the final execution time of a task.
Our algorithm is described in the following sections.

4.2 Considered Parameters
Table 1 describes the parameters considered by our predic-
tion approach which we collect for every execution of all
workflow tasks. We have evaluated the importance of each
of these parameters using a feature selection process [33].
Removing any of these features from our approach will
decrease the prediction accuracy, which is dependent on the
workflow task.

We classify the considered parameters into two groups
which are referred as pre-runtime and runtime parameters,
respectively. Pre-runtime parameters can be statically deter-
mined before executing a task on a cloud. Pre-runtime
parameters include the workflow input and parameters
describing the virtualised environment in which the task is
going to execute. The runtime parameters reflect performance
differences of tasks on different virtual machines of the same
or different cloud providers and are determined by actually
executing a task. They include the user CPU time, the
system CPU time, the number of written blocks to memory
by a task, or the amount of data transferred to the network
by that task.

4.3 Method Description
Let A = {α1, . . . , αm} be the set of pre-runtime parameters.
For each pre-runtime parameter αi, 1 ≤ i ≤ m, let Θi denote
the set of possible values for that parameter. Let us also
consider that there is a function Γi that derives the value of
that parameter for any task ta executed on a virtual machine
vv in a cloud cr . These functions can be represented as

Γi : T × V × C → Θi ∀1 ≤ i ≤ m (1)

and refer only to pre-runtime parameters whose values
must be known for any possible combination of task, virtual
machine type and cloud, no matter whether that combina-
tion has been executed before or not.

For example, we can assume the parameter αx is the
number of virtual cores of a VM type. In this case, if we

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

6

Algorithm 1 Two-stage prediction algorithm

Input: ta (a task of the workflow)
Input: vv (a virtual machine type)
Input: cr (a cloud)
Output: Time prediction value for ta on vv in cr

1: α← ∅ . initialize the set of pre-runtime parameters to be the empty set
2: i← 1
3: while i ≤ m do
4: α← α ∪ {Γi(ta, vv, cr)} . Extend this set with all known pre-runtime parameters
5: i← i+ 1
6: end while
7: j ← 1
8: ρ← ∅ . initialize the set of runtime parameters to be the empty set
9: while j ≤ n do . Extend the runtime parameter set with known or predicted values

10: if exist(∆j(ta, vv, cr)) then
11: ρ← ρ ∪ {∆j(ta, vv, cr)} . If the value is known, add it to the set
12: else
13: ρ← ρ ∪ prediction method j(ta, vv, cr) . If the value is unknown, predict it with Algorithm 2
14: end if
15: j ← j + 1
16: end while
17: execution time← machine learning(α, ρ) . Predict the execution time using the sets of pre-runtime
18: . and runtime parameters generated before
19: return execution time

had three VM types featuring one, two, and four virtual
cores, respectively, the set Θx is {1, 2, 4}, and the function
Γx returns the value in that set for the specific execution of
ta on the virtual machine vv in the cloud cr.

Similarly, let R = {ρ1, . . . , ρn} be the set of n run-
time parameters. For each of these runtime parameters ρj ,
1 ≤ j ≤ n, let λj define the set of possible values for that
parameter. Let us also assume that there exist a function
∆j that derives the value of that parameter for a task
ta executed on a virtual machine vv in a cloud cr. These
functions are denoted as

∆j : T × V × C → Λj ∀1 ≤ j ≤ n. (2)

Let ρy be for example the user CPU time for a given
execution. In this case, the set λy is a subset of R; in
particular, the subset of all possible user CPU times for a
workflow task. ∆y is the function that provides us with the
user CPU time of the task ta when executing on vv in the
cloud cr . Some ∆j functions, 1 ≤ j ≤ n, may not be defined
for every possible combination of task, virtual machine and
cloud. The functions are defined only for these combinations
that have been previously executed.

Our approach (see Algorithm 1) to predict the execution
time of workflow tasks in the cloud uses the functions
described above. The input of the algorithm consists of a
task ta, a virtual machine type vv , and cloud cr . The output
of the algorithm is the predicted execution time of ta for vv
in the cloud cr .

Initially, the algorithm creates a vector consisting of
all the pre-runtime parameters αi, 1 ≤ i ≤ m, for the
given input (see lines 1-6). After that, the first stage of the
algorithm (lines 7-16) computes the values of the runtime
parameters for the given input. For each of these runtime
parameters, there are two options. If the input has been

executed before, the parameter value should be available
in the historical data. Otherwise, the missing value has to be
predicted using a model based on ML (see Algorithm 2).

The first stage of the prediction is depicted by Algo-
rithm 2. The input of this approach is the task ta, virtual ma-
chine type vv , and cloud cr for which a runtime parameter
needs to be predicted. The algorithm generates the predicted
value for that runtime parameter by using a ML method
that has been trained with historical data, using only pre-
runtime parameters. Any state-of-the-art machine learning
regression method can be used for this phase.

