
1
Tartu 2016

ISSN 1024-4212
ISBN 978-9949-77-047-2

DISSERTATIONES
MATHEMATICAE

UNIVERSITATIS
TARTUENSIS

104

	
R

IIV
O

 TA
LV

ISTE	
A

pplying Secure M
ulti-party C

om
putation in Practice

RIIVO TALVISTE

Applying Secure Multi-party
Computation in Practice

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

104

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

104

RIIVO TALVISTE

Applying Secure Multi-party
Computation in Practice

Institute of Computer Science, Faculty of Mathematics and Computer Science,
University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of Phi-
losophy (PhD) on February 3, 2016 by the Council of the Institute of Computer
Science, University of Tartu.

Supervisors:

Dr. Tech. Sven Laur
University of Tartu
Tartu, Estonia

Ph.D Dan Bogdanov
Cybernetica AS
Tartu, Estonia

Opponents:

Prof. Ph.D Kurt Rohloff
New Jersey Institute of Technology
Newark, NJ, United States of America

Prof. Dr. Stefan Katzenbeisser
Technische Universität Darmstadt
Darmstadt, Germany

The public defense will take place on March 14, 2016 at 16:15 in J. Liivi 2–405.

The publication of this dissertation was financed by Institute of Computer Science,
University of Tartu.

Copyright: Riivo Talviste, 2016

University of TartuiPressi i
http://www.tyk.ee

ISSN 1024-4212
ISBN 978-9949-77-047-2i(print)
ISBN 978-9949-77-048-9 (pdf)i

Contents

Abstract 9

1 Introduction 10
1.1 Data privacy and secure computation 10
1.2 Claims of this thesis . 11
1.3 Outline and author’s contributions 11

2 Information systems and SMC 15
2.1 Data security in modern information systems 15
2.2 Secure computation . 16

2.2.1 Yao’s garbled circuits . 16
2.2.2 Fully homomorphic encryption 17
2.2.3 Linear secret sharing . 18
2.2.4 SHAREMIND SMC framework 20
2.2.5 Security model for SMC 21
2.2.6 Roles in SMC deployment 25

2.3 Combining SMC into information systems 26
2.3.1 Input parties . 26
2.3.2 Computation parties . 28
2.3.3 Result parties . 28

3 Challenges in developing real-world SMC applications 30
3.1 State of the art in real-world SMC 30

3.1.1 Danish sugar beet auction 30
3.1.2 Financial benchmarking with SMC 31

3.2 Missing capabilities and algorithms 34
3.3 Lack of best practices in delivering and administration 35
3.4 Limited practical validation . 35

5

4 Deploying SMC for web applications 37
4.1 Data flow . 37
4.2 Overcoming barriers . 38

4.2.1 Secret sharing in web browsers 38
4.2.2 Communicating with computation parties 40

4.3 Prototypes . 44
4.3.1 Cloud demo . 44
4.3.2 Internal employee satisfaction survey 46
4.3.3 Tax fraud detection prototype 46
4.3.4 Secure survey system . 47

4.4 Best practices . 47

5 Privacy-preserving database linking 50
5.1 Introduction . 50
5.2 Privacy-preserving join operation 51

5.2.1 Database join for unique key values 52
5.2.2 Handling unique multi-column key values 55
5.2.3 Database join for non-unique key values 58
5.2.4 Related work . 61

5.3 Oblivious AES . 62
5.3.1 Oblivious implementation of the S-box 63
5.3.2 Security analysis . 66
5.3.3 Performance tweaks . 67

5.4 Benchmarking results . 67
5.4.1 Test setup . 67
5.4.2 AES performance . 68
5.4.3 Secure database join . 71

6 Oblivious sorting 74
6.1 Introduction . 74
6.2 Oblivious sorting algorithms . 75

6.2.1 Constructions based on oblivious shuffling 75
6.2.2 Sorting networks . 77
6.2.3 Radix sort . 78

6.3 Optimisations . 79
6.3.1 Vectorisation . 79
6.3.2 Share representation . 80
6.3.3 Assuring uniqueness . 80
6.3.4 Optimising sorting networks 81

6.4 Sorting secret-shared matrices 81
6.5 Benchmarking results . 83

6

6.5.1 Algorithm implementations 83
6.5.2 Test setup . 84
6.5.3 Sorting vectors . 85
6.5.4 Sorting matrices . 88

6.6 Conclusion . 89

7 Deploying SMC for data integration 91
7.1 Motivation . 91
7.2 The PRIST project . 92
7.3 Overcoming barriers . 93

7.3.1 Tools for statisticians . 93
7.3.2 Data protection regulation 94
7.3.3 Tax secrecy . 95
7.3.4 Contracts . 96

7.4 Project life cycle . 97
7.4.1 Development and testing 97
7.4.2 Delivery and setup . 98
7.4.3 Setup and administration 100
7.4.4 Post mortem . 103

7.5 Best practices and lessons learned 105
7.5.1 Fault tolerance . 105
7.5.2 Performance tweaks . 106
7.5.3 RMIND recode function 107

7.6 Conclusion . 107

8 Privacy-preserving data integration on federated databases 109
8.1 Motivation . 109
8.2 The Unified eXchange Platform 110

8.2.1 Requirements for SMC 110
8.2.2 Status of privacy protection on UXP 111
8.2.3 UXP components . 111

8.3 SHAREMIND as a UXP service 113
8.3.1 Roles and data flow . 113
8.3.2 A hybrid setup . 115
8.3.3 PRIST as a service . 116
8.3.4 Final considerations . 118

Conclusion 119

Bibliography 121

7

Acknowledgments 134

Kokkuvõte (Summary in Estonian) 135

List of original publications 137

Curriculum Vitae 138

Elulookirjeldus 139

8

ABSTRACT

The only way one can benefit from stored data is by using it. This is especially
true if data from several sources are combined. For example, by combining data
from several of its institutions, a state can discover trends or pin-point problematic
issues. However, this is often forbidden due to privacy concerns, as the combined
data set becomes an attractive target for both insider and outsider attacks.

Secure multi-party computation is a technology that allows data to be pro-
cessed so that the computation servers see no actual data values. With the first
practical implementations emerging in the 2000s, the technology is now mature
enough to be used for privacy-preserving data analysis on real data.

This thesis looks at the technical and organisational challenges that arise from
developing secure multi-party computation from a lab prototype to a real-world
system. First, we give a brief overview of the two secure multi-party applications
that were first used on real-data: the Danish sugar beet auction and the ITL fi-
nancial benchmarking application in Estonia. We address several shortcomings
of these applications. Among others, we concentrate on challenges specific to
web-based data gathering and result sharing for such applications, and integrating
them with existing information systems.

Our main achievement is the world’s first large-scale registry-based statisti-
cal study on linked databases using secure multi-party computation technology.
We discuss the technical and legal issues that rise in such deployments. Finally,
we propose to deploy secure multi-party technology as a service on a federated
database infrastructure. As an example, we describe a deployment for the Es-
tonian governmental data exchange layer X-Road. This makes similar registry-
based privacy-preserving studies more affordable and transparent in the future.

9

CHAPTER 1

INTRODUCTION

1.1 Data privacy and secure computation

Already in ancient Greece, the Spartans were worried about the privacy of their
messages during military conflicts and used a transposition cipher (scytale) to
render their messages illegible to others. By now, the need to protect the privacy
of one’s data has transferred from the military to the civil sphere.

With the advent of big data, more and more organisations do not have in-house
resources to store and process the collected data. Storing data in the cloud is seen
as a valid solution, but in many cases the data itself is confidential or sensitive.
Encrypting data (on the client side) to store it in the cloud solves the problem of
protecting data at rest, but also renders it unusable for further processing. Down-
loading a copy of the data and decrypting it for processing is not a viable option
for most organisations, taking into account today’s data volumes. With the growth
of computational power and network throughput, privacy-preserving computation
is an option for securely outsourcing computations so that no parties learn indi-
vidual input values.

Secure multi-party computation (SMC) is a distributed computation model,
where several parties collaboratively compute a common function on each other’s
inputs, while keeping their own inputs private and only learning the computation
result. SMC protocols are privacy-preserving to the extent that they leak nothing
about the input values other than what can be deduced from the output or other
explicitly published values during the protocol run. Thus, SMC does not hide
input values that can be directly inferred from the computation result.

Even though secure multi-party computation has been around for more than
30 years [129, 43, 67], its adoption in practice has been scarce. Although some of
the SMC related research papers contain benchmarking results, these are mostly
academic prototypes tailored for a specific purpose. The first truly practical large-
scale SMC application was the Danish sugar beet auction in 2008 [32]. Since then,

10

SMC has been used in practical applications, where the computation is performed
over the public internet [31], and even provided as part of a service (Energiauk-
tion.dk1, Dyadic2, Sepior3).

As the SMC technology becomes more practical and economically interest-
ing, new challenges in its deployment arise. The security requirements and the
distributed nature of SMC make it more difficult to build reliable and robust sys-
tems. We cannot underestimate the fact that the concept of privacy-preserving
computations is hard to grasp for the industry. Moreover, in many cases there are
no regulations nor legal cases that cover how such technology should be handled
in conjunction with data protection laws.

1.2 Claims of this thesis

The author has developed, deployed and evaluated SMC applications for both data
collection and for combining many data sets for statistical analysis. The main con-
tribution of this monograph is an end-to-end process for deploying and managing
the life cycle of a secure multi-party computation application. To accomplish
that, the author had to address three basic shortcomings from the state of the art
in 2011 when starting his Ph.D studies. First, we show how to integrate SMC
applications with existing (including legacy) systems and demonstrate that by de-
veloping generic re-usable software libraries, similar deployments are repeatable
with less effort. Second, we describe how we implemented privacy-preserving
database linking and oblivious sorting that are essential operations in large-scale
statistical studies. Third, we discuss organisational steps necessary to satisfy the
stakeholders in an SMC deployment.

We validate the described process on the first large-scale registry-based privacy-
preserving statistical study using secure multi-party computation technology. In
this study, we show that following the described process, it is possible to ob-
tain a positive resolution from the Estonian Data Protection Agency. Moreover,
we demonstrate that it is feasible to process practical-size data sets using SMC.
Nevertheless, we also bring out several shortcomings in deployment and monitor-
ing that surfaced during the study.

1.3 Outline and author’s contributions

Chapter 2 introduces secure multi-party computation and gives a brief overview
of different types of SMC – garbled circuits, fully homomorphic encryption and

1EnergiAuktion.dk – https://energiauktion.dk/
2Dyadic – https://www.dyadicsec.com/
3Sepior – https://sepior.com/

11

https://energiauktion.dk/
https://www.dyadicsec.com/
https://sepior.com/

linear secret sharing. All of the practical solutions proposed in this thesis are based
on the SHAREMIND SMC framework that we also briefly describe in this chapter.
Finally, we give some considerations on integrating SMC technology into modern
information systems.

Chapter 3 gives an overview of two real-world SMC applications – the Danish
sugar beet auction and the financial benchmarking application. The latter is based
on the Master’s thesis of the author that was later refined into and the following
publication [31]:

• Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis (short paper). In: Proceedings of
the 16th International Conference on Financial Cryptography and Data Se-
curity. FC’12. Lecture Notes in Computer Science, vol. 7397, pp. 57–64.
Springer (2012)

We bring out some of the shortcomings of the described applications that we ad-
dress in the following chapters.

Chapter 4 describes challenges and possible solutions for using web-based ap-
plications as input or result parties for the secure multi-party computation. Many
proposed ideas were initially implemented by the author of the thesis in a Java-
Script library developed for the financial benchmarking application [31]. The sec-
ond part of the chapter gives an overview how the web components (JavaScript
library and server-side components) have evolved during subsequent prototype ap-
plications. The outlined applications were not developed by the author of this the-
sis. However, these applications reused and refined the aforementioned JavaScript
library and the author has been in a consulting role in many cases.

Chapter 5 describes an oblivious AES block cipher implementation and how it
can be used to provide a privacy-preserving database join operation. The chapter
is based on the author’s previously published work [96] and its extended ver-
sion [97]:

• Laur, S., Talviste, R., Willemson, J.: From Oblivious AES to Efficient and
Secure Database Join in the Multiparty Setting. In: Applied Cryptography
and Network Security. ACNS’13, Lecture Notes in Computer Science, vol.
7954, pp. 84–101. Springer (2013)

The non-vectorised version of AES S-box implementation based on oblivious se-
lection was designed and prototyped by Jan Willemson. All other versions of
oblivious S-box evaluation as well as vectorised versions of the cipher were im-
plemented and evaluated by the author of this thesis. Similarly, the size unification

12

protocol proposed for hiding the number of colliding values in a database join was
designed by Sven Laur. All other proposed methods were designed and evaluated
by the author of this thesis.

Chapter 6 gives an overview of oblivious implementations of sorting algorithms
and compares their performance. The chapter is based on the author’s previously
published work [27, 28]:

• Bogdanov, D., Laur, S., Talviste, R.: Oblivious Sorting of Secret-Shared
Data. Tech. Rep. T-4-19, Cybernetica, http://cyber.ee/en/research/
publications/. (2013)

• Bogdanov, D., Laur, S., Talviste, R.: A Practical Analysis of Oblivious Sort-
ing Algorithms for Secure Multi-party Computation. In: Proceedings of the
19th Nordic Conference on Secure IT Systems. NordSec’14, Lecture Notes
in Computer Science, vol. 8788, pp. 59–74. Springer (2014)

Chapter 7 gives a lifecycle overview of the PRIST project, where SMC technol-
ogy was used to perform a registry-based statistical study on linked government
databases. The privacy-preserving statistical algorithms and methods used in this
study were designed by Liina Kamm and are detailed in her thesis [88]. The au-
thor of this thesis collaborated with the project team during the analysis phase and
was in the role of the delivery engineer during the rest of the project. Thus, this
work gives an overview of outcomes and shortcomings of the project from a more
technical perspective. An overview of the PRIST project will also be published in
the Proceedings on Privacy Enhancing Technologies [22]:

• Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Stu-
dents and Taxes: a Privacy-Preserving Social Study Using Secure Compu-
tation. Proceedings on Privacy Enhancing Technologies (PoPETs) 2016(3)
(2016), (to appear)

Chapter 8 proposes a solution how SHAREMIND SMC technology can be incor-
porated with the Estonian X-Road data exchange layer that connects the govern-
ment databases. We show how providing secure multi-party computation as a
service makes studies based on linked databases like PRIST more convenient and
replicable. The architecture proposed in this chapter is based on an idea initially
proposed in a previously published paper of the thesis author [23]:

• Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste,
R., Willemson, J.: Privacy-preserving statistical data analysis on federated
databases. In: Proceedings of the Annual Privacy Forum. APF’14. Lecture
Notes in Computer Science, vol. 8450, pp. 30–55. Springer (2014)

13

http://cyber.ee/en/research/publications/
http://cyber.ee/en/research/publications/

The first authorship of this published paper is shared with Liina Kamm who is
the first author of Sections 5–7. The author of this thesis is the first author of
Sections 2–4, where the idea of combining SMC and the Estonian X-Road is
proposed.

14

CHAPTER 2

INFORMATION SYSTEMS AND SMC

2.1 Data security in modern information systems

Modern information systems are built on a client-server model where a single
server (or a cluster of servers) provides a service for a large amount of clients.
As shown in Figure 2.1, an end user uses a client application to send a query to
the server. The server contains the business logic of the service and uses it to
process the client query, accessing one or more databases if needed. The result
of this process is sent back to the client as a response to the query. The client
application here can be anything from mobile or web-based user interfaces to
desktop applications and even other services.

SERVICE DB

SERVICE PROVIDER

Figure 2.1: Client-server model with database backend.

All of the components shown on Figure 2.1 can be considered data access
points for various external and internal parties with respect to the service provider.
For external clients, the access rights should be validated on the perimeter of the
service provider or by the service itself based on the data access policy and identity
of the authenticated client. These client authentication and authorisation means
are not covered by this work, as they should be addressed by following current
best practices. Instead, we focus on the access to the service and database by
internal parties (employees, support staff) as well as unauthorised external parties
(hackers).

The industry standard at the moment is to encrypt data in the database at rest,
if at all. Unfortunately, encrypting the data with standard tools (e.g. AES block

15

cipher in GCM mode) renders it unusable as it has to be decrypted whenever it is
used in computations. If these computations are performed by the business logic
deployed in the service, then the decryption key must also reside in the service.
Hence, such encryption only helps in case of a very contained security breach, e.g.
if an attacker is able to break in only to the database server and not the service.

A step forward is to use an encryption scheme that preserves some function-
ality of the encrypted data, e.g. searchable symmetric encryption [119, 66] and
order preserving encryption [4, 33]. Such encryption schemes allow the busi-
ness logic to carry out some specific operations (e.g. range queries) on encrypted
data without decrypting the database first. Solutions like CryptDB [113] and SAP
SEEED [69] help against corrupted database administrators.

Finally, secure computing makes it possible to obliviously hide the whole
business logic. Such a use case, where the service provider never sees the data,
is especially compelling for cloud deployments. By secure computing, we mean
computations on encrypted or otherwise illegible (e.g. garbled or secret-shared)
data. In this work, we only consider secure computing made possible by crypto-
graphic means and do not cover hardware-based trusted execution environments
(e.g. Intel SGX, Secure Enclave in iOS devices) or heuristic methods that rely on
adding noise.

2.2 Secure computation

In the following, we briefly introduce three approaches to secure multi-party com-
putation: Yao’s garbled circuits, fully homomorphic encryption and lastly linear
secret sharing, that this work focuses on. Secure multi-party computation (SMC)
formalises a scenario, where n parties collaboratively compute a function

f(x1, x2, . . . , xn) = (y1, y2, . . . , yn) ,

such that each party P1, . . . ,Pn knows its corresponding input xi and receives
it’s result yi. Parties learn nothing about other parties’ inputs nor their part of the
result.

2.2.1 Yao’s garbled circuits

The garbled circuits (GC) approach, introduced by Yao [129, 130] and later de-
tailed my many others [67, 12, 104], is a cryptographic technique to achieve se-
cure function evaluation. In the approach, there are two parties P1 and P2 and
the functionality f they want to compute is expressed as a Boolean circuit, i.e. an
electronic circuit containing AND, OR and other types of gates. Parties’ inputs
x1 and x2 are represented by bit strings.

16

In GC, party P1 encrypts (“garbles”) the original circuit to protect the privacy
of it’s own input by doing the following. For each wire in the circuit, two random
strings are generated, one of which represents the bit value 1 and the other 0.
Then, for each gate g with input values b1 and b2 the corresponding output string
is encrypted with a composite key (b1, b2). Only by knowing both parts of the
key, i.e. both input values, it is possible to decrypt the output value of the gate.
Hence, for each gate, there are four different ciphertexts and each combination of
input can correctly decrypt only one of them. To hide the operation of the gate,
this ciphertext table is also randomly permuted. Party P1 encodes its input to the
input wires in a similar manner and then sends this garbled circuit to party P2.
Party P2 uses oblivious transfer (OT) to receive the corresponding random strings
for its input bits from party P1. After evaluating the circuit, party P2 learns the
output of the computation and, if needed by the application, forwards it to party
P1.

This description suggests that the computations are CPU-bound with only a
few communication rounds. The communication load is also asymmetrical, as P2

starts its computations only after P1 has finished. Nevertheless, there are designs,
where the garbled circuit is streamed to P2 to reduce this asymmetry and the
memory footprint at P1 [102].

A more in-depth descriptions of the garbled circuit model along with security
proofs are given in [100, 14]. Some practical implementations based on garbled
circuits include Fairplay [103, 15], TASTY [75], FastGC [77] and ABY [52].

2.2.2 Fully homomorphic encryption

Fully homomorphic encryption (FHE) is a client-server model, where the server
performs computations on encrypted data without access to the private key held
by the client. FHE takes advantage of the homomorphic properties of the underly-
ing encryption scheme. Homomorphic public key cryptosystems allow modifying
the ciphertext in order to change the value under encryption in a desired way with-
out decrypting the value in the process. For example, Paillier, lifted ElGamal and
Damgård-Jurik cryptosystems are additively homomorphic. Thus, it is possible
to modify ciphertexts so that the values under encryption are either summed to-
gether or multiplied by a public constant. However, for multiplying values under
encryption, one needs to interact with the party having access to the private key.
Similarly, there are multiplicatively homomorphic encryption schemes where val-
ues under encryption can be multiplied but not summed.

The first cryptosystem that allowed both additions and multiplications with
constant-size ciphertext was introduced by Boneh, Goh and Nissim [34] and was
based on pairings on elliptic curves. However, while the BGN cryptosystem al-
lowed an unlimited number of homomorphic addition operations to be performed,

17

it only supported one multiplication operation. Such a cryptosystem is called
somewhat homomorphic.

The first implementable fully homomorphic encryption scheme that was able
to both add and multiply values under encryption was created by Gentry in 2009 [59,
60]. Similarly to the BGN system, Gentry’s somewhat homomorphic scheme was
only able to evaluate low-degree polynomials on encrypted data before the noise
under encryption grew too large and made it impossible to correctly decrypt the
result. Gentry proposed to alleviate this problem by bootstrapping – homomor-
phically re-encrypting the ciphertext under encryption yielding a fresh noise free
ciphertext. FHE has received a lot of attention and alternative constructions from
the research community [37, 62, 61, 63, 65, 118]. Some of the practical imple-
mentations include HElib1, hcrypt2, Stanford’s FHE library3 and FHEW4.

The main problems of FHE are that both the homomorphic operations as
well as bootstrapping are costly operations. Moreover, the ciphertext size blow-
up is significant (103–109) and makes the scheme impractical for large appli-
cations. Nevertheless, FHE is used as a sub-protocol for non time-critical pre-
computations in other secure computation systems, e.g. SPDZ [51]. Moreover,
Archer and Rohloff have demonstrated its use in filtering spam and securing VoIP
calls [6].

2.2.3 Linear secret sharing

In cryptography, secret sharing is a concept where a secret value x is split into n
values called “shares” x1, . . . , xn such that each share is indistinguishable from a
random value. The shares are then distributed between independent parties such
that party Pi gets share xi. The idea is that for a given threshold t (t ≤ n), having
less than t shares gives no information about the initial secret value. The concept
of secret sharing was independently invented by Shamir [116] and Blakley [17].

In [116], Shamir proposes a t-out-of-n secret sharing scheme based on the fact
that t points uniquely determine a (t − 1)-degree polynomial. To share a secret
value x, a random (t− 1)-degree polynomial f is chosen such that f(0) = x. The
n shares are then computed as

x1 = f(1), x2 = f(2), . . . , xn = f(n) .

One can use Lagrange interpolation with any set of t or more of these shares
to reconstruct the polynomial and thus learn the secret value x. This forms the
theoretical basis of many secure multi-party computation implementations.

1HElib – https://github.com/shaih/HElib
2hcrypt project – https://github.com/hcrypt-project
3Stanford’s FHE library – http://cs.stanford.edu/people/dwu4/fhe.html
4FHEW – https://github.com/lducas/FHEW

18

https://github.com/shaih/HElib
https://github.com/hcrypt-project
http://cs.stanford.edu/people/dwu4/fhe.html
https://github.com/lducas/FHEW

The rest of this thesis uses SMC mechanisms based on more simple n-out-of-
n additive and bitwise secret sharing schemes. An additive secret sharing scheme
works in a ring ZN , where a secret value x ∈ ZN is secret shared among n parties
by first choosing n− 1 random numbers modulo N and the last share is found by
subtracting the n− 1 random values from the initial secret (modulo N):

x1 ← ZN
...

xn−1 ← ZN
xn ← x− x1 − . . .− xn−1 (mod N) .

It is easy to see how adding the shares up modulo N yields the initial secret x.
In bitwise sharing scheme a secret value x ∈ Z2k is secret shared similarly.

The first n − 1 values are chosen at random from Z2k , where k ∈ N, and the
last share is obtained by applying exclusive or (XOR) operation on them and the
original secret value:

xn ← x⊕ x1 ⊕ . . .⊕ xn−1 .

As each bit is shared independently, bitwise secret sharing schemes are useful for
bit-level operations.

In the following, we denote secret-shared values in double brackets, so [[x]]
stands for a tuple (x1, . . . , xn), where party Pi holds a share xi. Secret-shared
vectors of k elements, written in bold face, are secret-shared element-wise:

[[x]] = ([[x1]], . . . , [[xk]]) .

As the simplest example, consider adding together two secret values x and y
secret-shared additively between n parties. As additive secret sharing is additively
homomorphic, adding is a local operation that can be done independently by each
party using its shares xi and yi:

[[x]] + [[y]] = (x1, . . . , xn) + (y1, . . . , yn)

= x1, . . . , xn + y1, . . . , yn

= (x1 + y1) + . . .+ (xn + yn) .

For multiplying additively secret-shared values, there are two options. First,
it is possible to convert the shared values to use replicated secret sharing, where
each party holds a different (n− 1)-element subset of all of the shares. For exam-
ple, in 3-party case, to compute the product [[x]] · [[y]], each party first sends their
shares of x and y to the next party (in a circle). By knowing xi, yi, xi−1 and yi−1,

19

each party independently computes the sum of three terms xiyi+xiyi−1 +xi−1yi
out of the total of nine terms:

[[x]] · [[y]] = (x1 + x2 + x3)(y1 + y2 + y3)

= (x1y1 + x1y3 + x3y1)

+ (x1y2 + x2y1 + x2y2)

+ (x2y3 + x3y2 + x3y3) .

This idea is used, for example, by SHAREMIND in its 3-party implementation
based on additive secret sharing scheme.

An alternative option is to use Beaver triples [13, 45]. Beaver triples are
random triples ([[a]], [[b]], [[c]]), such that c = a · b. With the help of such triple,
[[x]] · [[y]] can be computed by each party locally computing [[e]] = [[x]] − [[a]] and
[[d]] = [[y]] − [[b]]. The values e and d are then opened (declassified) to each party
and used by each party to compute their share of the result:

[[x]] · [[y]] = [[c]] + e · [[b]] + d · [[a]] + e · d .

As the triples themselves are independent of x and y, they can be pre-computed
in bulk and stored for later use. This idea is, for example, used in the SPDZ [51]
implementation.

There are several practical implementations of secure multi-party computation
based on linear secret sharing. Examples include VIFF [48], SEPIA [38], SHARE-
MIND [29, 19], ShareMonad [95], FRESCO [46], SPDZ [51] and ABY [52].

2.2.4 SHAREMIND SMC framework

In this work, we use the SHAREMIND platform [19] for our designs and practi-
cal experiments. SHAREMIND is a application and database server developed by
Cybernetica, capable of running secure multi-party computation protocols. Appli-
cations for SHAREMIND are written in the SECREC programming language that
allows to manage public and private data in parallel [26]. For private data types,
SECREC uses the concept of protection domains that are protocol suites to handle
different SMC techniques. For example, 3-party additive secret sharing scheme
with semi-honest security setting is one protection domain and 2-party garbled
circuits based approach with active adversary would be another one. SECREC
runtime guarantees that operations carried out on data belonging to a specific pro-
tection domain use corresponding SMC protocols and secret values are moved to
the public domain only through the explicit declassify operation.