Algorithm 2 Prediction method for runtime parameter ρj
Input: ta (a task of the workflow)
Input: vv (a virtual machine type)
Input: cr (a cloud)
Output: Predicted value for the runtime parameter ρj

1: . Initialize the set of pre-runtime parameters to the
empty set

2: α← ∅
3: i← 1
4: . Extend the set with all pre-runtime parameters
5: while i ≤ m do
6: α← α ∪ {Γi(ta, vmv, pr)}
7: i← i+ 1
8: end while
9: . Predict using the pre-runtime parameters set

10: ρj ← machine learning(α)
11: return ρj

Once the values of all the runtime parameters are ex-
tracted from historical data or predicted, they are used
together with pre-runtime parameters in a second stage
(Algorithm 1, line 13) to predict the execution time of the

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

7

task. This second stage incorporates again a ML method
trained with the historical data.

5 EMPIRICAL EVALUATION

This section is devoted to describe the experimental setup
and empirical evaluation of our performance prediction
approach.

5.1 Implementation Details
We use the Askalon [34] workflow management system
(WMS) to run our experiments on the cloud. We use the
ASKALON default scheduler which executes a task on each
virtual core of a VM. Therefore, if a VM has four virtual
cores, the scheduler will execute four tasks concurrently in
that VM. An internal database is maintained by the WMS
system with information (i.e., pre-runtime and runtime pa-
rameters) about all collected workflow executions. We do
not include any information about collocation of other VMs
in the same PM, since we cannot control the effect of VM
collocation; and, that information is commonly not provided
by public providers to their customers.

In order to monitor the runtime parameters for workflow
tasks for virtualized environments, we instrumented the
tasks by using linux system calls to obtain CPU and mem-
ory usage as well as I/0 operations. Our instrumentation
has not been done at the hypervisor level; instead, we
provided a lightweight instrumentation wrapper which has
been transparently injected in every task by our workflow
management system. In addition, we used the WMS to
measure files transfers. File transfer times have been used to
compute the bandwidth usage for every task. The training
data for every workflow task has been stored in the WMS
database.

The data used in this paper has been generated by
considering executions of workflows with different pre-
runtime parameters values. Table 6 summarizes the input
parameters of every workflow and the evaluated upper and
lower bound. These bounds have been chosen in such a way
that the execution time of the workflow is between a few
minutes and approximately one hour. We have randomly
selected values within these intervals following a uniform
distribution in order to generate the training and validation
sets. In total, we have generated between 314 and 14,000
executions for every task, to be used either as training or
validation.

5.2 Evaluation Environment
Our internal cloud infrastructure is composed of a cloud
with three different regions. We refer to these three regions
as Ii, 1 ≤ i ≤ 3. The description of the computers, which are
part of these regions is included in Table 3. Moreover, we
also conducted experiments on three different commercial
cloud providers: Amazon EC2 4, Google Compute Engine
5 and Rackspace 6. In order to guarantee a fair evaluation,
we used similar virtual machine types with the same virtual
CPU and memory across the clouds providers.

4. https://aws.amazon.com/ec2/
5. https://cloud.google.com/compute/
6. https://www.rackspace.com/cloud

We used the VM types called type1, type2, type3
and type4 corresponding to t2.small, t2.medium,
m4.xlarge and m4.2xlarge of Amazon EC2,
n1-standard-1, n1-standard-2, n1-standard-4
and n1-standard-8 of Google Compute Engine, as
well as general1-1, general1-2, general1-4 and
general1-8 of Rackspace Cloud. All of these types have
the same configuration as illustrated in Table 2

TABLE 2: Considered virtual machine types

VM type vCPU Mem(GiB) OS
type1 1 2 Centos 7 (64bit)
type2 2 4 Centos 7 (64bit)
type3 4 16 Centos 7 (64bit)
type4 8 32 Centos 7 (64bit)

In order to provide a fair comparison among different
hardware of many cloud providers, we choose the same op-
erating system for the images used in each virtual machine.
In this work, we used Centos-7 for all of experiments across
the clouds.

5.3 Evaluation metric
Let rijk ∈ R+ be the actual execution time of executing
task ti on VM of type vj ∈ V running on a cloud ck ∈ C
with 1 ≤ k ≤ p. Let eijk be the corresponding predicted
execution time for rijk by any approach analyzed in this
paper. To validate the accuracy of our approach, the relative
absolute error (RAE) [22] is used as a metric for evaluation:

RAE =

n∑
i=1
|rijk − eijk|

n∑
i=1
|rijk − 1

n

n∑
i=1

rijk|
(3)

where n is the number of predictions computed. The
smaller the RAE, the better the prediction accuracy.

There are different metrics to assess the accuracy of
machine learning techniques. An empirical study of differ-
ent metrics [35] recommends RAE over other alternatives.
In addition, RAE has been used by prior works [9] for
workflow performance prediction.

6 EVALUATION

This section is devoted to assess the performance of our
prediction method, which is compared against state-of-the-
art approaches.

6.1 Evaluated Approaches
We choose regression methods solely based on pre-runtime
parameters, as done in related work. Comparing our work
against alternatives such as ASPEN [4], COMPASS [18],
PALM [19] or PEMOGEN [20] is unfortunately difficult.
Firstly, most of these alternatives require access to the appli-
cation source code, which is not the case for some of the con-
sidered workflow applications in this work. Secondly, most
of these methods require detailed hardware information,
which is an unrealistic assumption in particular for public
clouds. Finally, some of these approaches require an expert
analyst who annotates the source code of the application,
while we aim for a fully automated approach.

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

8

TABLE 3: Description of the internal cloud

Name Physical Hardware Hypervisor Platform

I1
3x IBM Nodes

(2x Intel(R) Xeon(R) CPU E5-2680
v2 @ 2.80GHz, 128 GRAM Infiniband QDR)

KVM
1.5.3-60.el7 0.11.x86 64 Openstack

I2
2x SUN 4600M2 Nodes

(8xQad-Core AMD Opteron(tm)
Processor 8356, 64GB RAM/server, Infiniband)

KVM
1.5.3-60.el7 0.11.x86 64 Openstack

I3
3x Nodes

IBM (4xIntel(R) Xeon(R) CPU X5570
@ 2.93GHz, 32GB RAM, Infiniband QDR)

KVM
1.5.3-60.el7 0.11.x86 64 Openstack

TABLE 4: Profiling characteristics for workflow tasks

CPU Util(%) Peak Mem (MB) IOWrite(MB) IORead(MB) BandWidth(Mbps)

Task Mean Std Mean Std Mean Std Mean Std Mean Std

Blender-Render 57.84 7.00 242.15 56.99 5.01 0.54 0.30 2.93 37.94 4.21
Blender-Merge 4.80 0.19 1.83 0.00 494.59 0.00 491.82 2.97 44.71 15.72

Povray-Render 99.04 0.06 23.46 0.04 0.27 0.01 0.00 0.00 0.05 0.01
Povray-Convert 97.06 0.13 169.25 0.05 19.78 0.00 0.00 0.00 1.73 0.21

Wien2k-LapW0 99.18 0.05 36.60 1.03 1.35 0.00 0.17 0.00 7.16 1.94
Wien2k-pforLapW1 99.94 0.02 130.65 0.57 2.73 0.01 0.00 0.00 27.74 3.59
Wien2k-LapW2Fermi 85.32 0.13 5.50 0.01 1.20 0.00 0.14 0.00 1.92 0.04
Wien2k-pforLapW2 96.69 4.00 12.53 0.15 2.40 0.00 0.00 0.00 18.26 6.73
Wien2k-Mixer 17.23 0.16 18.30 0.00 24.49 0.00 0.00 0.00 4.33 0.88

AddTiles 63.56 2.32 7.88 0.00 199.06 0.00 1.71 0.14 215.87 25.72
AddShrink 85.69 5.63 8.94 0.02 91.64 0.00 1.15 1.69 16.49 10.73
BCorrection 83.00 5.68 14.84 0.02 101.80 27.58 0.34 0.47 25.42 12.30
CalcTiles 83.78 0.50 6.45 0.00 0.05 0.00 2.61 0.00 0.27 0.05
CalcModel 74.52 0.49 6.77 0.00 0.02 0.00 0.13 0.00 0.03 0.00
CalcOverlap 60.87 0.79 6.20 0.00 0.02 0.00 0.00 0.00 0.24 0.07
CalcDiffFit 67.42 13.05 4.68 0.00 6.18 10.95 0.44 0.72 31.86 21.04
DlAndProj 3.53 0.23 12.22 0.64 9.23 0.60 0.00 0.00 0.45 0.08
RetrImgList 22.98 17.40 6.50 0.00 0.07 0.00 0.08 0.00 0.00 0.00

Related work often uses three main regression algo-
rithms: linear regression, neural networks, and regression
trees. Furthermore, in this work we also considered the
use of Random Forest, as described in Section 3.1, RF has
been shown recently to be very successful for many scenar-
ios. More specifically, we examined a total of six different
regression algorithms: linear regression (LR), multi-layer
perceptron (MLP) which is a specific type of (ANN), two
different implementation of regression trees, M5P and REP,
Bagging using M5P (BM5P), as well as Random forest (RF).
We used an implementation of these algorithms provided by
the Weka library [22]. We configured these methods with the
default parameter values used by the version 3.8 of the Weka
library, which are summarized in Table 5. These values have
been adjusted by the library authors based on related work
describing these methods and they also provided the best
figures for us in some preliminary tests. As input features
we used only pre-runtime parameters since their values are
available before running the application (i.e., application
input, vm type, etc). This set of parameters includes most
of the ones used by Da Silva et. al. [10] and Lee et. al. [6].
We will refer to these approaches as single-stage methods in
the remainder of this section.

Our two-stage approach also requires the use of ML
regression techniques in the two described phases of Al-
gorithm 1. We analyzed the performance of our algorithm
when coupled with any of the six regression algorithms

mentioned above. Our goal was to prove that our two-
stage approach can achieve more accurate predictions than
any existing method regardless of the considered regression
technique.

Some related work use clustering techniques to subdi-
vide training data into subgroups based on similar features.
When the prediction algorithm (e.g., in our case Algo-
rithm 1) is invoked based on a given input, the cluster
to which that input belongs to is determined. After that,
a prediction for that input is derived by considering only
training data of that same cluster. Da Silva et. al. [10]
showed that this method outperforms predictions without
clustering. The same conclusion was obtained by Lee et.
al. [6] by filtering the input of the method prior to deriving
any prediction. This filtering step requires to compute the
cluster to which the input belongs to.