Currently, the most advanced protocol suite in SHAREMIND handles the 3-
party additive secret sharing scheme with semi-honest adversary model. The fun-
damental protocols used in this protection domain are described in [29] and [30]
with detailed composability proofs given in [25].

20

SHAREMIND versions

The first version of SHAREMIND was an academic prototype developed by Bog-
danov for his Master’s thesis in 2006 [18]. Later, its fundamental protocols with
security proofs were published in [29].

SHAREMIND version 2 was the first version to be used in practical applica-
tions, e.g. the financial benchmarking application described in Section 3.1.2. Ini-
tially, it supported a single data type: 32-bit additively shared unsigned integer.
Later, it was extended with support for 32-bit signed integers and also bitwise
shared integers. SHAREMIND version 2 also introduced the first version of the
SECREC language [84]. However, since it supported a single data type and only
additively and bitwise shared data, it did not include the concept of protection
domains. SECREC version 1 only separeted computations in the “public” and
“private” domains.

SHAREMIND version 3 is a complete re-write of the platform and also in-
troduces new SECREC language with support for different protection domains.
In addition to additively and bitwise shared integers of different bit lengths, its
3-party protocol suite for semi-honest adversary model also supports fixed [93]
and floating point numbers [89], and conversions between them. SECREC 2 also
includes a standard library that collects most-used algorithms in a re-usable pack-
age. These include methods for common vector and matrix manipulations, sorting
methods as well as statistical analysis algorithms5.

After bringing over its networking library from RakNet6 to Boost ASIO7 for
performance reasons, SHAREMIND 3 was renamed to SHAREMIND Academic
Server and is used mainly for academic prototyping.

The latest version is SHAREMIND Application Server that shares the same SE-
CREC language and standard library with the Academic Server. Hence, SECREC
applications developed for Academic Server run also on Application Server and
vice versa. SHAREMIND Application Server uses its own networking library that,
like Boost ASIO, uses mutually authenticated TLS tunnels for communication.

2.2.5 Security model for SMC

As this work focuses on using secure multi-party computation in real-world ap-
plications, in many cases we consider SMC to be a black box and refer reader
to the previous publications for detailed security proofs. Nevertheless, we briefly

5SECREC language and standard library reference – http://sharemind-sdk.github.
io/stdlib/reference/index.html

6RakNet - Multiplayer game network engine – http://www.jenkinssoftware.com/
7Asio C++ Library – http://think-async.com/

21

http://sharemind-sdk.github.io/stdlib/reference/index.html
http://sharemind-sdk.github.io/stdlib/reference/index.html
http://www.jenkinssoftware.com/
http://think-async.com/

Version Application language Year
SHAREMIND 1 C++ library 2006
SHAREMIND 2 SECREC 1 2009
SHAREMIND 3 SECREC 2 + stdlib 2011
Application Server SECREC 2 + stdlib 2013
Academic Server SECREC 2 + stdlib 2014

Table 2.1: Overview of SHAREMIND and SECREC versions, including the standard li-
brary (stdlib).

describe the security model that SHAREMIND and many other SMC implementa-
tions are based on.

First, the SMC protocols in SHAREMIND are universally composable [25],
meaning that they remain secure even if multiple instances of the same protocol
or other protocols are run in parallel or in sequence. Moreover, protocols that
use only universally composable sub-protocols are also universally composable
themselves [41, 40, 110]. This allows us to combine individual protocols to build
algorithms and combine algorithms to build privacy-preserving applications.

The security proofs for individual SMC protocols use the ideal-real world
paradigm [39]. In the ideal world (Figure 2.2a), the required functionality f is
implemented by an incorruptible trusted third party (TTP) that gathers inputs from
the input parties, carries out the computation and publishes the result. Parties only
learn what is deducible from the explicit computation result. In contrast, in the
real world the required functionality is implemented by a protocol π that includes
parties exchanging messages with each other (Figure 2.2b).

TTP

P1 P2 P3

x1 x2 x3

y3y2y1

(a) Ideal world

P1

P2 P3

P1 P2 P3

x1 x2 x3

y3y2y1

⇡

(b) Real world

Figure 2.2: The ideal-real world paradigm.

22

To argue about security of such protocols, we replace inputs of parties with a
more abstract input distribution D and introduce a distinguisher B as shown on
Figure 2.3. The distinguisher B must output a single bit based on the output vector
(ψ1, . . . , ψn, ψA) corresponding to the outputs of computing parties P1, . . . ,Pn
and the adversary. The aim of the distinguisher B is to guess whether it is in
the ideal or real world. Let A and A◦ denote adversaries in the real and ideal
world, respectively. Additionally, let Pr [Bideal = 1] denote the probability of
distinguisher B returning 1 in the ideal world and Pr [Breal = 1] the probability
that it outputs 1 in the real world. Then we say that the protocol π is ε-secure if

∀A ∈ A, ∃A◦ ∈ A◦, ∀D, ∀B ∈ B : |Pr [Bideal = 1]− Pr [Breal = 1]| < ε .

The sets of plausible adversaries A, A◦ and distinguishers B in this logical
formula determine the exact nature of security guarantees. Usually one considers
only efficient adversaries, which are modelled as non-uniform polynomial-time
algorithms. The set of distinguishers is either the set of all computable predicates
(statistical security) or efficiently computable predicates (computational security).
It is important to note that the adversary A◦ cannot depend on the input distribu-
tion or the distinguisher. In most security proofs the construction of the adversary
A◦ is explicitly given through a simulator construction A◦ = SA, where this no-
tation means that the simulator S can use A in a black-box manner.

TTP

D

S A

B

out

A�

�1 �2 �3 �A

 1 2 3 A

(a) Distinguisher in ideal world

D

A

B

⇡

out

�1 �2 �3

 1 2 3 A

�A

(b) Distinguisher in real world

Figure 2.3: Distinguisher B has to distinguish between ideal world with simulator S, and
real world with protocol π.

23

Another detail that determines security properties is the ratio of running times
of A◦ and A. If A◦ runs ρ times slower than A, then by participating in the
protocol π, the adversary A may speed up its computations up to ρ times compared
to ideal world. As a result, if the simulator S runs exponentially slower than A,
then the gain is so significant that we no longer can guarantee security of other
cryptographic primitives (e.g. encryption, hashing). Therefore, it is commonly
required that the slow-down factor ρ is polynomial in the running time of A.

The model of tolerated corruption is another important factor required for the
completeness of the definition. In this work, we only consider static corruption
model, where an adversary chooses parties to corrupt before the computations are
executed. Alternatively, the adversary can choose parties to corrupt dynamically
based on the information received during the protocol. This is known as adap-
tive corruption. The corruption can be either passive or active. Passive corruption
means that all parties carry out protocol without deviating from the protocol spec-
ification, whereas active corruption allows arbitrary deviations.

Finally, we emphasise that the security definition sketched above captures the
security of a protocol in stand-alone setting, where parties do not carry out other
computations concurrently with the protocol. As such, this definition is useful for
assessing security of the entire computation procedure. Usually, complex proto-
cols are composed from smaller sub-protocols. For those protocols, it makes sense
to use more strict notions of security, which guarantee that security of a protocol
is preserved even if other protocols are executed in parallel. Universal compos-
ability [41, 40, 110] is a security notion that provides such level of security. As
standard result [40] assures that a secure protocol is also universally composable
if the black-box simulator is non-rewinding, we omit the formal definition of uni-
versal composability.

If we consider static corruption, then the simulation procedure can be split
into two conceptual steps. First, the simulator must somehow provide “correct”
inputs to the trusted third party. After that the simulator receives corresponding
outputs from the TTP and must create protocol messages to A that are consistent
with these outputs. In particular, if the adversary follows the protocol, then the
corrupted parties must obtain outputs as prescribed by the trusted third party. The
first part of the simulation is known as input extraction and the second part as
output equivocation.

In security proofs for protocols that compose other sub-protocols, we use the
notion of the hybrid world. In this model, sub-protocols are replaced by their cor-
responding ideal functionalities for easier argumentation. In the corresponding
security proofs one shows that ideal world and hybrid world are indistinguish-
able in the sense of SMC. That is, there exists a simulation strategy that allows
us to simulate messages of sub-protocols in the hybrid world. Note that simula-

24

tion of hybrid world is much easier, as parties submit their inputs and get their
outputs from TTP to evaluate a sub-protocol. As a result, the simulator directly
gets inputs of sub-protocol and can freely prescribe corresponding outputs for the
sub-protocol. Hence, input extraction and output equivocation are much simpler.

If the ideal and hybrid world are indistinguishable, then the security follows
from the universal composability of sub-protocols. In a nutshell, universal com-
posability assures that real and hybrid world are indistinguishable. This together
with indistinguishability of the hybrid and ideal world implies indistinguishability
of the ideal and real world, which is sufficient for security.

2.2.6 Roles in SMC deployment

We can assign each participant in secure multi-party computation one or more
roles from the following [23]. Input party (I) is a participant who either owns the
data or is deletegated by the data owner to perform operations on the data. Usually,
an input party can be offline for the rest of the process lifecycle. An input party
is the only party that has access to the input data. Computation party (C) invokes
SMC protocols on secret-shared data and, in the process, exchanges messages
with other C-s. A computation party also manages storage of the secret shared
or encrypted data if persistence is used. A result party (R) is a participant who
receives computation result from computation parties. In some applications, there
is also a separate verifier party (V) that audits if the secret sharing and computation
is carried out correctly according to the protocol. Verification can be carried out
either during or after the computation based on audit logs [111].

Example: Millionaire’s problem

The garbled circuits approach was initially motivated by the so-called million-
aires’ problem [129] – two millionaires want to know which one of them has
more money without revealing their exact wealth to the other.

In this scenario (see Figure 2.4), both of the involved parties have their own
secret input (their wealth) so they are both input parties (I). By construction, the
amount of computation in GC is asymmetric between the parties. However, it can
be argued that both garbling the circuit as well as evaluating it takes computation
power so both parties can also be considered as C. Also, by construction, only the
evaluator gets the result of the computation and is thus the result party (R). It is
up to the specific application if the result should be forwarded to the other party.
It is also possible for the computation result to be encrypted with only the first
party having the key or secret-shared between several output parties [114].

25

garbled circuit

OT

ICRIC

Figure 2.4: Roles in the garbled circuits construction.

Example: Outsourced computations

The killer application for fully homomorphic encryption is a case where computa-
tion on sensitive data is outsourced, e.g. to a cloud service. To protect the privacy
of the data, it is first encrypted by the input party (I) and then uploaded to a ser-
vice provider (C). The encrypted result is sent back to the initial party, as it has
the corresponding decryption key, hence input party is also in the role of the result
party. The interaction is shown on Figure 2.5.

CI R

Figure 2.5: Roles in the fully homomorphic encryption construction.

Example: Outsourced services

In practical applications, secret sharing based SMC is most suitable for analysing
data gathered from multiple sources (see Chapters 4 and 7). This category in-
cludes online questionnaires, auctions, but also combining whole data sets.

Figure 2.6 shows a combination of possible input parties (I): desktop appli-
cations, web (including mobile) forms, structured files and data sets. Each data
value is independently secret shared and the shares are distributed among compu-
tation parties (C). The result party (R) can be a statistician, a researcher or even
an automated data publishing program.

2.3 Combining SMC into information systems

2.3.1 Input parties

Based on the way input parties handle their data, we can divide practical SMC
applications into two categories. First, a setup where each data owner provides his
or her data directly into the system by secret sharing it between the computation

26

<xml>

C

C

C

I

I

I

R

Figure 2.6: Roles in the secret sharing based 3-party SMC construction.

parties. In this case, the input party is usually a person and his or her input is one
or a few records. Such examples include online questionnaire systems, auctions,
voting, etc. The data is created or input for this specific purpose.

Secondly, we can consider a setup where input data is gathered from existing
databases. In this case, the actual data owners are not directly involved in the
process and the role of input party is given to whoever manages the database.
Usually, in this setup there are only a few input parties but each of them have many
records. Examples here include combining private or public sector databases for
statistical studies or (financial) benchmark analysis.

In either case, the input party must send the value shares to the computation
servers directly so that no single proxy can read those. This is accomplished by
secure connections to each of the computation servers or encrypting each share
with the public key of the corresponding computation party. Hence, in both cases,
the input party must authenticate each computation party separately.

Furthermore, as the secret sharing of input data has to be performed at the
control boundary of the input party, special care must be taken when using web-
based application for data input. The web server serving the application must not
be considered an input party as it is not under the control of the input party. Only
the content downloaded to the web browser is allowed to process input data. More
details on handling sensitive input data in web applications is given in Chapter 4.

27

2.3.2 Computation parties

Integrating computation parties into an information system involves finding an
independent organisation for each of the computation nodes. For public sector
information systems, other public institutions and/or private companies are good
candidates. Competing companies are a good option for private sector informa-
tion systems. For the latter option, it is best if all the computation parties share
the incentive to host such a privacy-preserving information system, e.g. they all
benefit from the outcome or have a legal obligation to participate.

Each computation party handles its security perimeter and storage of its shares,
including backups, independently. In principle, for n-out-of-n secret sharing
scheme with passive adversaries, we can differentiate between two attack sce-
narios.

First, for long-time storage of shares, i.e. when no secure multi-party compu-
tation protocols are running, it is enough for one party to remain secure in order
to protect the privacy of the shared values. This is true as no combination of n−1
shares give any information about the actual secret value. Hence, when a data
breach is detected by at least one of the computation parties, a resharing protocol
must be initiated before the shares at all other computation parties are also com-
promised. Resharing protocol securely replaces all shares with fresh ones without
reconstructing the initial data values or contacting the input parties. After reshar-
ing, all computation parties must securely destroy all copies of the old shares as
they pose a confidentiality threat [21].

Secondly, a computation node may be compromised during the secure multi-
party computations. In a passive security model, this would mean that an attacker
has gained access to the computation node and can read its memory and network
messages exchanged with other computation parties. At the same time, efficient
SMC protocols require honest majority of computation parties to remain secure.
Hence, using the 3-party additive secret sharing scheme with SMC protocols that
are secure in the semi-honest setting in SHAREMIND, no more than a single com-
putation party may be compromised this way. Upon detecting such an attack,
the owner must first abort the computation and regain exclusive control over its
computation node to mitigate further leaks. Next, the computation nodes can ini-
tiate the resharing protocol to invalidate any shares that the attacker might have
collected during the breach.

2.3.3 Result parties

The role of a result party can be assigned to either a separate user of the informa-
tion system or the information system itself can be the result party if the secure
computation result is used in further (public) computations by the system. In the

28

latter case, the information system contacts the computation parties itself, receives
the result shares and recombines them to learn the result of the computation. In
case of a separate user as a result party (e.g. a person authorised to access privacy-
preserving survey results), the communication pattern depends on the sensitivity
of the computation result. If only the result party is allowed to see the result then
he must contact all of the computation parties directly, as the input party must
do. Otherwise, the information system is allowed to cache the result value for the
result party.

There is a big difference whether all computation parties are also result par-
ties or not. If desired outputs are public, then some intermediary results can be
declassified to gain efficiency. For example, if we have a secret-shared table and
in the following computations we are only interested in its rows, where a given
predicate holds, the following steps are commonly performed. First, we oblivi-
ously shuffle (randomly permute) the rows in the table to hide the initial order of
rows. Then we obliviously compute the predicate on a given column and declas-
sify the computation results. Finally, we discard all rows, where the declassified
predicate value is false. It is easy to see that this way the computation parties learn
the number of rows that satisfy the predicate. If computing parties are not allowed
to learn the number of rows that satisfy the predicate, then we must obliviously
compute the predicate on a given column and keep the result as a secret-shared bi-
nary availability vector. Further privacy-preserving computations would be done
on the full-sized table, while also obliviously taking into account the values in the
availability vector. Hence, this efficiency-privacy trade-off has to be considered
when designing SMC applications and assigning roles to parties.

29

CHAPTER 3

CHALLENGES IN DEVELOPING
REAL-WORLD SMC APPLICATIONS

3.1 State of the art in real-world SMC

3.1.1 Danish sugar beet auction

By real-world applications the author considers practical SMC applications that
process real sensitive data. Thus, academic prototypes working in a lab setting or
using generated or public data have been left out from this chapter.

Secure multi-party computation was first used in such large-scale real-world
application in Denmark in 2008 when it was used to implement a double auction
to reallocate sugar beet production contracts between farmers and the sugar beet
production company [32]. In a double auction, each seller specifies how much
goods he or she is willing to sell for each price from a fixed set of potential prices.
Similarly, for each potential price, each buyer specifies how much goods is he or
she willing to buy for that price. The task for an auctioneer is to collect these
bids from all of the buyers and sellers and calculate a market clearing price – a
price where total demand equals total supply. Using SMC to calculate this market
clearing price mitigates the risk that any information learned from either buyers’
or sellers’ bids is misused, for example, in similar subsequent auctions.

In the Danish sugar beet auction, the role of the auctioneer was carried out
by three computation parties: the sugar production company Danisco, the repre-
sentative of the farmers (DKS, the sugar beet growers association) and the SMC
technology provider (SIMAP project). The auction was divided into two logical
phases: bidding and tallying, where the latter involved secure multi-party compu-
tation, see Figure 3.1.

As there were 1229 bidders (input parties) in the setup, it was important to
make the bidding application easily accessible to the farmers and the Danisco

30

company. This was accomplished by distributing the application as a Java applet
available from a web page that required user authentication. This application
allowed each bidder to place a bid for either buying, selling or both for each of
4,000 pre-configured prices. Each bid was then shared using Shamir’s 3-out-of-3
secret sharing scheme over a field Zp, where p is a 65-bit prime number [116].
In this application the three computation parties were not online during the first
phase and the input shares were stored in an intermediary proxy database. Before
sending the input shares to the proxy database, the bidding application encrypted
each share of an input with the public key of the corresponding computation party.
This was needed, as all of the shares were sent to a single proxy database that
otherwise could easily reconstruct confidential bids.

In the second phase, the representatives of the three computation parties down-
loaded their corresponding shares from the proxy database and used their private
key to decrypt the shares of bids. These decrypted input shares were then used
to initiate the secure multi-party protocol to find the result of the double auction.
The market clearing price itself was calculated using binary search, i.e. about 12
private comparisons were done during the computation phase. The second phase
of the auction was carried out over a 100 Mbit LAN connection and took about 30
minutes. However, most of it was spent on decrypting the individual input shares
by the computation parties. The SMC protocols were designed for semi-honest
security setting. As a result of this first SMC double auction, about 25 000 tons of
sugar beet production rights changed owner.

Since its first use in 2008, the same technology has been used again in the fol-
lowing years to reallocate sugar beet growing contracts in Denmark. The group of
people behind the sugar beet auction founded a company named Partisia with the
aim of commercialising the underlying technology [125]. In 2011 Partisia went
live with a secure software-as-a-service auction platform Energiauktion.dk, where
electricity contracts are exchanged between small and medium sized companies.
The technology is similar to the one used in the sugar beet auction, but the compu-
tation parties are deployed in Amazon cloud and the secure computation is carried
out over the Internet.

3.1.2 Financial benchmarking with SMC

The author of the thesis developed another SMC application working on real data
and deployed it in Estonia in 2011 [121, 31]. The Estonian Association of Infor-
mation Technology and Telecommunications (abbreviated as ITL) is a consortium
that consists of local ICT companies and promotes their cooperation. As ICT is
a rapidly evolving field, ITL members feel the need to access financial bench-
marking results of each other to see how the economic sector is doing. There are
the official and very detailed economic benchmarking results released by the Tax

31

Input party

Java
application

DB

Danisco

DKS

SIMAP

SMC deployment

Market
clearing

price

PHASE I PHASE II

Web server

Figure 3.1: Deployment of SMC for Danish sugar beet auction. In phase I, each input
share is encrypted with the corresponding computation party’s public key and stored in a
central server. In phase II, each computation party downloads and decrypts its shares and
participates in the market clearing price computation.

Computation
party #1

Computation
party #2

Computation
party #3

Consortium
member #1

Consortium
member #2

Consortium
member #n

ITL board
members

All ITL
members

Sharemind deployment

Report

Figure 3.2: Deployment of the financial benchmarking application. Each consortium
member submits several financial indicators. SHAREMIND is used to sort values of each
financial indicator separately and the result is published to the ITL board as a report. The
board shares the report with the rest of ITL members.

32

and Customs Board annually, but this is too infrequent. ITL members agreed that
they will benchmark the sector themselves, by periodically collecting financial
indicators from ITL members and releasing an overview for themselves.

Initially, the ITL board were to collect the financial indicators from its mem-
bers and release the report for the rest of the members. However, as the ITL board
also consists of board members of ICT companies, there was a fear of them mis-
using the data. This might also give the rest of the ITL members an incentive to
lie about their data or not to participate in the process at all. To mitigate that risk,
ITL decided to use secure multi-party computation to collect and process the data
so that only overview is released to the ITL board who is in the role of result party.

The financial benchmarking application was built using the SHAREMIND 2
platform and the role of the computation parties was taken by three ITL members
Zone Media, Microlink and Cybernetica. In order to reduce the maintenance cost
for the hosts, Cybernetica helped to set up the other two computation nodes and
thus had administrative access to these servers.

To make the data collection process easier for the ITL members (input parties),
the input was securely collected using a web-based form that was integrated into
ITL’s web page where the representatives of ITL members had access to. The
deployment of the components is shown on Figure 3.2, technical aspects of the
benchmarking application are covered in more detail in Chapter 4.

The data processing step itself was fairly simple. The values for each of the
collected financial indicators (total return, number of employees, percentage of
export, profit, etc.) were sorted using an oblivious bubble sort implemented in
SECREC 1 and the resulting sorted vector was published. On one hand, indepen-
dently sorting each indicator meant that the connections between different indi-
cators of a single company were erased. On the other hand, publishing all of the
original values to the ITL board gave it an opportunity to further process the data
with their favourite tools.

This is the first practical SMC application where the actual computation took
place over the public Internet. Compared to the the sugar beet auction described
before, the financial benchmarking application used web forms with JavaScript for
data input and secret sharing, not relying on any third-party plug-ins. Moreover,
the input shares were distributed among the computation parties by the data owner
without using any central servers for storage.

ITL used the application twice to collect data from its members in 2011. On
the second run, some enhancements were made. For example, the oblivious bub-
ble sort was replaced with oblivious sorting network implementing Batcher’s odd-
even merge sort algorithm [11]. Additionally, a user feedback survey was also
conducted together with the data collection. Although only 12 companies filled
in the feedback survey, the results can be meaningful as the companies are influ-

33

ential players in local ICT market. First, the results (see [31, Fig. 2]) show that
ICT companies value this kind of financial benchmarking. Secondly, ICT com-
panies value privacy as 2/3 of the participants familiarised themselves with the
SMC-related materials provided together with the benchmarking application and
for about half of the participants the enhanced privacy measures were the reason
they submitted their data. Moreover, 2/3 of the participants were willing to sub-
mit even more data (e.g. average salary or employee turnover). The user feedback
questionnaire was also implemented using the SHAREMIND platform.

ITL board decided not to use the SMC-based system for subsequent data col-
lection as they concluded that Estonian ICT companies are too unique for such
anonymised survey. According to an ITL board member, from 70 ITL members,
only up to 18 would have been comparable by such a survey. When taking into
account that not all of these companies participated, the number of remaining
participants was too small to draw any statistical conclusions [83].

3.2 Missing capabilities and algorithms

These first practical applications of SMC brought out some of the technical capa-
bilities that were still missing from the implementations. First, there were no easy-
to-use secure sorting methods implemented. Although in the financial bench-
marking application, the quadratic complexity bubble sort was later replaced by a
sorting network, it was not a generic solution. The sorting network structure had
to be generated separately and taking into account the number of participants. As
sorting is a widely used subroutine in many algorithms, an efficient and generic
oblivious sorting method implementation is essential. The author addressed this
challenge and implemented oblivious sorting methods described in Chapter 6.

Secondly, both of the applications described here make use of a single database
table. In both applications, there is a single table with predefined set of columns
and each input party (bidders in the case of Danish sugar beet auctions and com-
pany representatives in the case of financial benchmarking application) adds a
single record to this table. However, there is another kind of application scenario
where multiple data sets need to be combined together. Imagine a use case where
input parties do not supply a single record but rather a whole data set and each
one of them has a different structure (so they cannot be concatenated). In this case
we need a privacy-preserving method to link records from one data set with the
records from the other data set according to some predicate, similarly to the table
join operation in SQL. Such secure database linking method was also developed
by the author and is introduced in Chapter 5.

34

3.3 Lack of best practices in delivering and
administration

For practical SMC application deployments, there are two main requirements.
The computation parties must not collude with each other or any single outsider;
and all of the communications channels between all of the input, computation and
result parties must be secure.

In a distributed computing model such as SMC, parties have to communicate
over secure (i.e. encrypted and authenticated) channels so an adversary cannot
intercept or exchange messages. In practice, this is done by using TLS or similar
public key cryptography setup. As a prerequisite, parties have to exchange public
keys in order to know which incoming connections to trust. This key exchange
has to be done using a separate authenticated out-of-band communication chan-
nel. It is also worth mentioning that although the underlying secret sharing based
SMC schemes are information-theoretically secure, the communication channels
in practice are secure only against computationally bounded adversary. Moreover,
for performance reasons, protocol implementations use computationally secure
pseudo-random number generators instead of true randomness.

In the two example applications described here, the most important require-
ment of SMC – non-collusion of computation parties – was not formally enforced.
Moreover, non-collusion is extremely difficult, if not impossible, to enforce with
technical measures. Instead, it should be covered with either contractual obliga-
tions or better yet, one’s motivation to participate and keep their own data private.

As both applications were the first practical deployments of SMC by the re-
spective research groups, there was less bureaucracy and more personal relation-
ships involved: neither of the applications had any contracts between the involved
parties. The fact there were no SMC-related contracts formed in the Danish sugar
beet auction was confirmed in a private conversation among the SHAREMIND and
sugar beet auction team members [108].

3.4 Limited practical validation

In the Danish sugar beet auction, the computation parties themselves did not de-
ploy SMC software, their only responsibility was to keep their private key secret
throughout the bidding and tallying phases. Similarly, in ITL financial bench-
marking application, the chosen ITL members being in a computation party role
provided a virtual machine for the deployment, but actually didn’t install and man-
age SMC software themselves. This was done by a single administrator. Hence,
large stakeholders, e.g. governmental institutions, had not yet deployed SMC for
practical applications themselves. Such organisations have the responsibility to

35

handle their client or citizen data with care. Here lie interesting legal questions.
For example, is sensitive data that is secret shared into random pieces and dis-
tributed among many parties still considered sensitive data from the legal point of
view? Can secret sharing be considered a form of encryption and if so then where
is the key? These questions have to be answered before it is possible to deploy
secure multi-party computation applications for such stakeholders.