In our experiments, we also applied clustering. Pre-
dictions have been derived for every cluster separately.
This was done for our two-stage approach as well as for
the analysed related-work based techniques. In preliminary
experiments we have evaluated two types of clustering
techniques called DBSCAN [36] and EM [37]. We report in
this paper the results of the two-stage approach using the
EM clustering algorithm, since it resulted in better accuracy
than DBSCAN for clustering our data.

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

9

TABLE 5: Parameters used in Machine Learning Methods

Method Parameters

MLP(ANN)

Learning Rate for the back-propagation algorithm = 0.3
Momentum Rate for the back-propagation algorithm = 0.2
Number of epochs to train = 500
Hidden layers = 1

M5P Minimum number of instances per leaf = 4

REP
Minimum number of instances per leaf = 2
Number of folds for reduced error pruning = 3
Maximum tree depth = unlimited

BM5P (Bagging M5P) Bag size = 100
Maximum tree depth = unlimited

RF

Number of trees to build = 100
Minimum number of instances per leaf = 1
Minimum numeric class variance (proportional to train variance) to split = 1e-3
Maximum tree depth = unlimited

TABLE 6: Considered workflow parameter values and chosen lower and upper bounds

Workflow Parameter Values
Wien2k Kpoints lower bound=100, upper bound=200

Integer Fraction lower bound=7, upper bound=9
Povray Total Frame lower bound=100, upper bound=500

Frames per Activity lower bound=5, upper bound=10
Blender Total Frame lower bound=100, upper bound=500

Frames per Activity lower bound=5, upper bound=10
Montage Width of Image lower bound=0.5, upper bound=1.0

Height of Image lower bound=0.5, upper bound=1.5

6.2 Obtained results

We have computed predictions for all tasks of the workflows
introduced in Section 3.3. All tasks of these workflows are
sequential tasks (only a virtual core per task is used) and
they are of different nature, ranging from tasks with almost
no I/O operations and high CPU utilization to I/O intensive
tasks with low CPU utilization. A summary of the profiling
and statistical information for the workflow tasks is shown
in Table 4.

We have generated experimental data for all workflows
on different virtual machine types (see Table 2) on the clouds
reported in Section 5.2. These workflow instances have been
created by choosing their input as commented in Section 4.2.

The obtained results are summarized in tables 7, 8, 9,
and 10 for the tasks of the Povray, Blender, Wien2k, and
Montage workflows, respectively. Each table includes the
prediction results in the form of RAE values for the single
stage approach based only on pre-runtime parameters as
well as for our two-stage approach with different regression
methods for the different workflow tasks. These results have
been computed using 10-fold cross-validation. The best (i.e.,
lowest RAE value) obtained results for each task has been
highlighted in bold font. Besides tabulating results for every
task, the last row of every table summarizes the average
RAE across all workflow tasks.

A quick analysis of our result shows that RF is the regres-
sion algorithm resulting in the lowest prediction errors for
both single-stage and two-stage approach. When comparing
our proposal using RF against single-stage approaches, the
two-stage approach achieves lower prediction errors in all
the cases except for one task of the Montage workflow. In
this case, RF using only pre-runtime parameters is slightly
better than the two-stage approach. For this particular task,
pre-runtime parameters are sufficient to achieve good pre-
dictions. For the other tasks, however, we could observe that

using also runtime parameters can substantially improve
the predictions.

If we focus on the two-stage approach, RF produces an
average error of 3.9% for the tasks composing the Povray
workflow. For the Blender workflow, the average RAE in-
creases up to 5.25%, while for Wien2k and Montage the RAE
is 6.64% and 8.97%, respectively. Therefore, the average RAE
over all workflow tasks is always less than 10%, for each of
the analyzed cases when the two-stage approach is used in
combination with RF. If we examine individual workflow
tasks, the minimum achieved RAE has been 1.6% for one
of the tasks of Povray workflow, while the maximum has
been 12.2% for one of the Montage tasks. Our approach has
not been able to provide a RAE value below 10% for five
of the analysed task. Interestingly, these tasks belong to one
out of the following two groups: (1) tasks with very short
execution times (less than a second); or (2) tasks which are
bandwidth dependent. Tasks belonging to the first group
are hard to predict since even small overheads (such as
instrumentation overhead) can account for a substantial
percentage of the final execution time. Tasks in the second
group are influenced by the time to download/upload data
from/to the internet, which fluctuates with the available
bandwidth.

When comparing our two-stage approach against single-
stage approaches regardless of the regression method, our
experiment show that the former is better than the latter for
all cases when considering all workflow tasks (see average
reported RAE for each workflow). The only case where
single-stage approaches and our proposal are comparable
(i.e., they computed similar RAE values) is when the two-
stage approach uses LR as regression method.