By the deployment model of SMC, each computation party is independent in
following the protocol that computes something on the shares. If it encounters a
protocol message that looks suspicious then it can – and should – halt the protocol
to protect its shares. However, this model assumes that each computation party
actually knows what the SMC software is doing. Provided that not every organi-
sation will implement their own SMC software, there has to be a way to verify the
software, either by code review, audit or having access to the source code.

From a technical point of view, IT departments of large organisations may not
be as volatile as university research groups or SMEs that are more eager to deploy
new software in their premises. Even with modern virtualisation technology, these
organisations cannot deploy any bleeding-edge Linux distribution as they have
specific processes in place to support and manage something that they are used
to or have support contracts for. Also, learning a completely new platform may
take too much resources. This is especially true for governmental organisations.
Moreover, these organisations usually require more than a verbal promise that
other involved parties allocate their resources to carry out the computation. Hence,
a contract has to be formed between the computation parties that at least specifies
the availability of the computation node as a service.

36

CHAPTER 4

DEPLOYING SMC FOR WEB
APPLICATIONS

4.1 Data flow

In this chapter, we look at SMC applications where the role of input and/or result
party is implemented as a web-based application. We do not consider deployments
where web-based applications are computing nodes.

In SMC applications, the role of the input party is carried out by either the
data owner or a delegate that has permission to process this input data. In web
applications, this means that input data must be secret shared on the client side,
i.e. in the web browser. Technical problems that this introduces are covered in
Section 4.2.

In the simplest use case with an anonymous non-authenticated user, the user
secret shares her input and distributes the shares among the computation parties as
shown on Figure 4.1. The session ID is needed to synchronise the order of input
records between the computation parties as, with many concurrent users, the order
of received shares might get mixed up depending on the network configuration
and delays between clients and computation parties. The session ID could also be
generated by the server and given together with the application itself. However,
in such case the application must forbid the user to use the same session ID twice.

If authentication is required, it generally does not make sense to authenticate
to every computation party separately as this would require replicating user au-
thentication code and user credentials database to each computation party. The
latter, in turn, increases the risk of the user information database be stolen or
leaked. Moreover, for an enhanced user experience, the communication with mul-
tiple computation parties should be transparent for the user. Therefore, the user
should rather authenticate herself to a central authority and provide some kind of
proof of authentication to the computation parties.

37

request submission form

web form
share input

shares, session ID

generate session ID

OK

save shares,
session ID

Client
(web browser) Web server Computation

party

Figure 4.1: Saving shares for anonymous input party.

We can assume that the user authenticates herself with the same web page
where she retrieves the application itself (Figure 4.2). In this case, this web page
can verify if the user is eligible for accessing the application and if so then gen-
erate a unique token that is then embedded within the application. In case of an
HTML form, this token can be a hidden form element. On the server side the
token is tied with the user account.

In addition to the shares and a generated session ID as in the non-authenticated
case, the web browser now also sends the authentication token to each computa-
tion party. The computation party itself must then contact the authentication server
to check if the access token is valid (i.e. generated by that server and not expired).
Upon a positive result, computation party stores the shares and replies to the user
with a success. The user (client web application) shall, after receiving such con-
firmation from all the computation parties, notify the authentication server of the
success. The authentication server then invalidates the access token. The access
token could also be used as a session ID, but then the application must guarantee
that the same session ID is never used to send different sets of shares on retries.

4.2 Overcoming barriers

4.2.1 Secret sharing in web browsers

First, secret sharing requires random number generation. It is possible to ob-
tain cryptographically secure randomness directly from the operating system, or
alternatively, use a pseudo-random number generator (PRNG) seeded with such
strong randomness. Unfortunately, at the time of developing [121], web browsers
did not have a standard (HTML or JavaScript) interface for such PRNG. More-

38

authenticate

request submission form

form, access token
share input

shares, access token, session ID

generate session ID

is access
token valid?

OK

save shares,
session ID

save submission data invalidate token

Client
(web browser) Web server Computation

party

generate access token

Figure 4.2: Saving shares for authenticated user.

over, JavaScript runs in a sandbox and therefore cannot communicate with oper-
ating system directly to gather randomness. Using browser plug-ins like Flash,
Silverlight or Java applets, as used in the Danish sugar beet auction application
described in Section 3.1.1, would have solved this problem. However, we did
not want to introduce dependencies that would force the user to install third-party
software. We felt that it reduces the applicability and makes them more reluctant
to participate.

Notice that by design of SMC and in the example of using SHAREMIND with
its 3-party protocol suite, we have a deployment with three separate servers hosted
by independent non-colluding parties. Hence, we can ask each server for some
amount of randomness by a simple server-side script and combine them together.
The server has access to its operating system’s entropy collection mechanism that
is able to generate cryptographically secure randomness. On the client side, in
the web browser, we use the bitwise XOR operation to combine the randomness
received from each server (see Figure 4.3). Thus none of the servers know the
resulting randomness that we are going to use as long as there is at least one non-
colluding server.

If we need to share many inputs in the web browser, it makes sense not to
use the randomness gathered from the servers directly. Instead, we ask the in-

39

�
�
=

32 bytes

16 bytes for key 16 bytes for IV

From server 1:

From server 2:

From server 3:

Figure 4.3: Combining randomness from three computation parties to obtain secure key-
ing material for AES in counter mode.

dependent servers enough cryptographically secure randomness to instantiate a
PRNG in JavaScript. For example, for AES-128 in counter mode, we need 128
bits of randomness for the key and another 128 bits of randomness for the initial-
isation vector (IV) [10]. Figure 4.3 illustrates this visually. As per [10, Appendix
D.3], we can generate at most 400 million bits with this PRNG before it has to
be reseeded with fresh randomness. As the additive secret sharing scheme used
in SHAREMIND requires 2n bits of randomness to secret share an n-bit value,
AES-128 in counter mode can be used to secret share 25 MB of data before new
random seed is required from the servers. Hence, in most applications where a
user fills in and submits a form, reseeding is not needed.

4.2.2 Communicating with computation parties

The Same Origin Policy

After the secret input is shared in the web browser, its shares have to be distributed
among the computing parties, i.e. uploaded to the servers. We also need to be
able to get information from the server, e.g. whether the authentication token was
valid and the request was successful. Moreover, we might require even more than
a request status from the server, e.g. in more advanced applications, computation
nodes might reply with the shares of SMC computation result. Hence, we need to
both upload and download data from the computation servers.

While it is possible for a web page to include resources from different servers,
the Same Origin Policy1 enforced by web browsers prevents JavaScript from ac-
cessing resources loaded from other origins than the one where the running code

1Same Origin Policy – http://www.w3.org/Security/wiki/Same_Origin_
Policy

40

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy

was loaded. In particular, this policy restricts JavaScript from making new HTTP
requests to other origins. Simply put, “other origin” is defined as having a dif-
ferent domain, port or protocol scheme. Since the computation parties must be
independent, it is natural to assume that they have different origin, e.g. they are
hosted on different domains.

Therefore, there are two options to communicate with the computation parties
from a web page. First, using a central proxy server so that the web page com-
municates with a single server, that in turn distributes the messages among the
computation parties. This is similar to the proxy used in the Danish sugar beet
auction described in Section 3.1.1. Second, using facilities provided by HTTP
protocol or modern web browsers to bypass the Same Origin Policy.

Using a central proxy server

The central proxy approach requires each computation party to have an asymmet-
ric key pair with the public key embedded in the web application. Each party’s
public key is used on the client side in the web browser to encrypt shares meant
for this computation party. The encrypted shares of all parties are then sent to
the central proxy server that distributes them among the independent computation
parties. Due to the Same Origin Policy restrictions, the role of the central proxy
should be carried out by the server where the web application is loaded from. This
solves the problem of uploading data to the computation parties.

At the same time, the confidentiality of computation servers’ replies must
also be protected. Using public key cryptography for this communication direc-
tion might be cumbersome as each user would need to generate a new key pair in
their web browser. Alternatively, the user may generate a symmetric encryption
key and send it to the computation parties by encrypting it with their public keys.
That way, only the user and computation parties know the common symmetric
key to use in further communication. Once the generated symmetric key is ex-
changed, this hybrid cryptography approach may also be used to distribute shares
as symmetric encryption is more resource-efficient.

However, using the central proxy server has some drawbacks. First, in order
to receive confidential data from the computation parties, the application in the
user’s web browser has to generate a symmetric encryption key and this requires
cryptographically secure randomness. The method of gathering randomness from
the computation parties described in previous section does not apply here as the
central proxy server would learn the combined random value. So the application
has to depend on the user having a recent enough web browser that provides a
cryptographically secure PRNG.

Secondly, central proxy server is a black box to the user and it can easily re-
place the public keys of the computation servers with its own. In order to avoid

41

this, the certificates containing the public keys must be signed by a trusted au-
thority. However, since the keys are used in JavaScript then the verification of the
certificates must also be carried out in JavaScript. Normally, this is done auto-
matically by the web browser. Hence, it can be argued that communicating with
computation parties directly is more transparent to the user as he can verify that
the domains in use belong to the advertised computation parties. This can be done
by either studying the downloaded application code or reviewing web browser’s
network console.

Bypassing the Same Origin Policy

There are three methods for bypassing the Same Origin Policy restrictions. Two
of them, namely HTML5 Web Messaging API2 and Cross-Origin Resource Shar-
ing3, are supported by modern web browsers and require the requested resource
to know that it can be accessed from another origin. The third is a workaround
using a dynamically created script tag with a callback and works in virtually
every web browser. Next, we will give a brief overview of each of them.

In HTML, an iframe tag allows the browser to load a whole web page as a
subpage of the current web page. This web page may be loaded from a different
origin. However, the contents of the pages are strictly separated and the Same
Origin Policy does not allow these two pages to communicate with each other.
Nevertheless, with HTML5 Web Messaging application programming interface
(API) support, it is possible for a web page to communicate with the content of an
iframe in a controlled fashion. In our scenario, it is sufficient to load a simple
web page in an iframe from every computation party and using the HTML5
Web Messaging API, distribute the shares among the iframe-s. Each iframe
can then use its own JavaScript code to send the share to its server over a secure
connection. Since each iframe communicates only with the server where it
was loaded from, no Same Origin Policy restrictions apply here. Similarly, each
iframe can forward each computation party’s reply to the main web page.

Cross-Origin Resource Sharing (CORS) adds special headers to the HTTP
protocol so a web page can explicitly state from which other origins it can be
requested. When accessing resources from other origins with CORS, a browser
makes a preflight request to see if the resource has the special CORS headers set
to allow the request go through. With CORS headers set, cross-origin requests
from JavaScript are enabled using ordinary means, e.g. the XMLHttpRequest
method.

At the time of developing the ITL financial benchmarking application de-
scribed in Section 3.1.2, the penetration of both HTML5-capable and CORS-

2HTML5 Web Messaging – http://www.w3.org/TR/webmessaging/
3Cross-Origin Resource Sharing – http://www.w3.org/TR/cors/

42

http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/cors/

enabled web browsers was very low so a fallback solution was also needed. A
well-known workaround with the HTML script tag was used to accomplish
that. Loading resources (e.g. images and scripts) in HTML is not affected by
the Same Origin Policy, so they can be loaded from any origin. Hence, we can
dynamically create a new HTML script element with a source address of our
choice and insert it into the Document Object Model (DOM) tree of the current
document. Upon this, the requested file is automatically loaded and, if it is valid
JavaScript file, it is also automatically executed. As we need to receive data this
way, the server can send the values in JavaScript Object Notation (JSON) that is
given as an argument to a function call:

someFunction({foo: ’This is a JSON object’});

This is a so-called “JSON with padding” format, or simply JSONP [79].
With this script tag workaround, we can send data to the server by encoding

it into the URL of the requested JavaScript file, for example:

<script src="file.js?k1=value1&k2=value2"></script>

It is important to note here that one can only make HTTP GET request in this
way as resources are loaded using GET requests. As GET request size (length
of parameters) limit is much smaller than for POST request, one can only send a
small amount of data with each request using this method. The GET request size
limit is configurable on the server side and in practice, web browsers set this limit
to 2–8 kilobytes. It was not a limiting factor in the financial data benchmarking
application, but has to be considered in larger applications.

The HTTP protocol nor web browsers provide any facilities to guarantee
authenticity of web pages, e.g. by signing the web page or JavaScript code.
Hence, we have to rely on communication channel security provided by HTTPS.
The connection to the initial web server as well as to the three web servers of
computation parties use encrypted and authenticated HTTPS connections. Using
any of the three methods mentioned above, the connections to the web servers
of computation parties are made in the background (either by JavaScript using
XMLHttpRequest method or by a hidden iframe). Hence, it is important
that these servers use HTTPS certificates that are automatically accepted by all
relevant web browsers – since the loaded web page is not shown to the user, he
or she cannot take any explicit action to accept an untrusted certificate. It is suf-
ficient if every computation party’s web server uses a certificate that is signed
by a trusted root certificate authority or it’s intermediate authority. Modern web
browsers bundle about 50 trusted root certificates and some of them, e.g. the Let’s
Encrypt initiative4, even provide free web server certificates so this requirement
can be easily fulfilled.

4Let’s Encrypt – https://letsencrypt.org/

43

https://letsencrypt.org/

4.3 Prototypes

For the ITL financial benchmarking application [121], the author of this thesis
developed a JavaScript library based on the Dojo Toolkit5 that was used in the
web browser to secret share input data and securely distribute the shares among
the web servers of computation parties. The library was able to switch between
the HTML5 Web Messaging API and the script tag workaround as necessary,
depending on the version of the web browser.

This library made it possible to easily create other web-based frontends to
SMC applications. The following is an overview of some such applications that
used and enhanced this library. The author of this thesis did not develop these
applications. However, they use the same ideas and architecture and the author of
this thesis was in the role of a consultant.

4.3.1 Cloud demo

A meeting of the European Cloud Partnership Steering Board consisting of rep-
resentatives and decision makers from the IT and telecommunications sector was
scheduled to be held in Tallinn in July 2013. The Estonian Information System
Authority (RIA) was interested in demonstrating new innovative cloud technolo-
gies to the board members and contacted Cybernetica.

We decided to create a web application that uses SMC to compute various
statistics on the income of Estonian public sector employees. This data is freely
available in Estonia, and as such did not require us to obtain any permissions from
the data owners. Consequently, we could show real results instead of depending
on synthetic data. At the same time, in some countries this data is not public and
so using secure multi-party computation to publish only aggregate values on such
financial data serves as a good demonstration for the usefulness of SMC.

The salary information for all of the positions in local governments and min-
istries was collected and uploaded to the SHAREMIND installation using a web
application developed with the JavaScript library described earlier.

The computation parties were hosted by three organisations: RIA, the IT Cen-
ter of the Ministry of Internal Affairs (SMIT) and Cybernetica. Each of them
hosted a SHAREMIND (version 2) computation node and an instance of Apache
web server. However, as the event was about cloud computing, the computation
parties did not host the servers in their premises but rather rented a cloud server
for independent cloud providers in Europe. RIA hosted its server in Microsoft

5Dojo Toolkit – https://dojotoolkit.org/

44

https://dojotoolkit.org/

Azure6, SMIT in Zone Media7 and Cybernetica in Linode8.
We decided to collect input data without the local proxy database used in the

financial benchmarking application. Instead, we created an Apache web server
module so that an Apache server at each computation party received the input
shares from the web browser and forwarded them to the local SHAREMIND in-
stance without saving them in any intermediary database. As such, Apache acted
as a HTTP interface for the SHAREMIND server.

In the case of the ITL financial benchmarking application (Section 3.1.2), a
web frontend was used only to input data into the system. The actual SMC process
was initiated by running a command-line application and the results were saved
as a file (although accessible from the web). In the public sector income analysis
demo, the computation was also initiated from the web and when finished, the
results (frequency tables and histograms) were also sent back to the web applica-
tion. This was done to demonstrate that, on smaller data sets, SMC can be done
in near real time and web-based user interface is a convenient way to interact with
such a setup.

After demonstrating the web application to the European Cloud Partnership
Steering Board members, Cybernetica decided to make it available as a public
demo. Since the partners hosting the computation servers could not commit to
hosting indefinitely, it was decided that Cybernetica will take over managing all
three servers. Three independent cloud hosting providers were chosen: Amazon
EC2, Microsoft Azure and Zone Media.

For the new deployment, the Apache proxy was replaced by a Node.js proxy
that allowed to keep persistent connections between the SHAREMIND server and
the proxy. Previously, with the Apache module, a new connection to SHAREMIND

server was initiated on each web request, making it slower. Moreover, the Node.js
proxy uses the WebSocket API [55] to exchange data with the web browser. Web-
Sockets allow to directly establish cross-domain connections as they are not re-
stricted by the Same Origin Policy. The WebSocket connections are managed by
Node.js socket.io library that falls back to Flash or JSONP-based solutions on
older web browsers. Consequently, communicating with the computation parties
directly form the web page was faster and more robust than before.

In June 2014 the public cloud demonstration application was upgraded to use
SHAREMIND Application Server.

6Microsoft Azure: Cloud Computing Platform & Services – https://azure.
microsoft.com/en-us/

7CloudServer - Zone.ee – https://www.zone.ee/en/service/cloudserver/
8SSD Cloud Hosting - Linode – https://www.linode.com/

45

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.zone.ee/en/service/cloudserver/
https://www.linode.com/

4.3.2 Internal employee satisfaction survey

In January 2014, Cybernetica conducted its annual company-wide employee sat-
isfaction survey using SMC. The deployment was very similar to that of the ITL
financial benchmarking application – Cybernetica employees used a web-based
form to participate in a survey. The three computation nodes were hosted by Cy-
bernetica’s own employees. The survey system was not tied to company’s central
authentication system. Each employee was sent a unique random numerical token
that served as an identifier. This token allowed the company’s human resources
specialist to track who had already participated and also allowed the employee to
re-submit the form so that only the last version was taken into account.

The SMC-based employee satisfaction survey was used again in 2015 and is
the foundation of a cloud-based software-as-a-service survey system described in
Section 4.3.4.

4.3.3 Tax fraud detection prototype

The Estonian Tax and Customs Board has estimated that the government loses
over 220 million euros every year due to some companies avoiding value-added
tax (VAT) [74]. In 2013, the government proposed a change in legislation that
would make it compulsory for all companies to report all transactions with any
partner with whom the monthly sum of transactions is at least 1000 euros. How-
ever, the president of Estonia vetoed the proposal and sent it back to the parlia-
ment. In his decision, among other reasons, the president also expressed concerns
about the security needs of a new database that would contain a large portion of
all the transactions in Estonia [123].

Inspired by the raised privacy concerns, Cybernetica decided to build a pro-
totype application that uses SMC to hide individual transactions while disclosing
companies with a fraud risk [20]. The application performs the risk analysis obliv-
iously, flagging only companies with suspicious transactions. In the end, only the
flagged companies are revealed giving the tax official a well-founded justification
for seeing the full data of these companies. In this process, the privacy of honest
taxpayers is protected.

The user interfaces of the prototype for input parties and result party were
web-based. Companies could use a web-based form to upload their transaction
data in an XML format where each value was then secret shared in the web
browser using an updated version of the JavaScript library. The shares were then
distributed among the three computation parties. Similarly, an official could start
the risk-analysis process and retrieve the results in a web application.

On a test set of 2.6 million transactions from 2000 companies, the privacy-
preserving analysis took 43 minutes when deployed on Cybernetica’s local cluster.

46

Based on the information from the Tax and Customs Board that data about a total
of 100 million transactions is provided by 80 000 companies each month, it was
estimated that the analysis would take ten days to complete.

After addressing some of the concerns, the updated version of the tax leg-
islation was passed and the Tax and Customs Board started requesting the tax
declarations as initially planned. One of the concerns of the Tax and Customs
board was that they would have to share the fraud detection algorithm with other
computation parties, as currently the computed algorithm itself is not hidden from
the parties. Nevertheless, the Tax and Customs Board recognised the need to pro-
tect privacy of the data owners and agreed to reconsider adopting the technology
in the future if its deployment cost is further reduced [20].

The updates in both the JavaScript library and server-side components devel-
oped for the tax fraud detection system prototype application made it even easier
to create privacy-preserving web-based sample applications. For example, the au-
thor of this thesis were able to create a working voting application for the 2014
Eurovision Song Contest in just one evening.

4.3.4 Secure survey system

A secure online survey platform is implemented and deployed by PRACTICE
project partners Alexandra Institute and Partisia (Denmark) and Cybernetica (Es-
tonia) since 2013 [124, 85]. The survey system is publicly available online at
https://practice-survey.eu/ and allows organisers to design surveys,
let people participate in the survey and see visual reports.

The user inputs are secret-shared in their web browser and distributed among
computation servers using JavaScript XMLHttpRequest calls with CORS HTTP
headers. All of the aggregated survey results are computed using SMC. The se-
cure survey system allows to choose between two different SMC run-times: a
3-party SHAREMIND system with passive security, or a 2-party FRESCO backend
using SPDZ protocol suite with active security developed by Alexandra Institute
and Aarhus University.

4.4 Best practices

As seen from Table 4.1, the client side JavaScript library for developing privacy-
preserving web applications has been gradually upgraded to support more data
types and newer SHAREMIND versions. Most importantly, the initial need for a
proxy database has been removed so the web server (Node.js or Apache module)
forwards the shares directly to the SHAREMIND computation node. For ease of
deployment and administration, a possible step forward would be to integrate web

47

https://practice-survey.eu/

server into SHAREMIND so that it has a native HTTP interface itself.
By now, most up-to-date web browsers support using different technologies

(HTML5 Web Messaging API, CORS headers, WebSockets) to bypass the Same
Origin Policy in a controlled fashion. These also support using HTTP POST re-
quests with practical size limits in gigabytes. Hence, using several requests, there
is virtually no limit on the amount of exchanged data. Similarly, in addition to
asking cryptographically secure randomness from the computation parties, newer
web browsers support the Web Cryptography API9 that also provides a crypto-
graphically secure PRNG via JavaScript.

However, there is still an inherent problem with deploying SMC applications
in the web. The idea of secure multi-party applications is to eliminate the need
to trust any single entity. Instead, the data owner trusts that a group of entities
(computation parties) behaves according to a protocol. The problem with web-
based SMC applications is that the application code itself (namely the JavaScript)
is loaded from a single server in the form of a web page. As web applications
cannot be signed, the user must now either trust the web server providing the page
or audit the entire client-side code. In a sense, it is a variant of the “trusting trust”
problem [122].

9Web Cryptography API – http://www.w3.org/TR/WebCryptoAPI/

48

http://www.w3.org/TR/WebCryptoAPI/

D
at

e
B

ro
w

se
rs

id
e

te
ch

.
Se

rv
er

si
de

te
ch

.
Tr

an
sp

or
tp

ro
to

co
l

U
se

d
in

20
11

.0
2

Ja
va

Sc
ri

pt
,H

T
M

L
5

W
eb

M
es

sa
gi

ng
or

dy
na

m
ic

s
c
r
i
p
t

ta
g.

A
pa

ch
e

se
rv

er
w

ith
PH

P
an

d
pr

ox
y

da
ta

ba
se

,
S

H
A

R
E

M
IN

D
2.

H
T

T
P/

JS
O

N
P.

IT
L

fin
an

ci
al

be
nc

hm
ar

ki
ng

ap
p,

ST
A

C
C

pr
iv

at
e

su
rv

ey
.

20
13

.0
5

Ja
va

Sc
ri

pt
,H

T
M

L
5

W
eb

M
es

sa
gi

ng
or

dy
na

m
ic

s
c
r
i
p
t

ta
g.

A
pa

ch
e

m
od

ul
e,

S
H

A
R

E
M

IN
D

2.
H

T
T

P/
JS

O
N

P.
C

lo
ud

de
m

o
(i

ni
tia

lv
er

si
on

).

20
13

.1
0

Ja
va

Sc
ri

pt
,s
o
c
k
e
t
.
i
o

.
N

od
e.

js
w

ith
s
o
c
k
e
t
.
i
o

,
S

H
A

R
E

M
IN

D
2.

W
eb

So
ck

et
,f

al
lb

ac
k

to
X
M
L
H
t
t
p
R
e
q
u
e
s
t

po
lli

ng
or

Fl
as

h.

C
lo

ud
de

m
o

(p
ub

lic
ve

rs
io

n)
.

20
14

.0
1

Ja
va

Sc
ri

pt
w

ith
s
o
c
k
e
t
.
i
o

,s
up

po
rt

s
flo

at
in

g
po

in
td

at
a

ty
pe

s.

N
od

e.
js

w
ith

s
o
c
k
e
t
.
i
o

,
S

H
A

R
E

M
IN

D
3.

W
eb

So
ck

et
,f

al
lb

ac
k

to
X
M
L
H
t
t
p
R
e
q
u
e
s
t

po
lli

ng
or

Fl
as

h.

C
yb

er
ne

tic
a

em
pl

oy
ee

sa
tis

fa
ct

io
n

su
rv

ey
20

14
.

20
14

.0
4

Ja
va

Sc
ri

pt
w

ith
s
o
c
k
e
t
.
i
o

,s
up

po
rt

s
al

ld
at

a
ty

pe
s

su
pp

or
te

d
by

S
H

A
R

E
M

IN
D

.

N
od

e.
js

w
ith

s
o
c
k
e
t
.
i
o

,
S

H
A

R
E

M
IN

D
3

or
A

pp
lic

at
io

n
Se

rv
er

.

W
eb

So
ck

et
,f

al
lb

ac
k

to
X
M
L
H
t
t
p
R
e
q
u
e
s
t

po
lli

ng
or

Fl
as

h.

C
lo

ud
de

m
o

(p
ub

lic
ve

rs
io

n)
,

C
yb

er
ne

tic
a

em
pl

oy
ee

sa
tis

fa
ct

io
n

su
rv

ey
20

15
,t

ax
fr

au
d

de
te

ct
io

n
sy

st
em

pr
ot

ot
yp

e,
E

ur
ov

is
io

n
vo

tin
g

de
m

o.
20

15
.0

4
Ja

va
Sc

ri
pt

w
ith

A
ng

ul
ar

JS
,s

up
po

rt
s

al
l

da
ta

ty
pe

s
su

pp
or

te
d

by
S

H
A

R
E

M
IN

D
.

Ja
va

,
S

H
A

R
E

M
IN

D
3

or
F

R
E

S
C

O
/S

D
PZ

.

X
M
L
H
t
t
p
R
e
q
u
e
s
t

w
ith

C
O

R
S

he
ad

er
s.

PR
A

C
T

IC
E

Se
cu

re
Su

rv
ey

Sy
st

em
.

Ta
bl

e
4.

1:
U

pg
ra

de
s

to
th

e
Ja

va
Sc

ri
pt

lib
ra

ry
an

d
re

la
te

d
se

rv
er

-s
id

e
co

m
po

ne
nt

s.

49

CHAPTER 5

PRIVACY-PRESERVING DATABASE
LINKING

5.1 Introduction

By database linking, we mean merging databases horizontally so that the records
from different input databases belonging to the same entity are merged into one
record. An identifier for this entity has to be present in each input database and
we call it a key column or a key value.

Such merging operation allows us to combine customer data from different
organisations or link together state databases for research and supporting gov-
ernance decisions. For example, for statistical analysis of health insurance, one
can link together insurance records and hospital patient records based on a Social
Security Number.

In this work we only consider the case where the linking is done based on the
equality of the key values in different data sets. In relational algebra and Struc-
tured Query Language (SQL), this is called equi-join. Although there are several
different types of join operations, depending on how missing values are handled,
we consider here only three of them that are most commonly used in applications.
These are all defined for two input tables (“left” and “right”, respectively) and can
be cascaded to support more inputs.

• Inner join considers only records that have a matching key value in both
the left and right data tables. Formally, in relational algebra, inner join is a
subset of the Cartesian product of the two input relations R and S and can
be expressed as

σθ(R× S),

where σ is a selection of elements based on a predicate θ, e.g. R.key =
S.key.

50

• Left outer join takes the left input table and complements each of its record
with the values from the right table if a matching key value is found, or a
special “empty value” (e.g. “NULL”, “N/A”, etc.) if a matching key is not
found.

• Right outer join is a reverse to the left join. The right input table is taken
as-is and complemented with records from the left table that have matching
key values.

If a key value appears more than once in either input table, it is linked inde-
pendently, e.g. all pairs are formed between the sets containing the occurrences of
this key value from the left and right input tables. Note also that a key may consist
of multiple attributes (e.g. a person name and a zip code) and all of the attributes
have to match in order to consider it being equal to another key value.

In this chapter, we will introduce a privacy-preserving equi-join functionality
based on an oblivious pseudo-random permutation function. The author has pub-
lished the described protocols and their initial benchmarking results in [96] with
its extended version available at the Cryptology ePrint Archive [97].

5.2 Privacy-preserving join operation

An ideal functionality for database join operation takes two secret-shared input
data sets and outputs a new randomly ordered secret-shared data set where the
join predicate holds. No new knowledge, except the number of rows in the joined
data set should be published. While it is possible to hide the number of rows in
the result data set by adding dummy records, it is not practical as the size of the
output would have to be the product of the number of records in the input data
sets. Randomising the order of output records is necessary for limiting leakage, if
at some point a part of either the join operation input or output is published.

There is a straightforward privacy-preserving solution that naïvely follows the
database join algorithm. We can create a Cartesian product of the two input tables
by comparing each possible key value pair and adding the secret-shared com-
parison result to the table. The resulting table is then shuffled, i.e. its rows are
randomly reordered by using an oblivious shuffling protocol described in [98].
Then the values in the comparison column are opened and all rows with the com-
parison result bit set to zero are removed. The remaining table is exactly the inner
join of the two input tables. Notice that this method (referred to as NAIVEJOIN),
is not limited to using only an equality predicate, other oblivious operations (e.g.
less-than or greater-than) are also possible. As the oblivious shuffling protocol has
a complexity of Θ(m logm) for m-element vector, the asymptotic complexity for
the NAIVEJOIN algorithm is Θ(m1m2 log (m1m2)), where mi is the number of

51

rows in the i-th input table. However, in practice, its run-time is dominated by the
m1m2 oblivious comparisons. We will treat NAIVEJOIN as a baseline solution.

Theorem 1. If a secure multi-party computation framework provides universally
composable protocols for database shuffle and oblivious comparison, then the
NAIVEJOIN protocol is universally composable in the information theoretical
model.

Proof sketch. The formal proof relies on three facts. First, the oblivious compari-
son leaks no information and the extra column can be simulated without problems.
Second, the shuffle completely hides the order of the database rows. Third, the
number of rows can be deduced from the ideal output and it coincides with the
number of ones in the publishing phase.

In the simulation construction, we fake all shares until the shuffle phase with-
out any knowledge of the true output. Next, we use the oblivious shuffle protocol
to extract input shares of all malicious parties and submit them to the trusted third
party who outputs the corresponding output shares. The simulator assigns them
to random rows for m1m2 shuffle outputs and sets the corresponding comparison
column to 1. Remaining rows are filled with shares of zeros. After the shuffle
simulation is completed, the simulator opens the values in the comparison col-
umn.

5.2.1 Database join for unique key values

Electronic Codebook (ECB) is a block cipher mode of operation that encrypts
each block of plaintext independently. Hence, for the same encryption key, equal
plaintext values yield equal ciphertext values. If we apply such encryption to the
values in the key column with an encryption key s, that none of the computa-
tion parties know, it is secure to reveal those encrypted key values. Without the
knowledge of the encryption key s, no party can trace any elements back to the
real values. As different keys map to different ciphertexts, we can perform the
actual join operation on declassified ciphertexts. However, non-key columns must
remain secret-shared.

The ECB encryption mode can be formalised as a pseudo-random permutation
family (πs), where the encryption key s uniquely defines the applied permutation.
In our case, this encryption key s is secret-shared among the computation parties.

However, this database join leaks some information as it is possible to track
which rows from the first table are linked to particular rows in the second table.
By obliviously shuffling both input tables, this kind of leakage is avoided [98].
Algorithm 1 lists the steps of the resulting oblivious database linking protocol
PRPJOIN based on pseudo-random permutation (PRP).

52

Algorithm 1: Secure implementation of PRPJOIN operation.
Data: Secret-shared database tables Ti with key columns ki
Result: Secret-shared equi-join T ∗ of the input tables

Database shuffling phase:
1 Computation parties obliviously shuffle each database table Ti

Let T ∗i denote the resulting shuffled table with a key column k∗i

Encryption and join phase:
2 Miners choose a pseudo-random permutation πs by generating a shared

key s
3 Miners obliviously evaluate πs on all shared key columns k∗i
4 Miners publish all values πs(k∗ij) and use standard database join to merge

the tables based on columns πs(k∗i). Let T ∗ be the resulting table.

Optional post-processing phase for colliding keys:
5 If there are some non-unique keys in some key column πs(k∗i), miners

should perform additional oblivious shuffle on the secret-shared table T ∗

All the steps in Algorithm 1, except finding matching keys among published
values in step 4, are performed on secret-shared data. Most importantly, the result-
ing joined table T ∗ is also secret-shared and can be used in further computations.
Note the optional last step for obliviously shuffling the output in case there are
colliding keys in the input tables. This is further discussed in Section 5.2.3.

Note that since the actual join operation is performed on published values, it
is also possible to do left or right outer joins instead of the inner join. For outer
joins, it might be necessary to add “empty values” to records that do not have a
matching key in the other table. In practice, these empty values are (application-
specific) secret-shared constants. Adding these to the relevant rows can be done as
part of the public join operation, as the final oblivious shuffle hides their location
in the final protocol output.

Theorem 2. Let (πs) be a pseudo-random permutation family. If a secure multi-
party computation framework provides universally composable protocols for data-
base shuffle and oblivious evaluation of πs(x) from secret shared values of x
and s, and there are no duplicate key values in any of the input tables, then the
PRPJOIN protocol is universally composable in the computational model.

Proof sketch. For clarity, let us analyse the security in the modified setting where
(πs) is the set of all permutations and Steps 1–4 are performed by a trusted third
party. Letm1, m2 andm be the number of rows in the input tables and in the final
database table, respectively. Let y1 and y2 be the vectors of encrypted values

53

published during PRPJOIN protocol. For obvious reasons, |y1 ∩ y2| = m and the
set y1 ∪ y2 consists of m1 + m2 −m values, which are chosen randomly from
the input domain without replacement. As Step 1 guarantees that the elements in
y1 and y2 are in random order, it is straightforward to simulate y1 and y2 given
only the number of rows m.

The simulation of the protocol is straightforward. As the protocol starts with
the secure oblivious shuffles, the simulator first executes sub-simulators of these
protocols. The input extraction phase allows us to recover all input shares of
the corrupted parties. Hence, the simulator can forward these input shares to the
trusted third party, who replies with output shares of resulting join table. From
these shares it can trivially learn the number of rows m in the final table.

For the output equivocation phase of the shuffle sub-simulators, the simulator
has to construct tables with the initial number of rows. For that, it splits the result
table into columns for input tables and duplicates the key column for both of them.
As m ≤ m1,m2, the simulator has to fake the rest of the remaining m1 −m and
m2 −m rows, respectively. For that, it generates valid shares of zeros for all the
values in the remaining rows. The simulator randomly permutes both tables and
gives them to the respective sub-simulator for output.

Next, the adversary starts to evaluate PRP on these key columns. The simu-
lator uses output equivocation to specify the resulting published encryptions y1

and y2. The simulator chooses the values for y1 and y2 so that correct rows are
joined. For this, the simulator first generatesm unique ciphertexts that correspond
to matching rows. Additionally, the other m1 − m and m2 − m ciphertexts are
generated so that there are no collisions with any of the other ciphertexts.

Note that the rows obtained from the TTP are perfectly simulated. As the
adversarial coalition is small enough, the adversary cannot distinguish the fake
shares of remaining rows from the actual shares in the protocol.

It is easy to see that the simulation holds in the semi-honest model. The same
is true for the malicious model with an honest majority, since honest parties can
always carry out all the computations without the help from the adversarial coali-
tion. In case of a dishonest majority, the adversarial coalition is allowed to learn
its output and then terminate the protocol. In our case, the simulator must termi-
nate the execution when the adversarial coalition decides to stop after learning the
encrypted vectors y1 and y2.

We can use the same simulation strategy for the original protocol where the
trusted third party uses a pseudo-random permutation family. As the key s is
unknown to all parties, the joint output distributions of the real and hybrid worlds
are computationally indistinguishable. The latter is sufficient, as security in the
hybrid model carries over to the real world through universal composability of
share shuffling and oblivious function evaluation protocols.

54

By combining oblivious AES (see Section 5.3) as a pseudo-random permu-
tation function πs and oblivious database shuffle protocol from [98] we get an
efficient instantiation of the PRPJOIN protocol. The resulting protocol performs
Θ(m1 + m2) oblivious PRP evaluations and Θ(m1 logm1 + m2 logm2) public
computation operations, where m1 and m2 denote the number of rows in input
tables1.

5.2.2 Handling unique multi-column key values

In some data sets, the identifier for an entity might consist of several attributes. For
example, a person might be identified by the combination of name and a birth date
or a name and a ZIP code. We can deduce this case of using multiple columns for
a key value to the previous case by hashing values in multiple columns together
to obtain a single value. An ε-almost universal hash function is a function h :
K × M → T that compresses message into shorter tags so that the following
inequality holds:

∀x, x′ ∈M : x 6= x′ ⇒ Pr
[
k ← K : h(k, x) = h(k, x′)

]
≤ ε.

Such hash function should support efficient oblivious evaluation to be usable in
our scenario. The Carter-Wegman construction [42]

h(k,x) = xsks + · · ·+ x2k2 + x1k1

is a good candidate for our application as it requires only a few simple opera-
tions and is (2−`)-almost universal when computations are done over the field
F2` . Alternatively, we can also make use of several independent Carter-Wegman
functions over F2. For ` independently chosen keys, we still get the collision
probability of 2−`. In the semi-honest model, the resulting protocol retains the
same communication complexity as the complexity scales linearly w.r.t. the bit
length. In the malicious model, the communication complexity depends on the
implementation of the oblivious multiplication protocol. Compared to other con-
structions based on pseudo-random functions, the Carter-Wegman function has
a low multiplicative complexity, which makes it a good choice for reducing the
block cipher input size in our scenario. Oblivious hashing algorithm OHASH steps
are listed in Algorithm 2.

Theorem 3. If a secure multi-party computation framework provides universally
composable protocols for addition and multiplication over F2, the OHASH proto-
col is universally composable in the information theoretical model. For ε-almost

1The theoretical asymptotic complexity is higher, as the size of the database can be only poly-
nomial in the security parameter and thus oblivious PRP evaluation takes poly(m) steps. Conse-
quently, the protocol is asymptotically more efficient than the naive solution as long as the PRP
evaluation is sub-linear in the database size.

55

Algorithm 2: Oblivious hashing OHASH.
Data: A secret-shared s-bit message x
Result: A secret-shared `-bit hash value (h(k`,x), . . . , h(k1,x))

Offline phase:
1 Generate shared random keys (kij) for the Carter-Wegman construction

Online phase:
2 Treat each key tuple as a long bit string x = (xs, . . . , x1)
3 Use secure scalar product algorithm to compute the secret shared hash

code:
h(kj ,x) = xsksj + · · ·+ x1k1j , for j = 1, . . . , `

universal hash function and m invocations of OHASH, the probability that two
different inputs lead to the same output is upper bounded by 1

2m
2ε.

Proof sketch. The claim about security is evident as multiplication together with
addition is sufficient to implement scalar product over F2. The collision probabil-
ity follows from the union bound Pr [collision] ≤

(
m
2

)
· ε ≤ m2ε

2 .

Security of the hash function

By using a hash function, we introduce a possibility that two different key values
have an equal hash value. Such collision among the hashed key values of a single
table invalidates the uniqueness assumption of Theorem 2, whereas a colliding
hash value for non-equal keys from different tables introduces a false entry in the
resulting joined table. Hence, the key length of the chosen hash construction has
to be chosen so that the probability of collisions would be negligible.

For example, by accepting a failure probability of 2−80, a 128-bit Carter-
Wegman construction allows us to use tables with up to 33.5 million entries. This
is enough for many practical applications. For smaller data sets with up to a mil-
lion entries, even an 119-bit Carter-Wegman construction is sufficient.

Optimising oblivious hashing

We noticed that, if implemented naïvely, the OHASH may become the bottleneck
in the PRPJOIN protocol. This is due to the fact that Algorithm 2 computes each
bit of the hash separately and thus duplicates the data vector x for each output bit,
resulting in ` copies of x. This yields larger communication complexity than our
chosen pseudo-random permutation function, AES.

56

However, as the Carter-Wegman construction is essentially a matrix multipli-
cation over the field F2, we can take advantage of a common matrix multiplica-
tion optimisation used in SMC. First, values are converted from 3-out-of-3 secret
sharing scheme to the replicated secret sharing scheme by each party sending its
shares to the next one in a circle. This allows all parties to compute all the neces-
sary scalar products locally. Finally, to guarantee uniform share distribution, and
thus security [25], the output shares are reshared by masking them with random
values. The result is depicted as Algorithm 3 for three computation parties. For
double indices, the first index shows the output bit being computed while the sec-
ond shows which party holds the bitstring. All inputs are bitwise shared and the
superscript index notes the bit operated on.

Algorithm 3: More efficient protocol for Carter-Wegman hash.
Data: Secret-shared s-bit value [[m]] and shared s-bit keys [[k1]], . . . , [[k`]]
Result: Secret-shared `-bit hash value [[c]]

Precomputation phase:
1 Each party Pi generates ` random bits r1i , . . . , r

`
i ← Z2

Data distribution phase:
2 P1 sends s-bit shares m1, r1, k1,1, . . . , k`,1 to P2

3 P2 sends s-bit shares m2, r2, k1,2, . . . , k`,2 to P3

4 P3 sends s-bit shares m3, r3, k1,3, . . . , k`,3 to P1

Post-processing phase:
5 Each Pi computes

wtij ← mt
i ∧ ktj,i ⊕mt

i−1 ∧ ktj,i ⊕mt
i ∧ ktj,i−1

for each key j ∈ {1, . . . , `} and bit t ∈ {1, . . . , s} and sums them up
together with re-randomisation cji ← w1

ij ⊕ · · · ⊕ wsij ⊕ rji ⊕ r
j
i−1

Theorem 4. Assume that the shares of m are correctly generated. Then Algo-
rithm 3 is correct and secure against a single passively corrupted party.

57

Proof sketch. For each bit cj of MAC the correctness follows from

[[cj]] =
3⊕
i=1

(
s⊕
t=1

mt
i ∧ ktj,i ⊕mt

i−1 ∧ ktj,i ⊕mt
i ∧ ktj,i−1

)
⊕ rji ⊕ r

j
i−1

=

3⊕
i=1

s⊕
t=1

(
mt
i ∧ ktj,i ⊕mt

i−1 ∧ ktj,i ⊕mt
i ∧ ktj,i−1

)
=

s⊕
t=1

(mt ∧ ktj) = h(kj ,m)

since the inner most sum contains all combinations of ma ∧ kb.
For the security analysis, it is sufficient to consider the corruption of P2 who

receives all shares owned by P1. Note that two shares out of three always have a
uniform distribution. Hence, it is trivial to simulate all messages received by P2.
Since P2 is semi-honest, the simulator can extract shares of the message and keys
from the input of P2 and submit them to the trusted party who will return shares
c12, . . . , c

`
2. Since the simulator knows what random values r12, . . . , r

`
2 P2 is going

to use, it can pick r11, . . . , r
`
1 so that P2 will indeed output c12, . . . , c

`
2.

Benchmarks show that for 288-bit input and 128-bit output, the running time
of a single OHASH as shown in Algorithm 2 is 25 ms, while the amortised running
time per hash is 5.7 ms. For the optimised version shown as Algorithm 3 these fig-
ures are 11 ms and 0.012 ms, respectively. As the optimised version uses network
more efficiently, its optimal amortised cost is reached by doing 4096 hash com-
putations in parallel. For the unoptimised version, the stable network throughput
is reached already with 16 parallel invocations. In the context of PRPJOIN, the
former is about 10 times slower than AES, while the optimised version has only a
minimal impact, counting for about 5% of the running time of the whole protocol.

5.2.3 Database join for non-unique key values

As the PRPJOIN publishes pseudo-randomly permuted key values, it is trivial to
see that it leaks the coinciding keys in input tables. Moreover, without the extra
shuffle at the end of the protocol it shows how many records match for each par-
ticular key in the output table. If the joined table is used in further computations
and some of its values are eventually published, this might be enough to deduce
some personal information.

The extra shuffle step at the end of the protocol destroys part of this link, but
some information is still leaked. One can still observe how many keys from one
table are matched against a key in another table. More formally, let the occurrence
signature for a key be the number of occurrences in each table. We can then
formulate the following security claim.

58

Theorem 5. If the secure multi-party computation framework satisfies the same
assumption as in Theorem 2, the PRPJOIN protocol leaks only the final size of the
database and occurrence signatures without the corresponding key values.

Proof sketch. The proof is similar to the proof idea used for Theorem 2 and we
use the same notation here. First, the simulator forwards all input shares to the
trusted third party and gets back the joined table together with the occurrence sig-
natures. The simulator learns the number of output rows m from the output table.
Additionally, it learns which keys from the first table matched with how many
keys from the second table by looking at the occurrence signatures. Next, the
simulator generates the encrypted columns y1 and y2 by choosing random values
from the proper domain and setting some of them equal so that the occurrence
signatures hold. These vectors together with the faked shuffled databases (shares
of zeros) are sent to the adversary. Finally, the simulator can also forward the real
output table to the adversary. Note that, unlike for Theorem 2, the simulator does
not have to align the output shares with the encrypted vectors as this relation is
destroyed by the final shuffling step.

If leaking the occurrence signatures is acceptable for a given application, then
the PRPJOIN protocol with the additional shuffle step at the end can also be used
with non-unique keys. Unfortunately, in some applications, the number of occur-
rences for a key might already leak sensitive data. For example, in the presence
of auxiliary information, the number of visits to a doctor may uniquely identify a
person.

In many cases, the number of colliding keys may be small in practice. More-
over, the upper bound ` to the number any key may occur in a table may be
publicly known. Then it is possible to hide colliding key values by obliviously
adding fake rows to input tables such that each key occurs exactly ` times. This
size unification idea is given as Algorithm 4.

The mask-and-mix phase uses two shared binary vectors b and c to keep track
of fake rows. The former is only used inside the protocol while the latter is added
to the output table. In the output table of the protocol, c can be used to filter
out fake rows: ci = 1 for either one or both input tables, depending on the used
join method (inner, left or right outer join). The oblivious sorting step has to
lexicographically order the rows according to the predicate

(ki, bi) � (kj , bj) ⇔ ki ≤ kj ∧ bi ≤ bj
using, e.g. radix sort or any other compatible oblivious sorting algorithm from
Chapter 6. For step 5, we need a secret-shared counter n and the update rule:

n =

{
n+ 1, if ki−1 = ki ,

1, otherwise ,
bi =

{
0, if n ≤ ` ,
1, otherwise .

59

Algorithm 4: Size unification protocol SUNIF.
Data: Secret-shared table with key column k
Result: Secret-shared table with exactly ` copies of each key value

Mask-and-mix phase:
1 Add two secret-shared bit columns b and c for marking fake rows. Initially

they are filled with shares of zeros.
2 For each row, add `− 1 fake rows with the same key and flags bi = 1 and
ci = 1

3 Apply oblivious shuffle to the database table to hide the content

Sort-and-filtering phase:
4 Sort all rows according to the key value and the flag pairs so that fake

entries with same keys are always after the non-faked ones
5 Linearly scan key-flag pairs (ki, bi) and set flag bi to zero if less than `

rows with the same key precede the current row
6 Apply oblivious shuffle to the table and open the index column b
7 Delete all rows, which are still marked as fake, i.e., bi = 1

The counter n shows how many elements with the value of ki there are up to the
current i-th position. The values in b show if the number of consecutive equal
elements in k is greater than our maximal allowed number of colliding keys `. An
example of counter n and vector b for a sorted vector k using ` = 2 is shown
below:

k : 1 1 2 2 2 3 4 4 4
n : 1 2 1 2 3 1 1 2 3
b : 0 0 0 0 1 0 0 0 1

As seen, instead of a counter, we can also encode n as a vector. Consequently,
one possible optimisation for SUNIF is to construct the whole vector b in parallel.
This can be done obliviously by comparing each value in k with ` previous values.
This requires ` comparisons, which can be done in parallel for each element of k,
and `− 1 logical conjunctions, that can be done using a binary tree approach. As
a result, the round complexity of computing b is O(log `).

Theorem 6. Assume that a secure multi-party computation framework provides
universally composable protocols for arithmetic operations and protocols for obliv-
ious sort and shuffle and the maximal number of keys with the same value is below
`. Then the SUNIF protocol produces a database where each key appears exactly
` times and leaks only the number of distinct keys.

Proof sketch. For the proof, note that the third and sixth step destroy all informa-
tion about the location of fake rows and the number of ones revealed at the last

60

step is determined only by the database size and the number of distinct keys. The
simulation construction is analogous to the previous proofs.

Instead of removing the rows with unused keys (bi = 1) in the last step of
Algorithm 4, we can assign them new unused keys such that each key occurs
exactly ` times. For example, one way to accomplish that is to replace all of
the keys with subsequent values from a global counter d. We know that for each
unique key value, there are exactly ` non-fake rows. Hence, each unique key value
of pairs (ki, bi = 0) is replaced by a subsequent value from the counter d. For all
the fake rows (b = 1), we can assign ki = d and increment d after ` assignments.
As initially we added `−1 new rows for each existing database row, then the total
number of rows is divisible by ` and thus each value of d is assigned exactly `
times. Let us denote this protocol as SUNIF+.

Corollary 1. Let the number of key occurrences be bounded by a public constant
`. Then by combining SUNIF+ and PRPJOIN protocol we get an equi-join protocol
that leaks no information besides the number of rows in the output table.

Proof sketch. The PRPJOIN protocol leaks no information as each key occurs ex-
actly ` times. However, the resulting table after the join phase contains rows
that consist partly of fake entries. Then, we can use all fake flags ci to compute
whether the row is valid or not in the post processing step and eliminate invalid
database entries. Again, this leaks no information as the number of invalid entries
is determined by the number of rows in the output table.

The combination of SUNIF+ and PRPJOIN has the complexity of roughly
Θ(`m logm) and is thus much faster than the baseline solution NAIVEJOIN with
quadratic complexity.

5.2.4 Related work

As a very practical task, privacy-preserving database linking task has been stud-
ied before. Unfortunately, none of the solutions are applicable in our composable
model where both the input and output tables are secret-shared. One of the pi-
oneering works in privacy-preserving data-mining described how exponentiation
can be used in order to compute equi-join of data tables [3]. However, the idea
worked in a two-party setting and the resulting table was published.

Freedman et al. showed how to implement secure set intersection with obliv-
ious polynomial evaluation and balanced hashing [58]. Unfortunately, their ideas
are also not directly applicable here as their two-party protocol assumes that key
values are a local input, whereas in our setting the data is secret-shared. Moreover,
oblivious polynomial evaluation allows to check if a given element belongs to a
set. However, in PRPJOIN similar tests are actually done on published data.

61

The idea of Hazay and Lindell [73] of using pseudo-random permutation to
hide the key values and perform set intersection on published ciphertexts is the
closest to us. However, in their two-party protocol one of the parties learns the
intersection.

Perhaps the most compatible solution to ours is given by Hadavi et al. in [70],
where they use a searchable secret sharing scheme that allows to translate user
queries into queries over shared values by the user himself.

5.3 Oblivious AES

Advanced Encryption Standard (AES) is a symmetric block cipher algorithm ap-
proved by the National Institute of Standards and Technology (NIST) [106]. AES
works on 128-bit blocks of data, i.e. both its plaintext and ciphertext blocks are
128 bit long. The NIST FIPS-197 standard states that AES can be used with key
lengths of 128, 192 or 256 bits. In this work, we will use AES-128, which denotes
AES with 128-bit keys. However, the results here also apply for other key lengths
as it only affects the number of rounds in the key derivation and encryption phases.

In this section, we will describe and implement AES that works on secret-
shared data. In this setting, the plaintext, key and ciphertext are all bitwise secret-
shared and not known to any single party.

The main motivation for implementing such oblivious AES is to use it as a
pseudo-random permutation function to encrypt the key values in the privacy-
preserving database join protocol PRPJOIN. Moreover, a similar idea of using
oblivious AES as a pseudo-random permutation is used to implement privacy-
preserving group by operation in [88]. Both of these operations are used in the
privacy-preserving extract, transform, load (ETL) step of the statistical study de-
scribed in Chapter 7.

However, AES has other application areas besides the obvious encryption.
For example, in counter mode, AES can be used as a pseudo-random number
generator [10]. Moreover, implementing AES on secret-shared data is interesting
in its own right as it is widely adopted as a benchmarking test [112, 49, 77, 95,
50, 107, 78, 92, 63, 90, 64]. Hence, it allows us to compare our secure multi-
party computation platform with other implementations. Finally, we can think
of oblivious AES as a trusted hardware on a cloud environment that reduces the
security requirements needed for symmetric key management [49].

62

5.3.1 Oblivious implementation of the S-box

AES algorithm overview

We have designed our oblivious AES protocol by following the NIST FIPS-197
standard [106]. The main part of the AES cipher is the round function that consists
of four byte-oriented transformations (see Algorithm 5). The number of rounds
Nr is determined by the key length. For example, using 128-bit keys, a total of 10
rounds are executed, with the final round missing the MixColumns() operation.
Before the actual cipher rounds, the encryption key is expanded into round keys
using similar byte transformation operations.