In terms of improvements, our approach using RF
achieves a three time lower RAE than single-stage based
approaches. For the Blender workflow, the improvements
reach up to five times smaller RAE. For Wien2k and Mon-

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

10

TABLE 7: Povray tasks estimation errors (RAE) for single-stage and two-stage approaches

Single-Stage Approaches Two-Stage Approach

Task LR MLP M5P REP BM5P RF LR MLP M5P REP BM5P RF

Povray-Render 34.60 21.50 16.00 15.90 16.10 15.90 3.90 4.60 3.40 3.20 3.10 1.60
Povray-Convert 26.60 16.80 10.40 9.70 9.30 9.20 16.50 7.50 8.30 14.30 11.10 6.20

Average 30.60 19.15 13.20 12.80 12.70 12.55 10.20 6.05 5.85 8.75 7.10 3.90

TABLE 8: Blender tasks estimation errors (RAE) for single-stage and two-stage approaches

Single-Stage Approaches Two-Stage Approach

Task LR MLP M5P REP BM5P RF LR MLP M5P REP BM5P RF

Blender-Render 42.80 46.50 37.90 37.90 37.80 37.80 12.10 13.50 7.50 8.10 8.50 6.40
Blender-Merge 25.70 21.70 20.10 17.80 20.10 15.60 33.70 14.50 12.40 7.80 16.60 4.10

Average 34.25 34.10 29 27.85 28.90 26.70 22.90 14 9.95 7.95 12.60 5.25

TABLE 9: Wien2k tasks estimation errors (RAE) for single-stage and two-stage approaches

Single-Stage Approaches Two-Stage Approach

Task LR MLP M5P REP BM5P RF LR MLP M5P REP BM5P RF

LapW0 93.90 94.20 88.20 80.30 86.70 77.40 62.60 28.20 33.90 26.10 41.30 9.10
pforLapW1 49.30 12.70 8.40 7.90 8.40 7.70 2.00 2.10 2.00 2.50 2.50 1.80
LapW2Fermi 88.70 96.80 83.50 77.50 81.60 74.20 77.50 42.00 44.30 33.40 43.80 11.60
pforLapW2 40.50 45.60 37.20 37.10 36.90 37.20 11.70 17.10 9.70 7.10 36.10 2.60
Mixer 66.90 57.30 53.60 47.40 52.30 45.20 41.30 22.00 23.90 18.30 43.30 8.10

Average 67.86 61.32 54.18 50.04 53.18 48.34 39.02 22.28 22.76 17.48 33.40 6.64

TABLE 10: Montage tasks estimation errors (RAE) for single-stage and two-stage approaches

Single-Stage Approaches Two-Stage Approach

Task LR MLP M5P REP BM5P RF LR MLP M5P REP BM5P RF

RetrImgList 69.70 69.70 65.40 60.40 65.20 58.20 45.10 14.30 25.50 22.10 27.40 10.50
CalcOverlap 56.50 55.20 54.80 53.90 54.80 49.50 56.80 15.20 35.70 33.10 34.20 12.20
DlAndProj 98.40 109.70 96.60 96.50 96.30 96.50 80.80 74.40 37.30 25.20 38.50 10.90
CalcDiffFit 90.40 86.50 88.60 86.40 88.50 85.00 46.80 40.00 23.30 16.20 24.10 6.70
CalcTiles 46.30 36.80 42.10 32.80 10.50 33.50 13.70 11.20 9.80 10.30 10.80 5.70
CalcModel 9.70 8.10 10.30 7.20 11.10 6.90 17.70 6.70 15.90 14.30 16.70 7.30
BCorrection 97.40 99.30 95.80 95.80 96.20 95.60 69.10 27.50 37.90 28.90 31.30 10.00
AddShrink 88.60 91.90 85.90 83.90 85.50 82.90 55.60 27.00 32.60 23.10 34.10 9.30
AddTiles 26.20 26.00 24.20 23.40 24.50 20.80 30.30 9.20 22.50 16.10 23.10 8.20

Average 64.80 64.80 62.63 60.03 68.70 58.76 46.21 25.05 26.72 21.03 26.70 8.97

tage, the results are even more impressive: eight and nine
times smaller RAE than related-work based methods, re-
spectively.

6.3 Model Portability: Covering a new Cloud Provider
In this section we want to explore the portability of our
prediction model. We consider a scenario when we got
training data for several clouds, but no training data for
a new provider. We want to explore two questions, (1) how
accurate is our model for the new provider?; and (2) how
many executions on the new cloud are required to adjust
our model for achieving a low RAE?

For this experiment, we consider the three evaluated
commercial clouds in this paper (Amazon EC2, Google
Compute Engine, and Rackspace). For each cloud C out of

these three, we assume that we have training data of our
internal cloud and the other two providers, and we want
to extend the model to predict for C . For example, when
we consider Amazon EC2 as the new provider for which
we want to extend our model, we will consider the same
training data set as in the previous sections, but we remove
all the executions pertaining EC2. These removed executions
will be the validation set which we use to test the predictions
(compute their RAE) for EC2.