Algorithm 5: AES cipher structure [106].
Data: 16-byte state and round keys (4 · (Nr + 1) bytes)
Result: 16-byte state

AddRoundKey(state, roundKey[0])
foreach r ∈ {1, . . . ,Nr − 1} do

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, roundKey[r])

end
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, roundKey[Nr])

Each round starts by SubBytes() operation that applies a one-for-one sub-
stitution table (S-box) independently for each byte of the 16-byte cipher state.
Applying the S-box (see Figure 5.1) is the only non-linear operation in the AES
algorithm and it is also used by the SubWord() operation in the key expansion
phase that applies it to each byte in its 4-byte input.

The other three round transformations use linear operations on the cipher state.
ShiftRows() shifts bytes in the last three rows of a (4×4)-byte state in a cyclic
manner using different offsets. MixColumns() mixes the columns of the state
using linear operations over GF(28). Finally, AddRoundKey() combines the
round key into the current state using XOR operation.

All linear operations can be carried out independently by each computation
party on their shares. Hence, applying the S-box substitution table is the only
operation that requires network communication and determines the complexity of
the oblivious implementation.

63

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 5.1: S-box: substitution values for the byte xy (in hexadecimal format) [106].

S-box by oblivious selection

Basically, S-box can be thought of as a 256-element lookup table containing a
substitution value for every possible byte value. In our setting, the selection index
is secret-shared. Hence, we need an oblivious array selection that can be achieved
by combining techniques described in [98].

Given a byte value x that we want to substitute, we have to construct a zero-
one index vector z that has a value 1 at position zx and all of the other positions
are filled with zeros. Let x7x6 . . . x0 be the bit-representation of the input value
x and i7i6 . . . i0 be the bit-representation of index value i = 0, . . . , 255. Then,
each position of the index vector can be expressed as a conjunction of equality
predicates zi = [x7 = i7] ∧ . . . ∧ [x0 = i0] and the corresponding shares can be
computed by evaluating multinomials

zi = (x7 ⊕ i7 ⊕ 1) · · · (x0 ⊕ i0 ⊕ 1) .

Hence, the first value in the index vector is z0 = (1 ⊕ x7)(1 ⊕ x6) . . . (1 ⊕ x0),
the second value is z1 = (1⊕ x7)(1⊕ x6) . . . (1⊕ x1)x0, etc.

Note that each of the 256 multinomials zi is of degree 8 and thus, in total, this
requires 1792 multiplications over F2. To optimise the number of communication
rounds, we group the terms bij = xj⊕ij⊕1 by the j-th bit in each index position:

b7 = (b0,7, . . . , b255,7), . . . , b0 = (b0,0, . . . , b255,0) ,

and using vectorised bitwise multiplication evaluate these in a row. Doing this
sequentially, one bit position at a time, would take seven multiplication rounds.

64

However, using a tree-style evaluation strategy by folding the vector into two after
each round, we can accomplish this in three multiplication rounds:

z = ((b7 · b6) · (b5 · b4)) · ((b3 · b2) · (b1 · b0)) .

The communication complexity of creating the index vector can be further de-
creased by using the recursive nature of the index vector as proposed by Launch-
bury et al. [95]. Instead of using a top-down approach of folding a large vector
together each round, it is possible to use a bottom-up method of recursively ex-
tracting and replicating smaller vectors to combine the same index vector. For
reference, we also implemented the idea proposed in [95].

As a second step, the index vector is used to obliviously choose the right
value from the S-box array. However, since the constructed index vector is binary,
each bit of the output value has to be calculated separately. This can be done
by computing a scalar product of the index vector z and the S-box array y. Let
yj = (y0,j , . . . , y255,j) denote the vector of j-th bits of y. Then, the j-th bit of
the S-box output, fj , can be computed as

fj = 〈z,yj〉 =

255∑
i=0

zi yij

over F2. As the output table y is public, this step can be done locally by each
computation party and does not introduce any extra communication complexity.

S-box by circuit evaluation

The S-box evaluation by constructing an oblivious selection index is bound to give
us sub-optimal performance results as we need to “touch” all of the elements in
the output table although we are interested in just one.

Alternatively, we can solve this problem by using secure computation tech-
niques based on branching programs [80]. This is done by converting the ex-
pression for fj to a binary decision diagram B with minimal number of decision
nodes. Diagram B is then evaluated bottom-up by a corresponding arithmetic cir-
cuit. Let c be the number of decision nodes and d be the longest path in B. Then,
as oblivious evaluation of each decision nodes takes two secure multiplications,
the resulting circuit evaluation protocol consists of 2c secure multiplications over
F2 that are arranged into d parallel rounds. Hence, the shape of B determines the
performance of the evaluation.

Luckily, AES S-box evaluation circuits are thoroughly studied by the hard-
ware optimisation researchers. In this work, we use the designs by Boyar and
Peralta [35, 36]. However, their motivation is minimising the total number of
gates in the circuit and it’s overall depth. For us, it is most important that the

65

circuit contains as few AND (multiplication) gates as possible as XOR gates can
be evaluated locally as we use bitwise shared values. Hence, their newer circuit
design with 128 gates may not be the most suitable for us as it contains 34 AND
gates and has a multiplicative depth of 4. Their previous work [35] with 32 AND
gates and multiplicative depth of 6 may be more suitable when we do many S-box
evaluations in parallel as is the case in privacy-preserving database join opera-
tion2.

Since extended versions of both mentioned articles contain straight-line C-like
descriptions of the circuits, it is possible to implement the corresponding secure
evaluation protocols. However, these circuits are designed to work with individ-
ual bits whereas the smallest data type sent over a network is a byte. Hence, to
avoid wasting 7 bits for each bit of useful data, we pack several S-box evalu-
ations into parallel executions. This is trivial to accomplish for SubBytes()
as it works with 16-byte states and thus executes 16 S-boxes in parallel anyway.
In SubWord() that does only 4 S-box evaluations in parallel, group whole two
AES blocks together if possible.

5.3.2 Security analysis

All of the aforementioned methods for evaluating the AES S-box are arithmetic
circuits using only multiplication and addition gates. Hence, it is straight-forward
to prove the following result.

Theorem 7. If a secure multi-party computation framework provides universally
composable protocols for bitwise addition, bitwise multiplication and bit decom-
position, then all three AES S-box implementations are universally composable.
Any universally composable AES S-box implementation gives rise to a universally
composable SMC protocol for the AES block cipher.

Proof sketch. Let us consider the hybrid model where each protocol instance is
replaced with an ideal implementation that gathers all input shares and distributes
shares of correct outputs. Then it is easy to see that output shares of any arithmetic
circuit are correctly computed and coincide with the case where the trusted third
party outputs just the shares of the circuit output. Due to the properties of secret
sharing, all shares of intermediate results received by the adversarial coalition leak
no information and can be easily simulated. Hence, the simulation construction
in the hybrid model is straightforward and the security follows from the universal
composability of addition and multiplication.

2After publishing our results in [96], Peralta has updated his web page (http://cs-www.
cs.yale.edu/homes/peralta/CircuitStuff/CMT.html) with a new AES S-box cir-
cuit with 113 gates. We do not consider this construction here separately, as it also consists of 32
AND gates.

66

http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

Note that Theorem 7 holds not only for the honest-but-curious security model
of SHAREMIND but also for any active model supporting verifiable bitwise ad-
dition and multiplication operations on shares. There are two principal ways to
accomplish this.

First, we can embed elements of F2 into a larger finite field F2t with an ex-
tension element α and use a verifiable secret sharing scheme supporting multipli-
cation over F2t . Then it is possible to use universally composable bit decomposi-
tion [47] that splits a secret x ∈ F2t into a vector of shared secrets xt−1, . . . , x0
such that x = xt−1α

t−1 + · · ·x1α+ x0. Consequently, all requirements of Theo-
rem 7 are satisfied and we have a secure AES implementation in an active model.
However, due to embedding, all of the shares are now longer.

Alternatively, we can use oblivious message authentication codes [51] to guar-
antee the integrity of individual bits without extending the shares themselves. Un-
fortunately, the message authentication code itself can be much longer than the
share of a bit that it protects. The solution is to use a single authentication code
for larger groups of bits. This works well in our model as, in most applications,
we evaluate many circuits in parallel.

5.3.3 Performance tweaks

The data to be encrypted is rarely as short as only a single AES block length of 128
bits. Hence, in practical applications where the encryption of subsequent blocks
do not depend on each other (e.g. Electronic Codebook (ECB) and Counter (CTR)
modes of operation) it makes sense to encrypt several data blocks in parallel. In
SHAREMIND, this is naturally possible as protocols work on vectors of share val-
ues. Hence, vectorised AES operation takes a vector of plaintext shares together
with a vector of key shares as input and outputs the vector of ciphertext shares.

Moreover, in many applications the same key is used to encrypt several blocks
of data, for example in the case of PRPJOIN. Then the key expansion routine in
AES has to be evaluated only once and the array of secret-shared round keys
stored for later use. Such separation of pre-processing (key expansion) and online
(encryption) phases decreases the amortised cost for the oblivious AES evaluation.

5.4 Benchmarking results

5.4.1 Test setup

We carried out performance tests for both the privacy-preserving database join
operation and oblivious AES on a cluster of three nodes, each having its own
SHAREMIND installation. Each cluster node had a 12-core 3 GHz CPU with
Hyper-Threading and 48 GB of memory. Cluster nodes were connected by a

67

1 Gbps local area network and communication channels between them were en-
crypted using 256-bit elliptic curve key agreement and the ChaCha stream ci-
pher [16, 109] used in the RakNet networking library that powered SHAREMIND 2.
At the time of writing this thesis, the ChaCha stream cipher has been adopted in
many security-related applications and attacks published against it are considered
infeasible in practice [7, 81, 117].

The performance results presented here are from 2012 when oblivious AES
and privacy-preserving database join were first implemented on SHAREMIND 2.
For oblivious AES, we also give a comparison on how its performance have
changed in the newer SHAREMIND 3.

5.4.2 AES performance

We implemented all of the four versions of oblivious S-box evaluations described
in Section 5.3.1. We measured the running time separately in two situations: eval-
uating a single SubBytes() function and evaluating 4096 SubBytes() op-
erations in parallel. The first case gives us the running time profile for the case
where various delays play a significant role, whereas the second case is depen-
dent on communication complexity. The results together with the most important
theoretical properties are shown in Table 5.1. The OBSEL protocol stands for the
top-down approach to construct the oblivious index vector, while LDDAM uses the
bottom-up approach described in [95]. The oblivious S-box evaluation based on
circuits designed by Boyar and Peralta are shown as BCIRC-1 and BCIRC-2. The
multiplicative complexity stands for the total number of multiplication operations
over F2. As some of these operations are done in parallel, then multiplicative
depth denotes the number of sequential multiplication rounds.

Protocol
Mult. Running time Mult. Running time

Ratio
depth (1 evaluation) compl. (4096 evaluations)

OBSEL 3 32.5 ms 1792 9051 ms 5.05
LDDAM 3 31.1 ms 304 1109 ms 3.65
BCIRC-1 6 69.6 ms 32 148 ms 4.63
BCIRC-2 4 40.8 ms 34 127 ms 3.74

Table 5.1: Performance results of AES SubBytes() with various S-box evaluation al-
gorithms. The ratio in the last column is amortised running time divided by multiplicative
complexity and shows the amortised cost added by a single AND gate. Similarly, from
multiplicative depth we get that each communication round adds 10–12 ms in a single
operation mode.

68

As all of the multiplications are carried out over F2, we do not have to com-
pensate for various input lengths. Hence, multiplicative depth and complexity are
good candidates for estimating the real-life performance of such protocols.

Next, we measured the amortised cost of AES encryption function with pre-
computed round keys. Figure 5.2 shows that different S-box evaluation methods
yield different network saturation points where further parallelisation does not de-
crease the amortised running time further. The OBSEL protocol constructs huge
initial vectors for the index vector and thus uses a lot of bandwidth even with few
blocks of inputs. The LDDAM protocol is much more efficient in building the
same index vector and is actually the best protocol in case only a few AES blocks
are processed in parallel. When encrypting about 100–10 000 blocks in parallel,
the newest circuit design BCIRC-2 with the lowest multiplicative depth outper-
forms the previous circuit. After that, the two extra multiplication gates start to
affect the performance and the BCIRC-1 protocol with smallest number of AND
gates slightly outperforms the other.

●

●

●

●

●

●
● ● ● ● ● ● ●

1

10

100

1000

1 10 100 1000 10000
Number of parallel operations

T
im

e
pe

r
op

er
at

io
n

in
 m

ill
is

ec
on

ds

Operation

● ObSel

LDDAM

BCirc−1

BCirc−2

Figure 5.2: Performance of AES evaluation protocols using precomputed round keys.

Finally, for completeness, we studied the running time of oblivious AES with
and without key scheduling. As before, we are interested in two cases: the running
time of a single invocation and the amortised cost. The results are shown in Ta-
ble 5.2, where mode I stands for the case with key expansion and mode II uses the
pre-expanded key. As expected, key expansion counts for about half of the time
when encrypting a single block of data as each encryption round requires a key
expansion round. As a further optimisation, it is possible to compute the round
key for the next encryption round in parallel with the current encryption round,
decreasing this ratio to about 1.2, given that network bandwidth is not the bottle-
neck. For the amortised cost, the theoretical speedup should be 1.25 as in each
round there are 20 S-box evaluations in mode I (SubWord() and SubBytes())

69

and 16 S-box evaluations in mode II (only SubBytes()). The difference in the
actual ratio suggests the existence of other bottlenecks in our implementation.

Single operation Amortised cost
Mode I Mode II Ratio Mode I Mode II Ratio

OBSEL 682 ms 343 ms 1.99 20.34 ms 18.69 ms 1.09
LDDAM 652 ms 323 ms 2.02 4.16 ms 2.51 ms 1.66
BCIRC-1 1329 ms 664 ms 2.00 0.48 ms 0.29 ms 1.68
BCIRC-2 890 ms 443 ms 2.01 0.37 ms 0.32 ms 1.17

Table 5.2: Performance results for various AES evaluation algorithms. In both cases, ratio
shows the difference between mode I and mode II.

Figure 5.3 shows benchmarking results for the oblivious AES with BCIRC-1
circuit for the S-box evaluation with pre-computed keys from the beginning of
2015 compared to the initial results published in [96]. As seen, a complete re-
design of the SHAREMIND software with Boost ASIO as a networking layer can
boost performance up to an order of magnitude.

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

1e−01

1e+00

1e+01

1e+02

1e+03

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06
Number of parallel operations

T
im

e
pe

r
op

er
at

io
n

in
 m

ill
is

ec
on

ds

Version

● Sharemind 2 (2012)

Sharemind 3 (2015)

Figure 5.3: Comparison of time-per-operation for AES-128 with BCIRC-1 S-box and
pre-expanded key on SHAREMIND 2 (2012) and SHAREMIND 3.

Table 5.3 compares our AES-128 performance results with the results reported
by others. To keep the results comparable, we have only included implementa-
tions based on linear secret sharing, both in passive and active security settings. A
more thorough overview of AES-128 performance results is given in [50]. In [96],
we have reported the time of LDDAM protocol for the single operation case and
BCIRC-1 for the amortised cost as it it possible to switch between different S-
box implementations at run-time based in the length of input vector. Although we

70

use the same idea, we cannot fully explain the 20-times difference between our
implementation of LDDAM and the implementation by its authors in [95]. Pos-
sibly, it comes from the difference in benchmarking setups and the way different
implementations are tuned. Our implementation is optimised for the amortised
case. However, as mentioned above, we have since re-designed the SHAREMIND

platform and the updated running times (both with BCIRC-1 S-box evaluation)
are considerably better. Similarly, the implementation of [90] uses the same al-
gorithms as in [50] and obtains an order of magnitude better run-time by just
scheduling SMC tasks more efficiently. Both of these implementations are based
on the SPDZ protocols [51] that use pre-computed Beaver triples [13] for multipli-
cation. As shown in Section 2.2.3, using Beaver triples for multiplication replaces
replicating shares with a declassification of two values. However, in both cases,
multiplication is still a single round protocol. Although only online computation
time is included in the table for these implementations, the result of Keller et al.
demonstrate the importance of implementation details.

At the end of Table 5.3, we have included recent performance results of AES-
128 evaluation using 2-party garbled circuit approach (Frederiksen et al. [57])
and fully homomorphic encryption (Gentry et al. [64]) as reference. All results
shown, except the first one and the one using garbled circuits, make use of the
pre-expanded key (mode II).

Authors Ref. Parties Security Single op. Amort. cost
Damgård and Keller [49] 3 passive 2000 ms — ms
Launchbury et al. [95] 3 passive 14.28 ms 3.10 ms
Laur et al. [96] 3 passive 323 ms 0.29 ms
Laur et al. 2015 3 passive 223 ms 0.04 ms
Damgård et al. [50] 2–4 active 250 ms 240 ms
Keller et al. [90] 2 active 12 ms 1 ms
Frederiksen et al. [57] 2 active 810 ms — ms
Gentry et al. [64] 2 passive — ms 2000 ms

Table 5.3: Comparison of various secure AES-128 implementations based on linear secret
sharing. For reference, the last two are recent results obtained with garbled circuits and
fully homomorphic encryption, respectively.

5.4.3 Secure database join

We measured the performance of privacy-preserving database join operation by
testing how much time it takes to join two database tables, each containing five
32-bit columns, including a single key column. Both tables had the same number

71

of rows and each key value in one table had exactly one corresponding key value
in the other table. For the oblivious AES implementation, we chose the one based
on BCIRC-1 as it yields the lowest amortised cost on thousands of input blocks.

The profile of PRPJOIN on Figure 5.4b shows that it scales nearly linearly
with database rows. More precisely, the only non-linear component is the ac-
tual join operation on published ciphertexts that is known to have the complexity
Θ(m logm). The exact balance between oblivious AES and oblivious database
shuffle [98] operations depends on the number of columns in the input tables as
the latter operation depends linearly on it. To put it into context, for input tables
with 100 000 rows each, it would take 180 columns in both tables for the oblivious
shuffling operation to take as much time as the oblivious AES.

●●●●● ● ● ● ● ●
0

20

40

60

0 250 500 750 1000
Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Algorithm

● PRP join

SUNIF−8 + PRP join

Naive join

(a) Different join protocols.

●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

0

100

200

300

0 5 ⋅ 104 1 ⋅ 105

Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Database operation

●

●

Total running time

Oblivious AES evaluation

Public database join

Oblivious shuffle

(b) Breakdown of PRPJOIN.

Figure 5.4: Benchmarking results for the oblivious database join operation.

Figure 5.4a shows that with its quadratic complexity, NAIVEJOIN is not us-
able in practical applications. For input tables with 1000 rows, NAIVEJOIN has
to perform a million equality comparisons and shuffle a database with 1 000 000
rows. To demonstrate the complexity-leakage tradeoff, Figure 5.4a also shows the
running time of a combined protocol with SUNIF preprocessing that leaks nothing
if there are no more than eight collisions per key value in the input tables. For
small database sizes, it is very slow due to the expensive oblivious sorting, how-
ever, for practical database sizes it clearly outperforms NAIVEJOIN. The initial
slowdown depend on the maximum numbers of allowed collisions per key `.

Secondly, we also measured the running-time of the protocols with non-unique
keys. As size unification protocols SUNIF and SUNIF+ are independent from
PRPJOIN and can be considered as pre-processing, we tested the performance of
SUNIF separately. For testing, we used a single input table that was otherwise
similar to the one used in PRPJOIN tests by consisting of five 32-bit columns in-

72

●●●●●●● ● ●
●

●

●

●●●●●●● ●
●

●

●

●

10

20

30

40

50

0 1000 2000 3000 4000
Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Algorithm

●

●

l=2

l=4

l=8

l=16

(a) Performance with different ` values.

●●●●●●
●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

0

20

40

60

0 1000 2000 3000 4000
Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Database operation

●

●

Total running time

Oblivious sorting

Oblivious shuffle

Multiplication

(b) Breakdown of SUNIF, ` = 16.

Figure 5.5: Benchmarking results for the SUNIF operation.

cluding a single key column and a varying number of rows. SUNIF also introduces
a new variable ` – the maximum number of collisions for a key value.

As Figure 5.5a shows, SUNIF scales almost linearly with the number of database
table rows as expected. Figure 5.5b shows that most of the time in SUNIF is spent
on oblivious sorting. In our implementation of the sort-and-filter phase, we used
oblivious radix sort (see Section 6.2.3) that scales near-linearly with the database
size and is thus a good candidate even for large databases.

73

CHAPTER 6

OBLIVIOUS SORTING

6.1 Introduction

Sorting is an important primitive. Besides its obvious use, sorting is a neces-
sary sub-operation in many algorithms and statistical tests, e.g. finding ranked
elements (top-k, quantiles) or creating subgroups for aggregation methods.

An oblivious sorting algorithm implementation takes a vector of secret-shared
data as input and outputs a secret-shared vector containing the same values in
sorted order. To implement an oblivious sorting algorithm, the algorithm itself
should be data-independent. This means that intermediate values nor output
should leak any information about the input. Moreover, for a given input vec-
tor length, the algorithm runtime should not depend on the input values. Ideally,
nothing besides the length of the input and output should be leaked. It is possible
to also hide the vector length by stretching the vector to some known constant
length by adding dummy values. However, this wastes computation resources and
is rarely needed in practice. Hence, we consider algorithms that leak the input and
output size to still be data-independent.

In principle, there are two ways to implement a privacy-preserving sorting al-
gorithm. First, we can take a sorting network that is data-independent by design
and use secret sharing and secure multi-party computation to hide the data val-
ues [87, 126]. Alternatively, we can take a data-dependent sorting algorithm as
a basis and use oblivious shuffling to randomly permute the data vector before
sorting. Hamada et al. [72] use this idea to propose a blueprint on how to turn any
comparison-based sorting algorithm into an oblivious one. However, this con-
struction leaks the number of equal elements in the vector. We will go over this
idea in the following section.

74

6.2 Oblivious sorting algorithms

6.2.1 Constructions based on oblivious shuffling

It is possible to run any comparison-based sorting algorithm on a secret-shared in-
put vector [[x1]], . . . , [[xn]] and use SMC protocols to compute comparisons [[gi,j]] =
[[xi]] < [[xj]]. However, as the algorithm needs to make a decision based on such
comparison result, these gi,j must be published and tracking those throughout
the algorithm leaks the permutation applied during the sorting process. To miti-
gate this, the input vector must be obliviously shuffled before sorting [72]. This
construction yields a secure randomised sorting algorithm with data-independent
running time, provided that there are no equal elements in the input vector.

Theorem 8. Assume that a secure multi-party computation framework provides
universally composable protocols for comparison and oblivious shuffle and that
there are no equal elements in a secret-shares input vector. Then obliviously shuf-
fling the input vector and declassifying the comparison results made by a correct
sorting algorithm yields a secure and correct sorting algorithm.

Proof sketch. We give the proof idea in two parts. In the first part, we show how
to simulate the trace of comparison results declassified by the sorting algorithm.
In the second part, we extend the construction given in the first part to the full-
fledged simulator.

PART I. Let x be an n-element vector of unique values that we want to sort. For
each pair of values i, j ∈ {1, . . . , n}, we can define a tertiary predicate that defines
an order relation of those values:

bi,j =


0, if xi = xj ,

1, if xi < xj ,

−1, otherwise .

All possible values of this predicate for a given input vector x can be illustrated
by an n × n table. For example, Figure 6.1 shows such tables for all possible 6
input permutations of a 3-element vector.

Any data-dependent comparison-based sorting algorithm starts by looking at
a value in a specific cell from this table and moves to the next cell depending on
the obtained value. The number of accessed cells depends on the values in those
cells. Figure 6.1 shows the cells accessed by quicksort algorithm.

In the case of a secret-shared input vector [[x]], we start by applying an obliv-
ious shuffle on the input vector. Therefore, the sorting algorithm starts with one
of the randomly chosen tables out of all n! possible tables. As a result, the com-
parisons bi,j done by the algorithm are independent of the actual values in [[x]].

75

x1 x2 x3

x1 0 1 1
x2 −1 0 1
x3 −1 −1 0

x1 x3 x2

x1 0 1 1

x3 −1 0 -1
x2 −1 1 0

x2 x1 x3

x2 0 -1 1
x1 1 0 1
x3 −1 −1 0

x2 x3 x1

x2 0 1 -1

x3 −1 0 -1
x1 1 1 0

x3 x1 x2

x3 0 −1 -1
x1 1 0 1
x2 1 −1 0

x3 x2 x1

x3 0 −1 -1

x2 1 0 -1
x1 1 1 0

Figure 6.1: Predicate b values for all possible permutations of a 3-element vector x, where
x1 < x2 < x3. Circled cells indicate b values used by the quicksort algorithm. Cells
marked with thicker circle are checked twice.

Hence, such construction is data-independent, although the running time is not
constant for a given vector length.

PART II. As the oblivious sorting algorithm starts with oblivious shuffle, our sim-
ulator S uses the input extraction to obtain adversary’s input shares. The simulator
forwards these inputs to the trusted third party and gets back shares for the sorted
vector in the correct order. Next, S randomly permutes a vector (1, . . . , n) to fake
matrix (bi,j). Note that this uniquely determines how the inputs are permuted by
the sorting algorithm. By reversing this permutation, we know how to reorder
shares returned by the trusted third party. The simulator S can use this order for
output equivocation of the shuffle simulator. After that we must simulate outputs
of comparison protocols according to the fake matrix (bi,j) fixed before.

It is possible to guarantee the uniqueness of values by applying a pre-processing
conversion on the input vector (see Section 6.3).

Many secure multi-party computation implementations have efficient SIMD-
style (single instruction, multiple data) operations. Hence, highly parallelisable
algorithms with higher computation complexity may, for small inputs, outperform
algorithms with lower computation complexity but more rounds. To demonstrate
this, we propose an oblivious sorting algorithm that is based on oblivious shuffling
and vectorised comparison operations. The NAIVECOMPSORT (see Algorithm 6)
first obliviously shuffles the input vector and then compares each vector element
with each other element in the vector in parallel. The sorted output vector is
obtained by rearranging the elements according to the declassified comparison
results. This algorithm always works in the worst case time of O(n2) and its
running time is, therefore, data-independent.

76

Algorithm 6: NAIVECOMPSORT

Data: Input array [[x]] ∈ Zn
2k

Result: Sorted array [[x′]]
1 Let [[x]] = Shuffle([[x]])
2 Compute in parallel values [[gi,j]] = [[xi]] ≤ [[xj]] for 1 ≤ i < j ≤ n.
3 Declassify the values [[gi,j]] and sort [[x]] according to them, obtaining [[x′]]

6.2.2 Sorting networks

A sorting network consists of several stages of compare-and-exchange functions.
A compare-and-exchange (CompEx) function is a function that takes two val-
ues as input, compares the values and swaps them if necessary. For example, a
CompEx function that outputs the values in ascending order can be described as
following:

CompEx(x, y) = (Min(x, y),Max(x, y)) .

Input values for the CompEx function can be addressed by their index in the initial
input vector. Hence, an m-stage sorting network may be written as an array N =
(L1, . . . ,Lm), where each stage Li = (N × N)`i consists of `i pairs of indices.
Each index pair (l, r) stands for an operation CompEx(xl, xr). See Figure 6.2
for an example. After applying all CompEx operations of all stages in a sorting
network, the whole vector is sorted according to the CompEx function. A more
detailed overview of sorting networks can be found in [91].

x1

x2

x3

x4

L1 L2 L3 L4

Figure 6.2: As example sorting network for sorting a vector with 4 values. Vertical con-
nectors stand for CompEx operators. This 4-stage sorting network can be expressed as
N = (((1, 3)), ((2, 4)), ((1, 2), (3, 4)), ((2, 3))).

Although, in theory, there are sorting networks constructions with the com-
plexity O(n log n), the involved constants are large and practical constructions
have a complexity of O(n log n2). For efficiency, we also prefer constructions
where any index is used at most once in each stage. This allows us to vectorise

77

CompEx functions for each stage (Steps 2–4 in Algorithm 7) and use the initial
input data vector for storing changes.

Algorithm 7: Basic algorithm for sorting with a sorting network.
Data: Input array [[x]] ∈ Zn

2k
and a sorting network N = (L1, . . . ,Lm).

Result: Sorted output array [[x]] ∈ Zn
2k

.
1 foreach Li ∈ N do
2 foreach (l, r) ∈ Li do
3 (xl, xr)← CompEx(xl, xr)

4 end
5 end

As sorting network structure is the same for all input vectors of given length,
Algorithm 7 is trivially data-independent given a data-independent implementa-
tion of CompEx function. The latter is enabled by an oblivious implementation of
the min-max construction given above.

6.2.3 Radix sort

For bitwise shared data we can take advantage of the fact that accessing individual
shared bits is a local operation. Hence, we can use count and radix sort algorithms.
Count sort [44, 54] sorts values from a small range by constructing a frequency
table for the input vector and combining output based on this table.

Radix sort [76] works on a vector of integers and uses count sort as a sub-
routine. Most commonly, radix sort sorts its input one digit at a time, rearranging
values based on counting sort output on the vector of digits in the given position.
Starting with the least significant digit, radix sort gives the right output as the
underlying count sort is a stable sorting algorithm.

An oblivious radix sort based on binary count sort is shown as Algorithm 8.
The counting sort is made data-independent by keeping the counters for zeros and
ones ([[c0]] and [[c1]]) as well as the order vector [[ord]] in secret-shared form. As
the radix sort itself is just a for-cycle over the counting sort, this is enough to make
the whole algorithm data-independent. However, notice that the elements of digit
vector d are used in addition and multiplication operations. As these operations
are expensive on bitwise-shared values, we convert vector d into additively shared
secret. The data vector x and the output stays in bitwise shared form.

In his work, Zhang [131] also describes several sorting methods that sort val-
ues in a given range and are suitable for SMC. He also proposes to use radix sort
on top of them to handle wider range of values. Unfortunately, he does not give
any benchmarking results. Independently from us, Hamada et al. have designed

78

Algorithm 8: Data-independent radix sort.
Data: Bitwise shared input array [[x]] ∈ Zn

2k
.

Result: Bitwise shared sorted array [[x]] ∈ Zn
2k

.
// Iterate over all digits starting with the least

significant digit:
1 foreach m ∈ {1, . . . , k} do
2 Let [[d]] = ([[d1]], . . . , [[dn]]) contain m-th bits of ([[x1]], . . . , [[xn]]).
3 Convert elements of d from Z2 to additively shared Z2k .

// Count number of zeros:
4 [[n0]]← n− sum([[d]])

// Keep counters for processed zeros and ones:
5 [[c0]]← 0; [[c1]]← 0

// Keep n-element shared order vector. It may
be initialised with shares of zero:

6 [[ord]]← ([[0]], . . . , [[0]])
// Put each element in the right position:

7 foreach i ∈ 1 . . . n do
8 [[c0]] = [[c0]] + 1− [[di]]
9 [[c1]] = [[c1]] + [[di]]

// Obliviously update order vector:
10 [[ordi]] = (1− [[di]]) · [[c0]] + [[di]] · ([[n0]] + [[c1]])

11 end
// Shuffle two column database:

12 ([[x]], [[ord]])← Shuffle([[x]], [[ord]])
13 ord← Declassify([[ord]])
14 Rearrange elements in [[x]] according to ord.
15 end

an oblivious radix sort construction very similar to our’s and implemented it using
Shamir secret sharing scheme [71]. We compare the benchmarking results of the
implementations in Section 6.5.

6.3 Optimisations

6.3.1 Vectorisation

As most SMC protocols are network-bound, SIMD-style parallelisation helps to
save network communication rounds and bring down the amortised cost per oper-
ation. The proposed NAIVECOMPSORT algorithm demonstrates this by doing all

79

the possible comparisons at once and constructing output vector from this result.
Similarly, the quicksort implementation in [72] parallelises all comparisons on the
same depth in the recursion tree.

As mentioned before, we also compute all of the CompEx operations of a
stage in a sorting network in parallel. This is made possible by the assumption
that no element is used in more than one CompEx function at any stage.

Radix sort is also vectorised by doing the whole count sort sub-procedure
(Steps 7–11 in Algorithm 8) in parallel for each digit. Note, that it is possible to
further save communication rounds in radix sort by applying count sort on more
than one digit at once. For example, we can save half of the communication round
count by replacing binary count sort with count sort that works on four values (two
bits). However, this would mean replacing the efficient oblivious choice operation
(Step 10 in Algorithm 8) with a more expensive comparison operation.

6.3.2 Share representation

All of the sorting algorithms mentioned here, except radix sort with binary count
sort, use comparison operation to reorder values. Oblivious comparison operation
is more efficient on bitwise shared data than on additively shared data. Hence, we
might benefit from converting additively shared input vector to bitwise shared val-
ues and run the chosen sorting algorithm on this vector. This conversion requires
an expensive bit extraction operation, but on large enough inputs the saving from
comparisons can outweigh one vectorised conversion. Converting the shares back
to additively shared data after sorting also requires network communication, but
is not as expensive.

6.3.3 Assuring uniqueness

Obliviously shuffling the input vector helps to hide the permutation applied by the
sorting algorithm in comparison-based algorithms where the comparison results
are declassified. However, the number of equal elements may still leak from these
comparison results. It is possible to alleviate this problem by making all of the
input elements unique.

One method to accomplish this proposed in [72] is to append each element
with bits representing its position in the initial vector. Alternatively, we can keep
this index separately and obtain a secret-shared pair ([[xi]], [[i]]) for each element.
Oblivious shuffle at the beginning of the algorithm should be applied on the value-
index pairs, obtaining a permutation

([[xπ(1)]], [[π(1)]]), . . . , ([[xπ(n)]], [[π(n)]]) .

80

In this case the oblivious comparison operation “>” also has to work on these
value-index pairs:

(x1, y1) > (x2, y2)⇔ x1 > x2 ∨ (x1 = x2 ∧ y1 < y2) .

Note, that both of these methods also make the sorting algorithms stable. This
property is important, while sorting matrices by more than one column as de-
scribed in Section 6.4, because there we need to apply oblivious shuffling to hide
the initial order of matrix rows.

6.3.4 Optimising sorting networks

Generating sorting networks is time-consuming. As sorting networks are data-
independent, we can amortise this cost by caching the generated sorting network
structure to use it again with different input vectors of the same size. If the input
vector length is known in the application, the network generation can be moved
to pre-processing phase.

If the oblivious implementation of the CompEx function is too expensive in a
given SMC solution, it is possible to use the same approach as for the comparison-
based algorithms. By obliviously shuffling the input vector, we can implement
CompEx operation by choosing the correct output based on a declassified com-
parison result. This reduces the CompEx complexity to the complexity of com-
parison operation, which is a considerable saving e.g. for wide matrices, and may
outweigh the cost of oblivious shuffle.

6.4 Sorting secret-shared matrices

In this context, we think of sorting matrices as rearranging the rows in two-
dimensional vectors with n rows and m columns according to values in one or
more columns. To sort by more than one column, e.g. by a column pair (i, j),
where i, j ≤ m, we have two options. We can either redefine the comparison
operator to work on tuples of values, or first sort the rows by values in the j-th
column and then again by values in the i-th column. The latter uses an approach
similar to the one used by radix sort and needs the sorting algorithm to be stable.
As the number of columns we want to sort by may dynamically change during the
run-time of an application, it is cumbersome to implement the comparison opera-
tor needed for the former case. Thus, we decided to implement only the method
that sequentially sorts each column using stable sorting algorithms.

Assume, that we want to sort the rows in a matrix according to the values in
column k. First, we extract the k-th column as an n-element secret-shared vec-
tor and make the sorting algorithm stable by creating a secret-shared index vector

81

[[1]], . . . , [[n]]. Together, these two vectors form a vector of element-index pairs and
the sorting algorithm uses the comparison operation shown in Section 6.3.3. How-
ever, before sorting, we obliviously shuffle the matrix rows together with the val-
ues in the chosen column and the constructed index vector to hide the initial order
of rows. Note, that this oblivious shuffling step replaces the required initial shuf-
fling step in comparison-based algorithms like quicksort and NAIVECOMPSORT.

In comparison-based sorting algorithms, some elements may be moved sev-
eral times. In matrices, swapping two rows means swapping all elements in these
rows and this takes extra computation time, although local. Thus, we reduce sort-
ing the matrix to sorting the individual column. After shuffling the matrix rows,
we create an n-element permutation vector 1, . . . , n and pass it to the sorting al-
gorithm together with the k-th column and the index vector. Instead of swapping
the rows in the matrix, the sorting algorithm makes the changes in the vector of
element-index pairs and also in the permutation vector. When the sorting algo-
rithm is finished, the values in the permutation vector can be used to reorder the
matrix rows. Both the index vector and the permutation vectors may then be dis-
carded. If the matrix has to be sorted by more than one columns, the same steps
have to be repeated for the next column.

For sorting networks, instead of constructing a CompEx function that ex-
changes elements in both data and permutation vectors as described above, we
can construct a CompEx function that works on whole matrix rows instead. Such
CompEx function takes as input two rows as vectors A and B, and the column
index k that is used for sorting:

CompEx(A,B, k) =

{
(B,A), if Ak > Bk
(A,B), otherwise .

An oblivious implementation of such CompEx function is shown as Algorithm 9.

Algorithm 9: Obliviously comparing and exchanging two rows in a matrix.
Data: Two input vectors A,B of length m, column index k ∈ {1 . . .m}.
Result: Pair of vectors (A′,B′) = CompEx(A,B, k).

1 b←
{

1, if Ak > Bk
0, otherwise.

2 foreach i ∈ 1 . . .m do
3 A′i = (1− b)Ai + bBi
4 B′i = bAi + (1− b)Bi
5 end

Note, that using this CompEx operation for rows does not require obliviously
shuffling the rows in the matrix as the first step. Hence, this construction also gives

82

us matrix sorting algorithm where the relative order of rows with equal element
on k-th column is preserved.

6.5 Benchmarking results

6.5.1 Algorithm implementations

We implemented all of the sorting algorithms described in this chapter and shown
in Table 6.1. All algorithms were implemented in the SECREC language using the
SHAREMIND Application Server’s protocol suite for honest-but-curious adversar-
ial model available in fall 2013, when preparing the first version of the results
published in [28].

Algorithm Data-independence and leakage Ref.
Comparison results are declassified.

Quicksort Running time is data-dependent. [72]
Leaks the number of equal elements.

Naive comparison sort
Comparison results are declassified.

(Algorithm 6)
Running time is data-independent. [27, 28]

Leaks the number of equal elements.
Sorting network sort

Fully data-independent [87, 126]
(Algorithm 7)

Radix sort
Shuffled reordering decisions are declassified.

[27, 28]
(Algorithm 8)

Running time is data-independent.
Does not leak the number of equal elements

Table 6.1: An overview of implemented oblivious sorting algorithms.

The quicksort algorithm was implemented based on its description in [72] and
personal communication with the authors. All other implementations are based on
descriptions provided in the respective papers and this chapter. As many of these
algorithms use oblivious shuffle as a sub-operation, it is worth to mention that its
implementation is based on construction by Laur et al. [98]. All of the implemen-
tations take advantage of the vectorisation techniques described in Section 6.3.

Sorting network structure is generated using Florian Forster’s libsortnet-
work library [56]. The generated sorting network structures are cached and eval-
uated by SECREC. We benchmarked sorting network generation to choose the
most suitable network generation algorithm for our implementation. Our goal
was to create a network with the minimal number of rounds in a minimal time
and, preferably, have a low number of CompEx functions.

83

We evaluated Batcher’s bitonic mergesort network, Batcher’s odd-even merge-
sort network and Parberry’s pairwise sorting network. For each kind of network,
we used the library to generate networks of various sizes, measured the time and
counted the number of CompEx functions needed to evaluate it.

●
●●●

●

●
●
●●
●

●

●

●
●

●
●

●
●

●

1e+01

1e+03

1e+05

0 25000 50000 75000 100000
Size

To
ta

l g
en

er
at

io
n

tim
e

(s
)

Algorithm
● Bitonic

Odd−Even
Pairwise

●

●

●

●
●
●
●
●●
●

●

●
●

●
●

● ● ● ●

1e+05

1e+06

1e+07

0 25000 50000 75000 100000
Size

N
um

be
r

of
 c

om
pa

ra
to

rs

Algorithm
● Bitonic

Odd−Even
Pairwise

Figure 6.3: Benchmarking results for sorting network generation.

We found that the number of comparators is very similar for all algorithms and
the same in many cases. Figure 6.3 shows a comparison of the running times and
CompEx function call counts. We chose the bitonic mergesort algorithm as the li-
brary generates this network structure in the shortest time and while it has slightly
more CompEx gates, the round count is the same and, therefore, the number of
vector operations will be the same.

6.5.2 Test setup

As with privacy-preserving database linking (Section 5.4), the sorting algorithms
were tested on the same cluster of three nodes each having its own installation of
SHAREMIND. Each cluster node was powered by 12-core 3 Ghz CPU with Hyper-
Threading and had 48 Gb of RAM. Nodes were connected by a 1 Gbps LAN
connection. However, this SHAREMIND version used a custom built networking
library where all communication channels were protected by TLS.

We tested each sorting algorithm on vectors of various lengths containing 64-
bit bitwise secret-shared integer values. We used test vectors with all equal values
(worst case) for all of the four algorithms. Additionally, a vector with all unique
values was used for quicksort to get the average case running time. No share
conversion was used to assure uniqueness of the values.

In addition to measuring running time and network usage that are provided

84

by the built-in profiling facilities in SHAREMIND, we also measured the peak
memory usage. We logged the memory usage of a SHAREMIND process with 1
second interval, aligned the data with each test and found the peak memory usage.

6.5.3 Sorting vectors

First, let us consider the complexities of the described sorting algorithms. In-
stead of giving the exact communication and computation complexity in bits, Ta-
ble 6.2 gives the complexities as a combination of sub-protocols. For example,
mProtocol(n) means that protocol Protocol is invoked m times, each time on n
input values in parallel. This format allows for a more general overview, as the
concrete sub-protocols may be swapped by other implementations.

Algorithm Secure operation complexity

Quicksort (unique)
Shuffle(n) +O(log n)Comp(O(n))

+O(log n)Declassify(O(n))

Naive comparison sort
Shuffle(n) + Comp(n(n− 1)/2)

+ Declassify(n(n− 1)/2)

Sorting network
∑m

i=1 Comp(`i) + Mult(4`i)

Radix sort
k · (ShareConv(n) + Mult(n)

+ Shuffle(n, 2) + Declassify(n))

Table 6.2: Secure operation complexity of oblivious sorting algorithms. n is the number
of elements to sort and k is number of digits, where applicable. For sorting networks, m
is the number of stages in the network and `i is the number of CompEx operations on the
i-th stage.

Figure 6.4 gives the component breakdown for the four implemented algo-
rithms. As expected, NAIVECOMPSORT and quicksort running times are dom-
inated by comparison operations. Comparisons together with oblivious choice
also take most of the time in sorting networks (although it is not clearly seen on
Figure 6.4b). However, for longer input vectors, generating the network structure
takes most of the time. This is a good indicator for the need to pre-generate and
cache network structures if possible. Radix sort does not use comparison opera-
tions at all. Instead, oblivious choice and shuffle take the most time here.

The running time comparison of the implemented sorting algorithms is given
on Figure 6.5. Note, that both axis are given in a logarithmic scale. We can imme-
diately see that NAIVECOMPSORT is practical for only very short input vectors
because of its quadratic complexity. Quicksort is the fastest algorithm, but only
in case of unique element values. With colliding values, its performance is some-
where between its average and worst case.

85

0

4000

8000

12000

100 1000 7000
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)
Operation

Shuffle
Comparison
Declassify
Other

(a) Naive sorting

0

1000

2000

100 1000 10000
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Operation
Comparison
Choice
NetGen
Other

(b) Sorting network

0

100

200

300

400

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Operation
Shuffle
Cast
Choice
Declassify
Extract
Other

(c) Radix sort

0

50

100

150

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Operation
Shuffle
Comparison
Declassify
Other

(d) Quicksort (unique)

Figure 6.4: Cumulative running time breakdown by sub-components for implemented
sorting algorithms.

For shorter input vectors, radix sort is not the most efficient algorithm, but
at the same time its running time does not grow as quickly as it takes advantage
of easier oblivious operations. In [71], Hamada et al. report better performance
results with their implementation of radix sort that uses a similar construction. The
difference can be explained by two facts. First, in our tests, we use 64-bit input
values whereas they use 32-bit values. It not only means twice as much network
traffic but also twice as many rounds for radix sort. Secondly, we implemented
the algorithms in a high-level SECREC language while the implementation in [71]
was written in C++.

Sorting networks perform very favourably on shorter input vectors, but the
time to generate the network structure takes a lot of time for longer inputs. If
caching can be used, sorting networks become almost as good as radix sort.

86

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

10

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)
Algorithm

● Naive
Quicksort (unique)
Quicksort (worst)
Radix sort
Sorting network
Sorting network (cached)

Figure 6.5: Comparison of the running time of oblivious sorting algorithms.

The comparison of network usage on Figure 6.6 shows that the two algorithms
with quadratic computation complexity also send more data over the network. The
rest of the algorithms are comparable with radix sort sending slightly more data
for shorter input vectors and quicksort on unique values being the most efficient
one.

●

●

●
●

●
●

●
● ● ●

●

●
●

●
●

●

1e+01

1e+03

1e+05

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l n
et

w
or

k
co

m
m

un
ic

at
io

n
(M

B
)

Algorithm
● Naive

Quicksort (unique)
Quicksort (worst)
Radix sort
Sorting network

Figure 6.6: Comparison of the network usage of oblivious sorting algorithms.

Once again, memory usage (Figure 6.7) shows that NAIVECOMPSORT is im-
practical as it has to do all possible comparisons in parallel and thus allocates a lot
of memory at once. Sorting networks also tend to need more memory for longer
input vectors as the network structure is generated statically and kept in memory.
The rest of the algorithms form a stable group.

87

●

●

●

●

●
●

●
●

●
●

●

●

10

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Vector size

P
ea

k
m

em
or

y
us

ag
e

(M
B

)
Algorithm

● Naive
Quicksort (unique)
Quicksort (worst)
Radix sort
Sorting network

Figure 6.7: Comparison of the memory usage of oblivious sorting algorithms.

6.5.4 Sorting matrices

In addition to measuring the performance of sorting vectors, we also benchmarked
sorting matrices with n rows and 10 columns. For sorting networks, we used the
CompEx function designed for matrix rows. All other implementations use the
permutation vector based approach.

Sorting by one column shows that even though there are 10 times more data,
the running time and network usage of sorting does not increase tenfold (Fig-
ures 6.8 and 6.9). This can be explained by the fact that the sorting in actually
performed on an index vector and not the whole matrix. Reordering the rows at
the end takes constant amount of time. Although vectorised, the oblivious ex-
change has to performed on every column and thus the sorting networks do not
benefit so much from caching any more. Naturally, as seen from Figure 6.10,
the memory consumption of the algorithms is increased. Otherwise, the relation
between the different algorithms remains the same.

●

●

●

●

●
● ●

●
● ●

●

●

●
●

●
●

10

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Number of rows

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Algorithm
● Naive

Quicksort (unique)
Quicksort (worst)
Radix sort
Sorting network
Sorting network (cached)

Figure 6.8: Running time of oblivious sorting algorithms on matrices.

88

●

●

●
●

●
●

●
● ● ●

●

●
●

●
●

●

1e+01

1e+03

1e+05

1e+02 1e+03 1e+04 1e+05
Number of rows

To
ta

l n
et

w
or

k
co

m
m

un
ic

at
io

n
(M

B
)

Algorithm
● Naive

Quicksort (unique)
Quicksort (worst)
Radix sort
Sorting network

Figure 6.9: Network usage of oblivious sorting algorithms on matrices.

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Number of rows

P
ea

k
m

em
or

y
us

ag
e

(M
B

)

Algorithm
● Naive

Quicksort (unique)
Quicksort (worst)
Radix sort
Sorting network

Figure 6.10: Memory usage of oblivious sorting algorithms on matrices.

Additionally, for sorting networks, we measured the performance of sorting
the matrix by two and three columns. Fortunately, as seen from Figure 6.11,
sorting by multiple columns does not have significant effect on the running time.

6.6 Conclusion

We have implemented and benchmarked four oblivious sorting algorithms. Clearly,
NAIVECOMPSORT should be considered as a theoretical example construction
and is not usable in practice.

On average, quicksort has the best performance results but only if the unique-
ness of elements is guaranteed by the application itself or converting the shares by
adding extra bits. Radix sort is competitive on longer inputs as it does not depend
on the rather expensive oblivious comparison operation.

89

●
●

● ● ●
● ● ● ● ●

●
●

● ●
● ● ● ● ●

●

●

●

●
●

●
●

●
●

10

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Vector size / Number of rows

To
ta

l r
un

ni
ng

 ti
m

e
(s

)
Datatype

● Vector
Vector (cached)
Matrix, by 1 column
Matrix, by 2 columns
Matrix, by 3 columns

Figure 6.11: Sorting networks running time on vector and matrix inputs. For matrix
inputs, sorting is performed by one, two and three columns.

Sorting network is the only design that is data-independent by design and does
not rely on any declassifications. However, generating the network structure may
take a lot of resources for longer input vectors.

The author recommends to use quicksort on both vectors and matrices if there
are no equal elements or revealing the number of equal elements is acceptable.
Otherwise, radix sort should be considered as the next alternative.

90

CHAPTER 7

DEPLOYING SMC FOR DATA
INTEGRATION

7.1 Motivation

Informed decisions are the foundation of good governance. Smart governments
analyse information about the state and use it to steer their decisions. There are
two main methods for gathering information to answer a given question about the
state. First, there is the possibility to conduct a survey among the interest group
and analyse the results. This method allows to gather exact and up-to-date data
for even very specific questions. However, in most cases, only a small sample of
the target group can be surveyed and it might be biased in an unknown direction.

Alternatively, the government may take the big data approach and use the data
it already has collected and that is stored in various databases hosted by different
government institutions. For example, the state usually has information about
its population, its health status, income (or at least taxes), education and criminal
records. Making decisions based on analyses carried out on these databases means
that the whole population is included and, at the same time, the analysis results
are received faster without disturbing the people. This of course holds only if the
data sets are up-to-date and managed properly.

These data sets need to be analysed somehow. In a common scenario, the state
would contact its Statistics Board and ask it to conduct the necessary analysis.
The latter has to contact the hosts of relevant databases and ask them for the
data. Notice, that the data used by the Statistics Board might contain private
information, even more so if it is a compilation of several data sets. This holds
even if pseudonymisation is used [9, 105, 86]. Guarding this database against
both outside attackers (hackers) and inside attackers (curious analysts or database
administrators) is a non-trivial task. In some countries, the Statistics Board is
in a favourable position as it is trusted by the government and can access tax

91

records for conducting analysis. However, it is important to notice that there are
no technical means in place that make it impossible for a statistician to misuse
that data. There are only the professional ethic and contractual obligations that
forbid the statistician from doing that.

There is an alternative where no specific party is in a favoured position to ac-
cess the data for analysis – the open data initiative. Lane, Heus and Mulcahy [94]
bring out five reasons to promote data openness:

1. Data utility – data only have utility when it is used.

2. Replicability – scientific results must be replicable and validated by other
researchers.

3. Communication – scientific results may be interpreted in many ways so the
applied scientific concepts must be shared.

4. Efficiency – collecting data is costly, so it should be reused.

5. Capacity-building – researchers and policy makers need to go beyond ag-
gregate tables and be able to access micro data to make informed decisions.

It is easy to see that these arguments also hold for state-collected data. However,
it is also clear that the state cannot make health, income or criminal records pub-
lic. It could publish aggregate data to hide individual records in the data set, but
this introduces a privacy-utility trade-off and decreases the usefulness of the data.
Since the aggregation has to be performed on each data set independently by its
host, data sets from different hosts can not be linked together anymore on indi-
vidual subject level. Moreover, all of pseudonymisation, k-anomymity [120] and
`-deversity [101] have been shown to provide inadequate privacy when an attacker
has access to auxiliary data [105, 99].

7.2 The PRIST project

In this chapter, we describe a pilot project PRIST (Privacy-preserving statistical
studies on linked databases), where secure multi-party computation was used to
securely link and perform statistical analysis on state databases [22]. The research
question motivating the project was to study the relationship between working
during university studies and graduating on time. In Estonia, there is a problem
that students are not graduating from their studies on time, especially in the ICT
field. At the same time, there is a known deficit of work force in the ICT field so
it is hypothesised that well-paid professional jobs lure students away from their
studies. The main objective of the PRIST project was to validate if and to what

92

extent this is true and how ICT and non-ICT curricula relate to each other in that
matter.

To study the relationship between students’ academic progress and their ca-
reer, an analyst ultimately needs a table with students educational history and
working history. In Estonia, the Education Information System hosted by the Min-
istry of Education and Research (HTM) has all the education records for recent
years. Income records are not available in any government databases, however,
such data can be inferred from the tax payment records kept by the Tax and Cus-
toms Board (EMTA). The required analysis table can be compiled by linking each
student’s educational records from one database with tax (income) records from
the other database.

In parallel to the SMC-based study, the analysts carried out the same study
using conventional methods, such as k-anonymisation to protect individuals’ pri-
vacy. First, under a non-disclosure agreement (NDA), the analysts received pseudo-
nymised education data from the Ministry of Education and Research and di-
vided the students into groups based on demographic attributes. The grouped
pseudonyms were then sent to the Tax and Customs Board. By using the pseudo-
nym and real identity matching table obtained from the Ministry of Education and
Research, the Tax and Customs Board updated each group with income data for
the corresponding students. However, there was no link between a student and
income, i.e. the income data was randomly shuffled for each group. To obtain
3-anonymisation, groups with less than 3 individuals were left empty. Finally, the
analyst conducted the study on the groups containing education and income data.