For answering the second question, we consider that
some executions are available on the new provider. For this
setup, we randomly add to the training set described in the
paragraph before several executions derived from the new
provider. These executions are taken from the validation set.
More specifically, we analyze the results when adding one,

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

11

No data 1 2 5 10 25 100

1
0

2
0

3
0

4
0

Predictions for EC2
 Task: Wien2k−LapW0

of measurements

R
A

E

No data 1 2 5 10 25 100

1
0

2
0

3
0

4
0

Predictions for GCE2
 Task: Wien2k−LapW0

of measurements

R
A

E

No data 1 2 5 10 25 100

5
0

1
0

0
1

5
0

2
0

0

Predictions for RSDFW2
 Task: Wien2k−LapW0

of measurements

R
A

E

No data 1 2 5 10 25 100

4
6

8
1

0
1

4

Predictions for EC2
 Task: Wien2k−pforLapW1

of measurements

R
A

E

No data 1 2 5 10 25 100

4
6

8
1

0
1

4
1

8

Predictions for GCE2
 Task: Wien2k−pforLapW1

of measurements

R
A

E

No data 1 2 5 10 25 100

5
1

0
1

5
2

0

Predictions for RSDFW2
 Task: Wien2k−pforLapW1

of measurements

R
A

E

No data 1 2 5 10 25 100

2
0

4
0

6
0

8
0

Predictions for EC2
 Task: Wien2k−pforLapW2

of measurements

R
A

E

No data 1 2 5 10 25 100

1
0

2
0

3
0

4
0

5
0

6
0

7
0

Predictions for GCE2
 Task: Wien2k−pforLapW2

of measurements

R
A

E

No data 1 2 5 10 25 100

3
0

4
0

5
0

6
0

7
0

Predictions for RSDFW2
 Task: Wien2k−pforLapW2

of measurements
R

A
E

No data 1 2 5 10 25 100

1
0

2
0

3
0

4
0

Predictions for EC2
 Task: Wien2k−Mixer

of measurements

R
A

E

No data 1 2 5 10 25 100

1
0

2
0

3
0

4
0

Predictions for GCE2
 Task: Wien2k−Mixer

of measurements

R
A

E

No data 1 2 5 10 25 100

1
0

2
0

3
0

4
0

5
0

Predictions for RSDFW2
 Task: Wien2k−Mixer

of measurements

R
A

E

Fig. 2: Extending the two-stage model for different Cloud Providers

two, five, ten, twenty five, and a hundred executions on
the new cloud. We perform these experiments ten times per
cloud provider.

Without loss of generality we perform these experiments
only for the two-stage approach when using RF, since based
on our previous experiments, RF has shown to achieve the
best results for the majority of evaluated workflow tasks.
For this experiment we will not apply clustering techniques.
This is because the executions on the new cloud may form
its own cluster, which may not contain enough data to
provide accurate predictions.

We illustrate here the obtained results for four tasks
of the Wien2k workflow. We do not consider the task
LapW2Fermi from this workflow due to its short execution
time (below 0.7 secs) for which predictions are challenging

to derive for clouds for which no information is available.
Figure 2 depicts the obtained results using a Boxplot rep-

resentation for every cloud provider. The graphs included
in that figure illustrate a substantial drop in prediction
accuracy (compared to the results reported in Section 6.2)
when no data on a given cloud is available. Nevertheless,
the obtained predictions are in some cases more accurate
than the evaluated related-work based methods as shown
in Table 8.

If we consider the four evaluated tasks in this section,
prediction accuracy ranges between 50% and 14% when no
data is available for the new cloud. These results indicate
that porting the model to a new provider is a complex issue
that may result in low prediction accuracy when no data for
the new cloud is available.

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

12

On the other hand, the obtained results also show that
by performing only a few trial runs on the new provider,
the quality of the model quickly improves. In some cases,
the RAE falls below 10% with only five task executions
on the new provider (see tasks pforLapW1 and Mixer
for Amazon EC2 and Rackspace Clouds). Obviously, as
depicted by the graph, the more data for the new cloud
is included in the training data, the better the resulting
prediction accuracy, which tends to converge towards the
results reported in Section 6.2.

An interesting observation can be made for instance for
task pforLapW2 for Amazon EC2 and Rackspace which
yields better predictions without data than using a single
execution on the new cloud. The reasons for this behavior is
the inherent noise of ML methods. With only one execution
the model tries to predict for the new cloud, but the data
are not enough to generate a suitable model. This effect
diminishes when five or more executions in the new cloud
are included in the training data.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the problem of predicting
the execution time of workflow tasks for varying input data
for different IaaS clouds.

Given a task to be executed on a specific cloud, our
method predicts the execution time for different input data
in two stages. The first stage predicts the value of the
runtime parameters based on historical data for that task
on the given cloud or on another cloud. The second stage
uses all the predicted runtime parameters together with pre-
runtime parameters to predict the execution time of the task.

Experiments for the tasks composing four real work-
flow applications demonstrate that our two-stage based ap-
proach clearly outperforms existing prediction approaches,
which are primarily based on pre-runtime parameters.
To demonstrate the advantage of our two-stage approach
versus a prediction based on pre-runtime parameters, we
evaluated the use of different machine learning regression
methods such as linear regression, multi-layer perceptron,
regression trees, bagging using regression trees, and random
forest. The average relative absolute errors over the task
of these four workflows show that the two-stage approach
achieves better accuracy when using random forest than
with other algorithms. We also observed that two types
of tasks are harder to predict than others. These types
have short execution times (less than one sec.) and/or are
bandwidth dependent tasks.