This pre-aggregation meant that many students with unique background were
left out of the study. In general, such method caused a sample loss of 10%–
30%, depending on a demographic group. Initially, the Tax and Customs Board
wished to use similar k-anonymity measures on the tax data as well. However, this
approach was discarded as it would have resulted in sample loss of 84%–97%.
Thus, secure multi-party computation based study was seen as an alternative to
enhance the privacy of the underlying data, while at the same time obtaining more
accurate non-biased study results.

7.3 Overcoming barriers

7.3.1 Tools for statisticians

Statisticians are used to statistical analysis tools like SAS, SPSS, Stata or R. For
privacy-preserving statistical studies like PRIST, we cannot assume that statisti-
cians are going to develop or combine SMC protocols to perform the necessary
aggregations or tests, as they are not cryptographers. On the other hand, cryptog-
raphers may develop specific protocols, but only if they have a detailed study plan

93

to follow – they may not be experienced enough to design the study themselves.
RMIND is a statistical analysis tool that performs computations on secret-

shared data [24]. On the client side, RMIND provides a user interface with a
command language that is inspired by R [115], so it is familiar to statistical ana-
lysts. However, the data is not loaded to the client application, but RMIND rather
points to the data secret-shared in a SHAREMIND deployment. On the server side,
each SHAREMIND computation node has SECREC programs that implement the
necessary statistical functions [23, 24] – descriptive statistics, filtering, statisti-
cal tests, linear regression, etc. Among other, RMIND incorporates the database
linking and sorting functionality described in Chapters 5 and 6, respectively.

RMIND never publishes individual values and employs a technique where it
refuses to compute aggregates on data sets with a number of records below a given
threshold. For example, it is not possible to draw a scatter plot with elements
shown on two-dimensional grid. Instead, the individual elements are assigned to
dynamically-sized buckets on the server side and the number of elements in each
bucket is returned to the client. The result can be displayed as a heatmap. How-
ever, it may be possible in some cases to cleverly create filtered data sets that are
large enough but differ only in one record. Comparing the aggregates computed
on these data sets may reveal some information on the one added record. In prin-
ciple, it is possible to apply differential privacy [53] on RMIND output, but this
depends on the exact application area and should be optional. Limiting leakage
and the privacy-utility trade-off is discussed in more detail in [24]. Alternatively,
server-side query logging may help to mitigate this kind of behaviour.

7.3.2 Data protection regulation

Both the education information from the Education Information System and tax
records from Tax and Customs board fall under the Personal Data Protection
Act [1] as they contain personal data. Hence, data owners carefully considered
the possible implications before accepting to participate in the study. With the
help of a covering letter from the Ministry of Economy and Communications, ini-
tially meant for the pre-aggregated study, and a meeting where we explained how
secret sharing and SMC works, the Ministry of Education and Research was will-
ing to import the education data into the system. However, the Tax and Customs
Board was still reluctant to do so with their data and asked us to get an approval
from the Estonian Data Protection Agency (DPA).

In December 2013, we compiled a letter of explanation for the DPA where we
explained how secret sharing and SMC work and how these technologies would
be used in the study. We compared the conventional and SMC-based studies, and
brought out how the high sensitivity data moves between the parties and stages in
the study. In the conventional study, the analyst hosts a compiled database con-

94

taining pseudonymised pre-aggregated personal data. However, in case of using
SMC, the high sensitivity data ceases to exist at the secret sharing process which
is executed by the respective data owners. Hence, with SMC-based study, a copy
of sensitive data does not exist outside the data owner’s organisation.

After consideration, the Estonian DPA found that secret sharing should be
considered to be a form of encryption and SMC a computation on encrypted data.
As the individual records remain secret shared (“encrypted”) throughout the whole
process, the DPA concluded that we are not processing personal data in the study
and thus do not need their permission [5]. However, sufficient organisational and
physical information security measures must be taken by each computation party
to protect their respective shares.

7.3.3 Tax secrecy

In addition to the Personal Data Protection Act, the income data from the Tax and
Customs Board is also covered by tax secrecy in the Taxation Act [2, §26–§30].
This means that the Tax and Customs Board is the source of the most sensitive
data in the PRIST study. To alleviate the risk of misusing the data, four controls
were put in place.

First, the Tax and Customs Board wanted to look through the source code
of the SHAREMIND system and other custom-made programs used in the study
(RMIND and SECREC scripts). In October 2014, the technology provider Cy-
bernetica AS signed an NDA with the IT department of the Ministry of Finance
(abbr. RMIT) that were to conduct the code review. The code review were to be
conducted by the IT department of the Ministry of Finance because the Tax and
Customs is in the jurisdiction of the Ministry of Finance.

We delivered the source code of the SHAREMIND platform, RMIND statistics
tool and SECREC scripts used in the study along with documentation to RMIT in
November 2014. They soon concluded that the code follows modern standards
and software engineering best practices. However, RMIT pointed out that as they
do not have in-house competence to evaluate the cryptographic functions, this can
only be considered as a code review and not a full audit.

Secondly, as RMIT already conducted a code review, it wanted to be sure that
the same code base is used to build the binaries that all involved parties are going
to use. Hence, RMIT was chosen as the party to build all the necessary binaries
for computation parties, input parties and the result party.

Thirdly, the IT department of Ministry of Finance agreed to host one of the
three computation servers in the study. This gave them greater control as even
after the input data is secret shared between the computation parties, they can halt
the further computation by shutting down their server if they observe the protocol
and fear that the data is being misused. This is possible as for every operation,

95

all the three computation parties have to agree on the computation to be done. If
one of them deviates from the previously agreed plan, each one of them has the
opportunity to halt the operation simply by not communicating with the others.

Fourthly, a representative of the Cybernetica’s SHAREMIND team demon-
strated the analysis tool RMIND to the oversight department of the Tax and Cus-
toms Board. Using a test data set, he explained which operations are possible with
RMIND and what kind of output is shown to the analyst.

7.3.4 Contracts

Secure multi-party computation technology gives us excellent privacy guarantees,
but only if its deployment requirements are fulfilled. The most important being
that the computation parties must follow the protocol and must not collude with
each other to exchange their shares of the data. Additionally, as a distributed
computing model, SMC requires availability of the relevant parties during var-
ious steps of the process. Most notably, computation parties must be available
throughout the data input and analysis phase and they must agree on a provided
bandwidth so no-one becomes a communication bottleneck.

For these and additional reasons described below, the following contracts were
established during the PRIST project. Figure 7.1 gives an overview of contractual
connections between the participating parties.

• As the source of the most sensitive data in the study, RMIT was to conduct
a code review and was responsible for delivering the binaries to the rest
of involved parties. Hence, a non-disclosure agreement and a source code
license was signed by Cybernetica and RMIT.

• The three computation parties (RMIT, RIA and Cybernetica) signed an
agreement with the Ministry of Education and Research stating that they
will provide the necessary resources to host the SHAREMIND server and
that they will not collude with each-other. Additionally, it was stated that
the computation parties must delete the shares after the analysis was done.
This contract was requested by the Ministry of Education and Research as
it did not participate as a computation party itself and thus had no other
means to enforce its data usage policy. To the best of our knowledge, this is
the first contract supporting an SMC deployment.

• CentAR, the analyst and result party in the project, signed an agreement
with the input parties (HTM and EMTA) stating that they will use the data
only for the given purpose and will not try to misuse RMIND to gain access
to sensitive data of individuals. With technical measures, this was enforced

96

by the query restrictions built into RMIND. However, differential privacy
was not assured as we were interested in exact statistical aggregates.

Statistician
(CentAR)

Ministry of Education
and Research (HTM)

Estonian
Tax and Customs

Board (EMTA)

Estonian
Information System

Authority (RIA)

Ministry of Finance
IT Center (RMIT)

Cybernetica

NDA and Sharemind source code license

Agreement between computation parties and a data owner

Agreement for statistical analysis

Figure 7.1: Contractual relationships between the parties in the PRIST project.

7.4 Project life cycle

7.4.1 Development and testing

The first input to the SHAREMIND team was the analysis plan put together by the
analyst in the PRIST project, CentAR. As PRIST was the first study where RMIND

tool [24] was used, we used this document as a reference to develop privacy-
preserving versions of the necessary statistical functions that were still missing
from RMIND at this point [88]. Based on the analysis plan, we developed Extract-
Transform-Load (ETL) scripts for RMIND that cleaned the input education and tax
data records, extracted relevant data fields, performed privacy-preserving linking
and transformed the result table into a format that could be easily analysed [88].

The database schema included in the analysis plan contained a list with all the
data fields and their format in the data exports that the input parties were to do.
This information was used to create data models for the data importer tool used
by the input parties.

Based on the data size estimations, we generated two test sets that we used for
testing purposes throughout the project. The test sets were generated by simulat-
ing a working student and using statistical distributions based on a small sample
set of data provided by CentAR. A smaller test set (test set A) was used to test

97

Education records Tax records
Test set A 354 8201
Test set B 831 424 16 205 641
Real data 623 361 10 495 760

Table 7.1: Number of records in the test data sets and final imported data.

locally during algorithm development as it was small enough to trace the origin
of mistakes. A larger data set (test set B) was generated in order to mimic the
actual data volume and was used for performance testing on Cybernetica’s local
cluster. CentAR also used both test data sets as an input to Stata – the statistical
analysis tool used for the conventional study. The output was used to validate the
output of RMIND. See Table 7.1 for the size comparison of the test sets and the
final imported data set.

7.4.2 Delivery and setup

There were three types of application binaries distributed in the PRIST project
(see Figure 7.2):

1. SHAREMIND Application Server – the software for storing shares of the
input data and participating in secure multi-party computation. Used by all
three computation parties: RIA, RMIT and Cybernetica.

2. Data import tool – a command-line tool that takes a data set in a comma-
separated format (CSV) and by using a data model description, secret shares
each value in the data set and distributes the shares between the computation
nodes (SHAREMIND servers). The data model is an XML-file mapping the
data types and field names of input and secret-shared data sets. The data
import tool was used by input parties HTM and EMTA.

3. RMIND – statistical analysis tool used by the analysts: CentAR.

Each application binary was distributed as a separate compressed archive includ-
ing all of the necessary third-party libraries. Each application also included an
installation, configuration and a usage manual.

Code delivery

As RMIT was to review the source code and build binaries, they needed access
to the source code of all of the components. RMIT set up a Git code repository
on their infrastructure where Cybernetica’s delivery engineer could push the code.
Using a code versioning system made it possible to correct bugs after the initial

98

Estonian Education
Information System

Register of
taxable persons

Estonian
Information System

Authority (RIA)

Ministry of Finance
IT Center (RMIT)

Cybernetica

Statistician
(CentAR)

Study
customer

(ITL)

Problem
statement

Study
result

Ministry of Education and Research (HTM)

Estonian Tax and Customs Board (EMTA)/
Ministry of Finance IT Center (RMIT)

Rmind

Data import
tool

Data import
tool

Sharemind

deployment

Figure 7.2: PRIST application binaries and their users.

version that was reviewed as each change in code could be easily tracked and
verified by RMIT. The first version of the source code was delivered to RMIT on
November 10, 2014, after signing an NDA and source code license with Cyber-
netica.

Choosing a distribution

SHAREMIND Application Server is written in C++ 11 adhering to the standard
ISO/IEC 14882:2011 [82]. Moreover, as a security critical software, SHAREMIND

and its supplemental components depend on the latest versions of many security li-
braries (i.e. GnuTLS). For this reason, the team mainly uses either testing versions
of Linux distributions (Debian, Ubuntu) or rolling release distributions (Gentoo)
for development and testing. At the time of the PRIST project, the only officially
supported platform was stable Debian 7 (wheezy).

As a code reviewer, RMIT was chosen to be responsible for building and
distributing application binaries to all parties, except Cybernetica. In Cybernetica,
we could build our own binaries as we have access to the source code. However,
even then the binaries have to be compiled from the same code base as the network
level and protocol messages have to coincide with other parties. The same holds
for SECREC scripts.

Initially, we planned that the binaries will be built on Debian 7 so they would
run at least on Debian itself and Ubuntu. We had successfully used this model
in the cloud demonstration (see Section 4.3.1) so we already knew that Ubuntu
was acceptable for RIA. However, it turned out that RMIT uses only SUSE Linux

99

Enterprise Server (SLES) and deploying a VM running Debian or Ubuntu would
mean too much extra effort. At the time of writing the documentation and deliv-
ering the code in October 2014, the latest version available was SLES 11 SP3,
which didn’t have a recent enough compiler. As a replacement RMIT agreed to
use openSUSE that is a free and open version of SLES. OpenSUSE 12.3 has the
necessary compiler version and binaries built on it ran on Ubuntu 14.04 LTS. Cy-
bernetica and RIA chose to run the binaries on Ubuntu (14.04 LTS) as we had
prior experience with it. This demonstrates that large organisations are not as
volatile in their platform choices and that their deployment requirements should
be taken into account early in order to avoid such confusions.

Key exchange

Communication channel security is one of the prerequisites to deploy secure multi-
party computation. SHAREMIND Application Server establishes encrypted TLS
tunnels with each party it needs to communicate with. This holds for data importer
and RMIND client applications, as well as other SHAREMIND servers. SHAREMIND

Application Server uses X.509 certificates for ease of management and interoper-
ability in the future.

In PRIST, each participating party generated a self-signed certificate with a
2432-bit RSA keypair that is considered secure according to current best prac-
tice [8]. This was done with the help of GnuTLS certtool application bundled
with SHAREMIND, RMIND and data importer program. The public keys were
exchanged by e-mail. We chose not to deploy an application-specific Certifi-
cate Authority (CA) to sign the certificates. Instead, we bootstrapped the trust
of each component’s certificate from the national public key infrastructure of Es-
tonia. Each party’s representative (except HTM) signed their certificate (public
key) using the Estonian ID-card.

7.4.3 Setup and administration

Setup

After reviewing the source code, RMIT used it to build application binaries for
themselves and also other parties. As the building process on the specific Linux
distribution was tested and documented by the author of this thesis, there were
no major problems during this process. At the same time, all three computation
parties started to set up their production environments and exchange public keys.
On December 10, the three computation servers of the production environment
were connected together for the first time.

As part of the review process, RMIT requested to play through the whole anal-
ysis process in the production environment before the actual data is imported. To

100

accomplish this, RMIT generated another key pair for both the data importer and
RMIND that they had built. These key pairs were whitelisted by the computation
nodes. In the second half of December 2014, RMIT imported test set A (both ed-
ucation and tax records) into the production environment and carried out the full
ETL process in RMIND.

In the beginning of March 2015, both HTM and RMIT used the data importer
to import the actual education and tax records to the production environment.
Computation parties were restarted with whitelist configuration that only allowed
CentAR’s client application. The analysis step had begun.

Maintenance

Even before the actual data was imported into the production environment, RMIT
proposed that Cybernetica would take over its task of distributing application bi-
naries for all parties. For the rest of the project, Cybernetica distributed updated
binaries using its HTTPS-enabled web server. Access to the files was password
protected and each party could only access files required for its role.

Between the beginning of the analysis phase in the beginning of March and
its end on July 1, SHAREMIND computation nodes had to be restarted about 20
times. Most of these restarts were caused by the fact that during longer analysis
steps, the client connection was often dropped, causing the computation nodes
to hang. However, there were also other reasons, for example maintenance of
network hardware at the hosting organisations.

Based on the benchmarking results on our local cluster with 1 Gbps LAN net-
work connections, we asked each computation party to reserve at least 200 Mbps
of their external link for the SHAREMIND server. However, during the analysis
process we discovered that some steps require very small but very many (hundreds
of thousands) sequential operations. As Cybernetica’s server was in Tartu and the
other two in Tallinn, network latency started to become a bottleneck. Hence, we
migrated our SHAREMIND installation to our office in Tallinn that had smaller
network bandwidth but we managed to reduce network latency three-fold, from
5.2 ms to 1.7 ms (See Figure 7.3).

Even when taking into account the difference in network parameters (band-
width and latency) between the test cluster and the production environment, we
still could not explain the up to twenty-fold difference in the running time of
analysis scripts. At setup we had requested each SHAREMIND host to provide a
(virtual) machine with 2-core CPU and 8 GB of memory. We now decided to run
a simple benchmarking tool on all of the machines to see if maybe one party was
a bottleneck, making all of the distributed protocols run slower. The results of

101

Estonian
Information System

Authority (RIA)

Ministry of Finance
IT Center (RMIT)

Cybernetica

1.1 ms

5.3 ms 5.2 ms

(a) Cybernetica’s server in Tartu.

Estonian
Information System

Authority (RIA)

Ministry of Finance
IT Center (RMIT)

Cybernetica

1.1 ms

1.7 ms 1.7 ms

(b) Cybernetica’s server in Tallinn.

Figure 7.3: Latencies between the computation nodes in PRIST.

benchmarking tool UnixBench1 showed that the server at RIA had the most re-
sources as it was a physical machine. However, there was nothing to suggest that
one of the servers was a bottleneck. Hence, we continued to make the privacy-
preserving aggregation more parallel so less round-trips are needed.

ETL running times

The majority of the analysis phase was running the Extract-Transform-Load (ETL)
RMIND scripts that took the two imported data sets, linked them together by per-
son and converted the result to a format that was easy to use for specific questions.
The overview of the ETL steps is given on Figure 7.4, detailed information about
PRIST ETL process is given in [88, Section 6.5].

Data from the
Ministry of Education

and Research

Data from the Tax
and Customs Board

Monthly
income

Average
yearly income

Person's tax
data

Person's
data

Analysis
table

Person's
education data

Aggregate (2) Aggregate (3) Expand and
aggregate (4)

Aggregate (1)

Join (4)

Compute additional attributes,
shift tax data (5)

Figure 7.4: The privacy-preserving extract, transform and load process in PRIST with the
corresponding ETL script numbers shown in parenthesis.

It should be noted that since we had problems with client disconnections when
1https://code.google.com/p/byte-unixbench/

102

https://code.google.com/p/byte-unixbench/

running long SECREC scripts, some of the ETL steps were split into many parts.
The final running times given in Table 7.2 are approximate, as some of the parts
had overlaps. For example, the 5th step of ETL was done in 10 parts. Running all
the ETL steps from beginning to end in one go would take a bit less time.

Uninstall

Initially, the analysis process in the PRIST project was supposed to be finished by
March 1, 2015. However, due to technical difficulties and human errors that re-
quired running the analysis ETL process multiple times, this date was postponed
until July 1, 2015. According to the contract signed by computation parties, each
SHAREMIND host were to destroy all of the secret shares in their disposal. On
July 1, Cybernetica stopped its SHAREMIND server and used secure deletion pro-
gram srm2 to destroy all shares stored in the VM. Even if we cannot be sure that
the other computation parties destroyed their shares, this is enough to protect the
confidentiality of the data, given that nobody has stored the exchanged network
messages and has obtained some other party’s shares.

7.4.4 Post mortem

On June 30, less than a day before erasing the shares, we discovered an incon-
sistency in the analysis results. Comparing with the analysis study results carried
out with conventional methods, it seemed like the classifier “ICT”/“non-ICT” had
been switched on some figures, but otherwise the figures were comparable. It is
important to notice here that the results from the study with conventional methods
and with secure multi-party computation are not directly comparable as, in the
former, some data is removed by applying k-anonymity on the imported data set.
Since RMIND also outputs the corresponding gnuplot3 command line in addi-
tion to the figure, the analysts decided that, in the interest of using the remaining
time productively, it is reasonable to fix the inconsistency by just switching the
labels on plots afterwards.

Unfortunately, very soon after the computation nodes had been shut down and
data shares erased, we discovered that the problem was not in the “ICT”/“non-
ICT” classifier but rather in the status classifier that shows if a student has grad-
uated, dropped out or was still studying on a given year. This classifier was re-
coded (permuted) in ETL incorrectly and this was the source of the inconsistency.
Moreover, since this classifier was used in further computations (e.g. aggregating
it with max operation), is was impossible to just relabel the output.

2srm – http://manpages.ubuntu.com/manpages/trusty/man1/srm.1.html
3Gnuplot – http://www.gnuplot.info/

103

http://manpages.ubuntu.com/manpages/trusty/man1/srm.1.html
http://www.gnuplot.info/

L
oc

al
cl

us
te

r
Pr

od
uc

tio
n

R
at

io
Sc

ri
pt

D
es

cr
ip

tio
n

A
B

A
Fi

na
l

A
Fi

na
l/B

1
A

gg
re

ga
tio

n
of

ed
uc

at
io

n
da

ta
1

m
in

3
s

25
m

in
1

m
in

42
s

2
h

1.
6

4.
8

A
gg

re
ga

tio
n

of
ta

x
da

ta
2

(m
on

th
ly

in
co

m
e)

46
s

18
h

10
m

in
1

h
6

m
in

28
s

22
1

h
55

m
in

86
.7

12
.2

A
gg

re
ga

tio
n

of
ta

x
da

ta
3

(a
ve

ra
ge

ye
ar

ly
in

co
m

e)
4

m
in

34
s

1
h

55
m

in
6

m
in

35
s

15
h

14
m

in
1.

4
7.

9
A

gg
re

ga
tio

n
of

ta
x

da
ta

4
an

d
jo

in
in

g
th

e
tw

o
da

ta
se

ts
32

s
32

m
in

50
s

4
h

15
m

in
1.

6
8.

0
C

om
pi

lin
g

th
e

an
al

ys
is

5
ta

bl
e

(s
hi

ft
in

g)
6

m
in

7
s

39
h

3
m

in
46

m
in

10
s

14
1

h
11

m
in

8.
0

3.
6

Su
m

13
m

in
2

s
60

h
5

m
in

2
h

4
m

in
45

s
38

4
h

35
m

in
9.

6
6.

4

Ta
bl

e
7.

2:
R

un
ni

ng
tim

es
of

th
e

pr
iv

ac
y-

pr
es

er
vi

ng
E

T
L

sc
ri

pt
s

on
te

st
da

ta
se

ts
A

an
d

B
(d

at
a

ta
ke

n
fr

om
[8

8,
Fi

gu
re

6.
5]

)
an

d
th

e
fin

al
im

po
rt

ed
da

ta
in

pr
od

uc
tio

n
en

vi
ro

nm
en

t.
T

he
la

st
co

lu
m

ns
sh

ow
th

e
ru

nn
in

g
tim

e
ra

tio
s

be
tw

ee
n

pr
od

uc
tio

n
an

d
te

st
in

g
en

vi
ro

nm
en

ts
.

104

Nevertheless, about half of the initially planned 52 figures were correct as
they either did not use the status classifier or used a part of it that was not used for
further computations and could still be relabelled with confidence. Moreover, the
results from the SHAREMIND study were more accurate than the ones from the
study made with traditional methods, as no records had to be removed from the
data sets to provide privacy.

7.5 Best practices and lessons learned

7.5.1 Fault tolerance

One of the main problems during the analysis period was the need to restart the
SHAREMIND service too often. From December 2014, Cybernetica’s computation
node was restarted 25 times. The main reason for restarting the service was the
unexpected disconnection of the client application (RMIND) while an analysis
script was running. The disconnects were most probably caused by the fact that
CentAR used an internet service meant for individuals, while computation parties
had a more strict service level agreement (SLA) with the ISP.

At this time, a client application disconnect during a SMC protocol run caused
all of the three computation servers to enter a state where no new client nor com-
putation party connections were accepted. Thus, all of the three servers had to
be restarted and since they were hosted by different parties, it took time, some-
times more than a day. While gracefully failing the current computation upon a
client disconnect would have saved the time spent on restarting the services, we
feel that there is a better solution. In practical secure multi-party computation
deployments, the client application should not be required to be online during
the computation. Instead, it should be able to disconnect from the computation
parties and leave the SMC process running on them. A client application should
be able to reconnect and resume the session at any time to check if the com-
putation has finished and retrieve the results. This requires a more complicated
session management, but with practical analysis steps running two or more days,
it is inevitable. A new session management with this feature was already being
designed. However, as a fundamental component of both the SHAREMIND com-
putation server and RMIND client application, we could not deliver it during the
analysis without thorough testing and another code review by RMIT.

Moreover, it is possible to automatically recover from some network errors.
For example, when connection to a computation party is restored, the computation
can either continue from the point it was left off, or it can be rolled back to a known
checkpoint and resumed from there. This kind of automatic recovery requires
transactional tasks, either on RMIND script level or on individual SMC protocol
level built into SHAREMIND. In terms of SMC, these are considered benign faults.

105

7.5.2 Performance tweaks

When testing the ETL process with test set B on our cluster, we realised that
several optimisations are possible to enhance the performance. Most of these op-
timisations took advantage of vectorising the computation to save on the number
of network communication rounds.

For example, the second step of ETL groups tax data by each individual and
aggregates records in each such group into one record. Aggregating the values in
each group sequentially takes a lot of time as there are many small groups. We
optimised this aggregating functionality on two levels. First, for each column, the
aggregations for all groups were done in parallel. Secondly, in each group, the
aggregation function was applied by folding similar to a binary tree. Hence, it
took dlog2me rounds of folding for a group with m records. For test set B, this
optimisation saved us 40% of ETL step 2 time on our cluster.

Similarly, we enhanced RMIND with support for matrices so operations on
several matrix columns could be carried out in parallel. Previously, matrices had
to be used by defining and using each of its columns as independent vectors.

The tax data consists of floating point numbers that represent currency. As
such, we are interested in no more than two decimal places after the comma for
this data. Hence, instead of carrying out costly aggregation operations on secret-
shared floating point values, we can multiply tax data with large enough constant
and convert it to an integer value. Later, we can convert the aggregation results
back to floating point numbers and divide them with the same constant.

Lastly, we optimised the RMIND scripts written by the analysts. As analysts
are used to work on local data on their decently powerful computers, they tend to
write inefficient code. For example, a special statistical analysis with access to the
underlying data may be able to automatically cache results of identical expressions
used in several places, whereas RMIND evaluates the expression again every time.
We introduced temporary variables for several such expressions. For the same
reason, the aggregated floating point tax data was rounded and cached in one go
so it could be reused on several plots.

Nevertheless, as can be seen from Table 7.2 the ETL running time does not
scale linearly when switching from local cluster to production environment de-
ployed over the internet. Still, assessing the running time of the computation is
a valuable input for planning in such projects. Hence, running the whole compu-
tation on a production-sized test data set in a production environment should be
included in the project timeline as early as possible. This would also bring out the
bottlenecks in the ETL scripts themselves – which operations are network band-
width and which ones are latency bound. However, by the time the computation
nodes were deployed and ETL scripts written, there was no time to run test set B
in PRIST any more. Alternatively, there is a possibility to run the analysis process

106

in simulator that replaces all multi-party protocol calls with run-time estimates.
This kind of simulator is being developed for the SHAREMIND platform, but cur-
rently the regression models are environment-specific, i.e. a model obtained from
a local cluster cannot be used to predict the running time in a production environ-
ment with enough precision. More general regression models with high accuracy
remain a future goal.

7.5.3 RMIND recode function

The incorrect recoding in the ETL that invalidated the student status classifier was
introduced due to a human error. However, it could have been avoided by intro-
ducing a new feature in RMIND that got postponed due to other, higher-priority
tasks.