In addition, we also demonstrated that our two-stage
model can be used to predict task execution times for new
IaaS clouds. With only a few executions the model accuracy
can be substantially improved. We analyzed this behavior
when porting our model to three commercial clouds: Ama-
zon EC2, Google Computing Engine and Rackspace. We
showed that the resulting prediction errors with only five
task executions on the new cloud can reach an estimation
error of less than 10% for some workflow tasks. For increas-
ing training data on the new cloud, the prediction accuracy
consistently improves.

To build our predictor, we have first collected all the
training data and, afterward, we generate the prediction

model. This approach may be sensible for highly dynamic
cloud workloads. A possible solution to overcome this prob-
lem may require an update of our predictor after every task
execution (i.e., retrain the model every time new data is
available). This scenario will be a subject to future work.
In addition, we will also examine the use of the model
proposed in this paper to support different scheduling and
resource provisioning techniques.

ACKNOWLEDGMENT

This paper has received funding from the European Unions
Horizon 2020 research and innovation programme as part
of the ENTICE project under grant agreement No 644179.

REFERENCES

[1] J. Qin and T. Fahringer, Scientific Workflow: Programming, Optimiza-
tion, and Synthesis with ASKALON and AWDL. Springer, 2012.

[2] J. Durillo and R. Prodan, “Multi-objective workflow scheduling in
amazon ec2,” Cluster Computing, vol. 17, no. 2, pp. 169–189, 2014.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001. [Online]. Available: http://dx.doi.org/10.1023/
A%3A1010933404324

[4] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language
for performance modeling,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 84:1–84:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389110

[5] S. Seneviratne and D. C. Levy, “Task profiling model for load
profile prediction,” Future Generation Computer Systems, vol. 27,
no. 3, pp. 245–255, 2011. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X10001743

[6] B.-D. Lee and J. M. Schopf, “Run-time prediction of parallel
applications on shared environments,” in Cluster Computing, 2003.
Proceedings. 2003 IEEE International Conference on, Dec 2003, pp.
487–491.

[7] N. Kapadia, J. Fortes, and C. Brodley, “Predictive application-
performance modeling in a computational grid environment,”
in High Performance Distributed Computing, 1999. Proceedings. The
Eighth International Symposium on, 1999, pp. 47–54.

[8] H. Li, D. Groep, and L. Wolters, “An evaluation of learning
and heuristic techniques for application run time predictions,”
in Proceedings of 11 th Annual Conference of the Advance School for
Computing and Imaging (ASCI), 2005.

[9] T. Miu and P. Missier, “Predicting the execution time of workflow
activities based on their input features,” in Proceedings of the
2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, ser. SCC ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 64–72. [Online]. Available:
http://dx.doi.org/10.1109/SC.Companion.2012.21

[10] R. F. da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny,
“Online task resource consumption prediction for scientific
workflows,” Parallel Processing Letters, vol. 25, no. 03, p. 1541003,
2015. [Online]. Available: http://www.worldscientific.com/doi/
abs/10.1142/S0129626415410030

[11] A. Matsunaga and J. A. B. Fortes, “On the use of machine learning
to predict the time and resources consumed by applications,” in
Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, ser. CCGRID ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 495–504. [Online].
Available: http://dx.doi.org/10.1109/CCGRID.2010.98

[12] W. Smith, I. Foster, and V. Taylor, “Predicting application run
times with historical information,” J. Parallel Distrib. Comput.,
vol. 64, no. 9, pp. 1007–1016, Sep. 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2004.06.008

[13] P. Dinda, “Online prediction of the running time of tasks,” in High
Performance Distributed Computing, 2001. Proceedings. 10th IEEE
International Symposium on, 2001, pp. 383–394.

[14] P. Dinda and D. O’Hallaron, “An evaluation of linear models for
host load prediction,” in High Performance Distributed Computing,
1999. Proceedings. The Eighth International Symposium on, 1999, pp.
87–96.

2168-7161 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2732344, IEEE
Transactions on Cloud Computing

13

[15] A. M. Chirkin and S. V. Kovalchuk, “Towards better workflow
execution time estimation,” IERI Procedia, vol. 10, pp. 216 –
223, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2212667814001282

[16] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou, “A performance
model to estimate execution time of scientific workflows on
the cloud,” in Proceedings of the 9th Workshop on Workflows
in Support of Large-Scale Science, ser. WORKS ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 11–19. [Online]. Available:
http://dx.doi.org/10.1109/WORKS.2014.12

[17] D. A. Monge, M. Holec, F. Železný, and C. Garino, “Ensemble
learning of runtime prediction models for gene-expression
analysis workflows,” Cluster Computing, vol. 18, no. 4, pp.
1317–1329, 2015. [Online]. Available: http://dx.doi.org/10.1007/
s10586-015-0481-5

[18] S. Lee, J. S. Meredith, and J. S. Vetter, “Compass: A framework for
automated performance modeling and prediction,” in Proceedings
of the 29th ACM on International Conference on Supercomputing, ser.
ICS ’15. New York, NY, USA: ACM, 2015, pp. 405–414. [Online].
Available: http://doi.acm.org/10.1145/2751205.2751220

[19] N. R. Tallent and A. Hoisie, “Palm: Easing the burden of
analytical performance modeling,” in Proceedings of the 28th ACM
International Conference on Supercomputing, ser. ICS ’14. New
York, NY, USA: ACM, 2014, pp. 221–230. [Online]. Available:
http://doi.acm.org/10.1145/2597652.2597683

[20] A. Bhattacharyya and T. Hoefler, “Pemogen: Automatic adaptive
performance modeling during program runtime,” in Proceedings
of the 23rd International Conference on Parallel Architectures and
Compilation, ser. PACT ’14. New York, NY, USA: ACM, 2014,
pp. 393–404. [Online]. Available: http://doi.acm.org/10.1145/
2628071.2628100

[21] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang,
“Cloudprophet: Towards application performance prediction in
cloud,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp.
426–427, Aug. 2011. [Online]. Available: http://doi.acm.org/10.
1145/2043164.2018502

[22] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2011.

[23] S. Salzberg, “C4.5: Programs for machine learning by j. ross
quinlan. morgan kaufmann publishers, inc., 1993,” Machine
Learning, vol. 16, no. 3, pp. 235–240, 1994. [Online]. Available:
http://dx.doi.org/10.1007/BF00993309

[24] J. W. Shavlik, R. J. Mooney, and G. G. Towell, “Symbolic and neu-
ral learning algorithms: An experimental comparison,” Machine
learning, vol. 6, no. 2, pp. 111–143, 1991.

[25] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[26] H. Trevor, T. Robert, and F. Jerome, The Elements of Statistical
Learning, 2nd ed. Springer, 2009.

[27] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996. [Online]. Available: http://dx.doi.org/
10.1007/BF00058655

[28] T. G. Dietterich, “Ensemble methods in machine learning,” in
Proceedings of the First International Workshop on Multiple Classifier
Systems, ser. MCS ’00. London, UK, UK: Springer-Verlag, 2000,
pp. 1–15. [Online]. Available: http://dl.acm.org/citation.cfm?id=
648054.743935

[29] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity,
E. Deelman, C. Kesselman, G. Singh, M. Su, T. A. Prince, and
R. Williams, “Montage: a grid portal and software toolkit for
science;grade astronomical image mosaicking,” Int. J. Comput.
Sci. Eng., vol. 4, no. 2, pp. 73–87, Jul. 2009. [Online]. Available:
http://dx.doi.org/10.1504/IJCSE.2009.026999

[30] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz,
“Wien2k,” An augmented plane wave+ local orbitals program for
calculating crystal properties, 2001.

[31] P. T., “Povray - persistence of vision parallel raytracer,” in Proceed-
ings of Computer Graphics International Conference, ser. CGI ’98, 1998,
pp. 123–129.

[32] S. Loew, “Rendering blender on the grid, Master Thesis, University
of Innsbruck,” 2008.

[33] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[34] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek,

“Askalon: A grid application development and computing
environment,” in Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, ser. GRID ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 122–131. [Online].
Available: http://dx.doi.org/10.1109/GRID.2005.1542733

[35] J. S. Armstrong and F. Collopy, “Error measures for generalizing
about forecasting methods: Empirical comparisons,” International
Journal of Forecasting, vol. 8, pp. 69–80, 1992.

[36] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” AAAI Press, 1996, pp. 226–231.

[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likeli-
hood from incomplete data via the em algorithm,” JOURNAL OF
THE ROYAL STATISTICAL SOCIETY, SERIES B, vol. 39, no. 1, pp.
1–38, 1977.

Thanh-Phuong Pham received the Master de-
gree at faculty of computer science and engi-
neering, University of Technology, Vietnam in
2011. He received the second master in com-
puter science from University of Nice Sophia
Antipolis, France, in 2012. He is currently PhD
student in the Distributed and Parallel Systems
Group at the University of Innsbruck, Austria. His
research interests include fault tolerance, ma-
chine learning, data analysis and performance
prediction for distributed computing.

Juan J. Durillo received PhD in Computer
Science from the University of Mlaga ,Spain
in 2011. Currently, he is an assistant profes-
sor in the Distributed and Parallel Systems
Group at the University of Innsbruck, Austria.
His main research interests are Single and
Multi-criterion Optimization , Parallel and Dis-
tributed Computing , Cloud Computing, Software
Auto-tuning,Search Based Software Engineer-
ing, Green Computing, GPU Computing

Thomas Fahringer received his PhD degree
from the Vienna University of Technology in
1993. Since 2003, he has been a full professor
of computer science at the Institute of Com-
puter Science, University of Innsbruck, Austria.
His main research interests include software ar-
chitectures, programming paradigms, compiler
technology, performance analysis, and predic-
tion for parallel and distributed systems. He is
a member of the IEEE.