The classifiers are generated by the data import tool by automatically assign-
ing numerical identifiers to columns that are said to contain discrete values. For
all such classifiers, the data import tool outputs the mapping to its log file. For ex-
ample, for gender it may output: “1 – male, 2 – female”. This information is then
shared with the analyst who can use the correct classifiers in his RMIND scripts.

However, it is important to notice here that as classifiers are generated auto-
matically, a classifier for the same column may have different output depending
on which values are encountered first. For example, if the first row in the data set
belongs to a female, the above classifier would be “1 – female, 2 – male” instead.
To avoid changing all of the RMIND scripts using this classifier after the data im-
port, a recode operation was introduced in RMIND. This operation allowed the
analyst to map the classifier values generated by the data import tool to the values
used in the scripts. As this was to be done only once, it was considered to be less
error-prone. Unfortunately, as we had many different data sets (test sets A, B and
the production data set), each having its own classifier mapping for the student
status, a wrong mapping for the recode operation was used on production data
set.

To avoid such human error in the future, the data import tool should save
the generated classifiers as metadata together with the data values so RMIND

could apply the correct mapping automatically. RMIND scripts could then use
the human-readable labels instead of the generated classifier value, for example
table$gender=="male" instead of table$gender==1.

7.6 Conclusion

PRIST is the first large-scale registry-based statistical study on linked data sets
using secure multi-party computation technology. Although we were unable to

107

fulfil all of the stated analysis objectives due to both technical and human errors,
we were able to carry out a full analysis process, where each involved party de-
ployed and maintained their part of the required components. Each party – not
just the computation parties, but also input and result parties – was in sole control
of its environment and the trust relationships were securely formed by using an
existing national PKI.

Moreover, in terms of data set sizes and running time, this study demonstrates
that privacy-preserving studies using SMC technology on large databases are fea-
sible.

108

CHAPTER 8

PRIVACY-PRESERVING DATA
INTEGRATION ON FEDERATED

DATABASES

8.1 Motivation

Studies like PRIST provide valuable information to steer government decisions.
More so, if these studies are carried out on a regular basis. However, even though
each subsequent study is a little bit easier, forming a consortium of data own-
ers, computation parties and analysts can be cumbersome. Ideally, as in highly
digitalised governments the data is already there, such studies should be semi-
automatic.

On the other hand, people expect the government to protect their privacy, so it
cannot let all researchers or analysts to freely combine and use the data sets. This
requirement is also in line with Hippocratic databases – the idea that a database
system should provide data security and keep privacy of the individuals, while
still providing value to their user [68].

What the government needs is a data usage policy that is bundled with a spe-
cific data set and contains information who is allowed to access the data and what
can be done with it. These policies should be “sticky” in a way that the derivatives
of the corresponding data also are also covered by the same policy. To automate
data sharing with usage policies, a technical solution to enforce such policies is
needed. From a technical point of view, it is easy to see that the data usage policy
has to be enforced by someone other than the end user. Given access to the data
itself, an end user can just ignore its usage policy. For the same reason any usage
policy that allows to access the original data is not enforceable in the presence of
unauthorised access.

In an ideal world, we could think of a trusted third party (TTP) that has ac-

109

cess to the original data D together with its usage policy and responds to queries
allowed by that policy. For example, if user A is allowed to perform function f
on the data D, the TTP responds with the function result. At the same time, run-
ning function g is disallowed for user A, as it is not explicitly white-listed (see
Figure 8.1). In real world, the TTP is replaced by a cryptographic solution, e.g.
secure multi-party computation.

f(D)
A : f(D)

f(D)?

g(D)?

D?
User A

Data usage policyTTP

Figure 8.1: Enforcing a data usage policy with a trusted third party.

In this chapter, we discuss how secure multi-party computation can be used
to enforce a data usage policy on federated databases. We will model the solution
after two practical solutions: the SHAREMIND SMC framework and Cybernetica’s
Unified eXchange Platform. We extend the ideas initially proposed in [23].

8.2 The Unified eXchange Platform

8.2.1 Requirements for SMC

As discussed in Chapter 3, there are two main requirements for deploying se-
cure multi-party computation – non-collusion of computation parties and secure
authenticated communication channels. In Estonia, the latter requirement is ful-
filled by a nation-wide data exchange layer X-Road that connects state databases.
X-Road is a distributed service bus that allows information systems to securely
use each other’s services [127]. The communication is carried out over a secure
mutually authenticated channel and all exchanged messages are digitally signed,
providing a legally-binding long-term evidence value. In the context of SHARE-
MIND, we do not consider all SMC protocol messages exchanged between com-
putation parties to be digitally signed as it would introduce a performance penalty.
We propose to sign only messages between computation nodes and client appli-
cations (input and result parties).

In addition to government databases, many private organisations have also
joined the X-Road. It was initially deployed in 2001 and by the end of 2015, Es-
tonian X-Road connected 939 organisations and 219 databases. Over 485 million

110

requests were serviced by X-Road in 20151. Estonian X-Road is based on the
Unified eXchange Platform (UXP) developed by Cybernetica.

The other requirement, non-collusion of computation parties, can be enforced
with either contractual obligations or a data owner assuming the role of one of the
computation parties itself. The fact that UXP is distributed by design, suits well
with this SMC requirement.

8.2.2 Status of privacy protection on UXP

Since 2011, Estonian X-Road (and UXP) incorporates a pseudonymisation feature
that protects identities of individuals while still allowing to connect records from
different databases belonging to the same individual [128]. Technically, it is based
on the same idea as the privacy-preserving equi-join described in Chapter 5 –
the key column values (e.g. personal ID codes) are encrypted with AES block
cipher used as a pseudo-random permutation function. The common cipher key is
generated by one of the database owners and distributed to others by encrypting
it with their public key. Each party already has a key pair as the communication
is done over TLS channels. However, this encryption does not protect from data
owners as they have access to the AES cipher key.

In [128], Willemson also argues that pseudonymisation cannot be considered
a strong security mechanism. It is provided as a convenient and simple mea-
sure to protect against trivial identification. Next, we will propose an architecture
that combines secure multi-party computation with the aforementioned privacy-
preserving join method to allow more secure database linking and analysis on
UXP.

8.2.3 UXP components

In a usual service oriented architecture, in addition to service descriptions, parties
must pairwise also decide on the security measures taken to protect the data trans-
mission. As parties might have different IT capabilities, this might result in many
different incompatible security configurations.

In UXP, this is covered by providing a standardised security server that takes
care of the communication channel security – message encryption, authentication
and time-stamping to provide long-term proof value. As shown on Figure 8.2,
each participating party, whether a service provider or a consumer, has its own
security server deployed in front of its service (on provider side) or information
system (on consumer side). The security servers are almost transparent to the
participants. The service and its consumer still exchange their protocol-specific

1Estonian X-Road statistics, https://www.ria.ee/ee/x-tee-statistika.html,
accessed January 26, 2016.

111

https://www.ria.ee/ee/x-tee-statistika.html

messages. However, these messages are transferred over a TLS channel between
the security servers for secure transmission over the internet. Moreover, security
servers also take care of the inter-organisation authentication and service-level
authorisation so the service itself does not have to know about external parties.

Security
server

Service or
information

system

Central
server

Time-
stamping
authority

OCSP
responder

Certificate
authority

Security
server

Service or
information

system

Service or
information

system

PKI services

Organisation #1 Organisation #2

Governing authority

Figure 8.2: An Unified eXchange Platform (UXP) deployment with two organisations.

The security server software and its updates are provided by a separate gov-
erning authority. This allows to use a high-level security configuration throughout
the setup. Moreover, the governing authority is responsible for registering new or-
ganisations to the UXP network, maintaining the list of current members (i.e. an
address book) and monitoring the security servers. However, this does not mean
that the governing authority is a communication bottleneck. Each security server
caches contact information about relevant partner organisations locally and all of
the service calls are made directly between the participating parties (provider and
consumer). Such decentralised setup allows organisations to exchange messages
securely even if other organisation servers are down or some more central services
(the governing authority or trust services) are temporarily inaccessible.

For authentication and authorisation, UXP uses public key infrastructure (PKI).
After registering at the governing authority, an organisation can request the certi-
fication authority (CA) to sign their keys. To obtain long-term proof value for the
UXP service calls, every message exchanged between security servers is written
to an audit log that is periodically time-stamped by an authorised time-stamping
service. The audit log messages are chained together so it is not possible to in-
sert or remove any intermediate messages once the log is time-stamped. The trust
service providers (CA and time-stamping service) used by UXP organisations are
authorised by the governing authority.

112

8.3 SHAREMIND as a UXP service

8.3.1 Roles and data flow

UXP security servers communicate using digitally signed XML-formatted mes-
sages that add a considerable amount of overhead to the actual payload. As such,
this message format is not suitable for use in bandwidth-bound SMC protocols.
Hence, as also mentioned above, we only consider SHAREMIND client application
messages to be carried over UXP. This gives us traceable and signed data sharing
requests as well as queries made on the secret-shared data. SHAREMIND compu-
tation nodes continue to use mutually authenticated encrypted TLS channels for
communication between themselves.

We introduce a new role, Customer, the user who requests the data owners
to import their data to a SHAREMIND deployment. From the SMC perspective,
Customer is not the same as input party as it does not access the original data. The
Customer may be the same person or organisation as the result party.

The process (see Figure 8.3) is started by the Customer who knows what kind
of input data is needed. Customer assembles a data model description containing
information about which data records from which input parties. This data model
description together with the identity (public key) of the result party is sent to any
of the relevant input parties via UXP.

If the input party receiving the request accepts it2, it generates a (random)
identifier for this request and forwards the signed request together with the gen-
erated ID to all other involved input parties. First, they collaboratively choose a
suitable online SHAREMIND deployment to use. This can be implemented by us-
ing preference lists at each security server. On secret sharing, the involved input
parties mutually agree on the first common SHAREMIND deployment from their
lists. The Customer making the input request may also suggest a SHAREMIND

deployment, but ultimately the decision should be up to the input parties that own
and are responsible for the data. If the data usage policy of an input party requires
tighter control over the computation process, it may request to be one of the com-
putation nodes. It can then halt the computation process at any time if it sees any
suspicious activity.

Each input party’s security server uses one of its services to retrieve the rel-
evant data set from its database and, using the provided data model description,
secret shares each value in this data set. The shares are distributed among the
computation nodes of the chosen SHAREMIND deployment under a common data
store identified by the generated request ID. Each input party may also attach a
data usage policy with their uploaded shares. This policy contains which oper-

2We recognise, that in some cases, depending on the requested data, accepting the request may
involve manual review by an authorised official.

113

Computation
party

Input partyCustomer Result party

request with data model
and ID of result party

generate request ID

forward request to
other input parties

choose SMC deployment

get data from
local service

secret share data

shares, data usage policy,
ID of result party

OK

ACK

ready,
ID of deployment

start, ID of deployment

analysis
(SMC requests)

study result

save shares, policy,
authorise result party

Figure 8.3: Sequence diagram of SHAREMIND SMC system as a service on the Unified
eXchange Platform. All messages exchanged between different parties are carried over
UXP. For messages between result party and computation parties, this is optional.

114

ations and by whom are allowed on this data set. As long as at least one of the
computation parties honours the policy, no unauthorised data access can occur.
This provides a cryptographic enforcement of data usage policies. Moreover, the
identity of the authorised result party is also forwarded to the computation nodes
so they can grant access to the corresponding certificate holder. Each input party
notifies the Customer of the completion together with the contact information of
the chosen SHAREMIND deployment.

A result party can now use a SHAREMIND client application to connect to
the computation nodes through its UXP security server and issue commands. For
example, the result party can use RMIND to securely link together uploaded data
sets and perform statistical analysis on them. However, only operations allowed
by the attached data usage policies are executed by the computation nodes. Au-
diting capability is added by the security servers in front of computation nodes
logging and time-stamping all incoming queries from the result party.

8.3.2 A hybrid setup

Consider a scenario, where the result party is not able to deploy its own UXP
security server, e.g. for the lack of technical capability. For simple use cases
where specialised analysis software like RMIND is not needed, the result party
could use a common UXP security server with a web interface that provides access
to the services provided by other organisations on UXP. This web interface, called
portal in the UXP terminology, takes care of user authentication and forwards
his identity to the requested service. In fact, an UXP portal is also used by the
Customer for the initial data import request.

However, a common security server may not be an option if the requests done
by the result party contain private parameters or the secret-shared computation re-
sult contains sensitive data. In this case, we may also consider a scenario, where
the result party communicates directly with the computation parties using SHARE-
MIND protocol without the UXP security servers on either ends. Since there are no
security servers in front of computation parties, the security servers of input par-
ties also communicate with computation parties directly using the SHAREMIND

protocol. Note that we do not consider a scenario where we omit security servers
of the input parties, as we only consider existing UXP organisations to be in this
role.

With the UXP security servers only at the input parties and the Customer,
only the initial data import requests are signed and provide long-term proof value
as provided by the UXP. The rest of the communication is also secure, as SHARE-
MIND uses mutually authenticated TLS channels for exchanging messages with
the client applications. All incoming messages, including data imports and query
requests with parameter values, are independently logged by each computation

115

party and may be later compared to solve any disputes. Moreover, if this type
of hybrid deployment proves practical, it is possible to enforce message signing
by the client applications and introduce time-stamping of computation party log
entries for long-term proof value.

8.3.3 PRIST as a service

As an example, let us consider how the PRIST study described in Chapter 7 would
be conducted if SHAREMIND is available as a service on Estonian X-Road. The
Estonian Association of Information Technology and Telecommunications (ITL)
is in the role of the Customer, as it is the party interested in the results of the study.
As ITL itself does not have the required competence to perform statistical studies,
the role of result party is delegated to statisticians at CentAR.

First, CentAR compiles a data model concerning necessary fields from the
input databases – the Education Information System managed by the Ministry of
Education and Research (HTM), and tax records held by the Tax and Customs
Board (EMTA). This data model is given to ITL who then uses its UXP security
server or a web portal to submit a database linking request to one of the input
parties, e.g. the Tax and Customs Board, together with the identity (certificate
containing a public key) of the authorised result party CentAR.

EMTA forwards the request to the other input party, HTM, and together they
choose a suitable SHAREMIND deployment. Most probably, EMTA is interested
in hosting one of the computation nodes itself as it requires tighter control over
its data and can then review the analysis requests made by the result party in
real time. The Information System Authority (RIA) would be a good candidate
for hosting a second computation node. RIA coordinates the development and
administration of the national information system and is, among other roles, the
governing authority for the X-Road. As such it has the necessary IT-capability to
host a generic SHAREMIND node that can be used in most of the deployments. The
third computation node could be hosted by any of the other involved organisations
or even a private company like Cybernetica.

Note that no distribution of application binaries or code review is needed at
this point as the necessary software is already deployed. We envision that the
X-Road governing authority is responsible for distributing SHAREMIND Applica-
tion Server software to the computation party hosts. This would provide maximal
compatibility as the X-Road governing authority also distributes and updates the
UXP security server software. Moreover, if the result party and computation par-
ties communicate through UXP security servers then no separate key exchange is
necessary as the key pairs of security servers may be used. Otherwise, the compu-
tation nodes receive the key of the result party with the shares and the result party
can use an UXP portal to obtain keys of computation parties.

116

As the next step, the security servers of both input parties load the requested
data set and secret share it among the computation nodes of the chosen SHARE-
MIND deployment. Each computation party also registers CentAR’s certificate to
grant them access to the given secret-shared data store. EMTA and HTM both
notify the ITL (and CentAR) that the requested data is ready for analysis.

CentAR uses RMIND to connect to the computation parties and carry out the
analysis. Each request is logged by each computation party and if UXP security
servers are used then each request is also signed and time-stamped providing long-
term proof value.

Estonian Education
Information System

Estonian
Information System

Authority (RIA)

Ministry of Finance
IT Center (RMIT)

Cybernetica

Statistician
(CentAR)

Study
customer

(ITL)

Ministry of Education and Research (HTM)

Register of
taxable persons

Estonian Tax and Customs Board (EMTA)

Sharemind

Data
model

Rmind

Data
policy

Shares

Figure 8.4: PRIST study using SHAREMIND as a service on Unified eXchange Platform.
Pentagrams are UXP security servers, dotted lines denote security servers that are omitted
in the hybrid deployment.

It is easy to see that once the necessary data models are prepared by CentAR,
it is possible to carry out such analysis every year without requesting the input
parties to export their data set and use a separate application to secret share it.
Moreover, as SHAREMIND computation nodes are provided as service, they can

117

be requested dynamically. Finally, if the analysis process is more-or-less the same
each year, the whole process can be automated so ITL just receives the report
every year.

8.3.4 Final considerations

In general, deploying secure multi-party technology on a federated database in-
frastructure like UXP provides us with means to link data sets while cryptograph-
ically enforcing data usage policies. Providing SHAREMIND computation node as
a service on UXP removes the necessity to search for application-specific set of
computation parties and sign a contract between them and the input parties. More-
over, there is no need for a key exchange or it can be bootstrapped on existing UXP
trust network. Simpler or recurring data analysis adhering to the predefined data
usage policies can be carried out automatically without the need for separate data
exports and manual intervention by the officials at input parties.

However, note that this solution does not protect against an analyst who clev-
erly combines different combinations of query parameters allowed by the data
usage policy to extract individual values from the data sets. Such behaviour can
be discouraged by reviewing the request logs at the computation nodes, or miti-
gated by using differential privacy if inexact results are acceptable.

118

CONCLUSION

This thesis studies technical and trust issues related to applying secure multi-party
computation technology in practice. We start by examining the deployments of
two practical real-world secure multi-party computation applications – the Dan-
ish sugar beet auction from 2008 and the Estonian ITL financial benchmarking
application from 2011. We bring out shortcomings that may impede using the
technology in other, more complex, deployments. For example, at the time we
were lacking an oblivious sorting implementation and a capability to link exist-
ing data sets together in a privacy-preserving way. The thesis includes previously
published work by the author that addresses those problems.

As a separate topic, we examine the challenges specific to deploying secure
multi-party computation in web-based applications. As more and more applica-
tions are moving to the cloud, web-based user interfaces for interacting with the
service become important. We take the ITL financial benchmarking application
as a baseline and describe how secret sharing and interacting with computation
nodes is possible from a web browser. A short overview of how the web-based
technologies have evolved reveals that with HTML5 and its supporting technolo-
gies, web-based frontends for SMC applications for inputting data and receiving
results are now easier to implement.

The main result of this thesis is a life cycle overview of the world’s first large-
scale registry-based statistical study conducted using secure multi-party compu-
tation technology. We give an overview of both the technical and organisational
side and bring out issues that are related to deploying SMC for large organisations
like governmental institutions. For example, to the best of our knowledge, the
PRIST study is the first SMC application, where trust relations and responsibili-
ties between the non-colluding computation parties were formally established by
contracts. We also report on the technical shortcomings and human errors that
occurred during this study, and give pointers on how to mitigate similar problems
in future deployments.

Finally, we propose to deploy secure multi-party computation as a service on a
federated data exchange infrastructure. This allows institutions to share their data
with others with the guarantee that attached usage policies are cryptographically

119

enforced. Such a deployment provides a way to make data-oriented decisions
quicker and leads to a more informed and reactive government. As an example,
we show how the SHAREMIND secure multi-party computation system can be in-
tegrated with X-Road, the Estonian government information exchange backbone.

120

Bibliography

[1] Isikuandmete kaitse seadus. Passed 15.02.2007 - RT I 2007, 24, 127; RT I,
12.07.2014, 51, Personal Data Protection Act, English translation available
at https://www.riigiteataja.ee/en/eli/509072014018/
consolide

[2] Maksukorralduse seadus. Passed 20.02.2002 - RT I 2002, 26, 150; RT I,
11.07.2014, 11, Taxation Act, English translation available at https://
www.riigiteataja.ee/en/eli/501092014002/consolide

[3] Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across pri-
vate databases. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data. pp. 86–97. SIGMOD ’03, ACM, New
York, NY, USA (2003)

[4] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption
for numeric data. In: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data. pp. 563–574. SIGMOD ’04, ACM,
New York, NY, USA (2004)

[5] Andmekaitse Inspektsioon: Taotluse läbi vaatamata jätmise teade. 2.2.-
7/13/557r (in Estonian). Available at http://adr.rik.ee/aki/
dokument/3679385 (January 2014)

[6] Archer, D.W., Rohloff, K.: Computing with Data Privacy: Steps toward
Realization. IEEE Security & Privacy 13(1), 22–29 (2015)

[7] Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New
Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In: Fast
Software Encryption, Lecture Notes in Computer Science, vol. 5086, pp.
470–488. Springer (2008)

[8] Babbage, S., Catalano, D., Cid, C., de Weger, B., Dunkelman, O.,
Gehrmann, C., Granboulan, L., Güneysu, T., Hermans, J., Lange, T.,
Lenstra, A., Mitchell, C., Näslund, M., Nguyen, P., Paar, C., Paterson, K.,

121

https://www.riigiteataja.ee/en/eli/509072014018/consolide
https://www.riigiteataja.ee/en/eli/509072014018/consolide
https://www.riigiteataja.ee/en/eli/501092014002/consolide
https://www.riigiteataja.ee/en/eli/501092014002/consolide
http://adr.rik.ee/aki/dokument/3679385
http://adr.rik.ee/aki/dokument/3679385

Pelzl, J., Pornin, T., Preneel, B., Rechberger, C., Rijmen, V., Robshaw, M.,
Rupp, A., Schläffer, M., Vaudenay, S., Vercauteren, F., Ward, M.: ECRYPT
II Yearly Report on Algorithms and Keysizes (2011–2012). Tech. rep., Eu-
ropean Network of Excellence in Cryptology II (Sep 2012), http://
www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf

[9] Barbaro, M., Zeller, T.: A face is exposed for AOL searcher no. 4417749.
New York Times (August 2006)

[10] Barker, E., Kelsey, J.: Recommendation for Random Number Generation
Using Deterministic Random Bit Generators. NIST Special Publication
800-90A (2012)

[11] Batcher, K.E.: Sorting networks and their applications. In: Proceedings of
the April 30–May 2, 1968, Spring joint computer conference. pp. 307–314.
AFIPS ’68 (Spring), ACM, New York, NY, USA (1968)

[12] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols. In: Proceedings of the Twenty-second Annual ACM Symposium
on Theory of Computing. pp. 503–513. STOC ’90, ACM, New York, NY,
USA (1990)

[13] Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Advances in Cryptology - CRYPTO ’91, Lecture Notes in Computer Sci-
ence, vol. 576, pp. 420–432. Springer (1992)

[14] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security. pp. 784–796. CCS ’12, ACM, New York, NY, USA (2012)

[15] Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: A system for secure
multi-party computation. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security. pp. 257–266. CCS ’08, ACM,
New York, NY, USA (2008)

[16] Bernstein, D.: ChaCha, a variant of Salsa20. http://cr.yp.to/
chacha.html (2008)

[17] Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the 1979
AFIPS National Computer Conference. pp. 313–317. AFIPS Press, Mon-
val, NJ, USA (1979)

[18] Bogdanov, D.: How to securely perform computations on secret-shared
data. Master’s thesis, University of Tartu (2007)

122

http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html

[19] Bogdanov, D.: Sharemind: programmable secure computations with prac-
tical applications. Ph.D. thesis, University of Tartu (2013), http://hdl.
handle.net/10062/29041

[20] Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the Estonian Tax and
Customs Board Evaluated a Tax Fraud Detection System Based on Secure
Multi-party Computation. In: Financial Cryptography and Data Security
- 19th International Conference, FC 2015, San Juan, Puerto Rico, January
26-30, 2015, Revised Selected Papers. Lecture Notes in Computer Science,
Springer (2015)

[21] Bogdanov, D., Kamm, L.: Constructing Privacy-Preserving Information
Systems Using Secure Multiparty Computation. Tech. Rep. T-4-13, Cy-
bernetica, http://cyber.ee/en/research/publications/.
(2011)

[22] Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Stu-
dents and Taxes: a Privacy-Preserving Social Study Using Secure Compu-
tation. Proceedings on Privacy Enhancing Technologies (PoPETs) 2016(3)
(2016), (to appear)

[23] Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste,
R., Willemson, J.: Privacy-preserving statistical data analysis on federated
databases. In: Proceedings of the Annual Privacy Forum. APF’14. Lecture
Notes in Computer Science, vol. 8450, pp. 30–55. Springer (2014)

[24] Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: a tool for crypto-
graphically secure statistical analysis. Cryptology ePrint Archive, Report
2014/512 (2014), http://eprint.iacr.org/

[25] Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to uni-
versally composable secure multi-party computation primitives. In: IEEE
27th Computer Security Foundations Symposium, CSF 2014. pp. 184–198.
IEEE (July 2014)

[26] Bogdanov, D., Laud, P., Randmets, J.: Domain-Polymorphic Program-
ming of Privacy-Preserving Applications. In: Proceedings of the First ACM
Workshop on Language Support for Privacy-enhancing Technologies, PET-
Shop ’13. pp. 23–26. ACM Digital Library, ACM (2013)

[27] Bogdanov, D., Laur, S., Talviste, R.: Oblivious Sorting of Secret-
Shared Data. Tech. Rep. T-4-19, Cybernetica, http://cyber.ee/en/
research/publications/. (2013)

123

http://hdl.handle.net/10062/29041
http://hdl.handle.net/10062/29041
http://cyber.ee/en/research/publications/
http://eprint.iacr.org/
http://cyber.ee/en/research/publications/
http://cyber.ee/en/research/publications/

[28] Bogdanov, D., Laur, S., Talviste, R.: A Practical Analysis of Oblivious
Sorting Algorithms for Secure Multi-party Computation. In: Proceedings
of the 19th Nordic Conference on Secure IT Systems. NordSec’14, Lecture
Notes in Computer Science, vol. 8788, pp. 59–74. Springer (2014)

[29] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast
Privacy-Preserving Computations. In: Proceedings of the 13th European
Symposium on Research in Computer Security - ESORICS’08. Lecture
Notes in Computer Science, vol. 5283, pp. 192–206. Springer (2008)

[30] Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012)

[31] Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis (short paper). In: Proceedings of
the 16th International Conference on Financial Cryptography and Data Se-
curity. FC’12. Lecture Notes in Computer Science, vol. 7397, pp. 57–64.
Springer (2012)

[32] Bogetoft, P., Christensen, D., Damgård, I., Geisler, M., Jakobsen, T., Krøi-
gaard, M., Nielsen, J., Nielsen, J., Nielsen, K., Pagter, J., Schwartzbach,
M., Toft, T.: Secure multiparty computation goes live. In: Financial Cryp-
tography and Data Security, Lecture Notes in Computer Science, vol. 5628,
pp. 325–343. Springer (2009)

[33] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving sym-
metric encryption. In: Advances in Cryptology - EUROCRYPT 2009, Lec-
ture Notes in Computer Science, vol. 5479, pp. 224–241. Springer (2009)

[34] Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-dnf formulas on cipher-
texts. In: Theory of Cryptography, Lecture Notes in Computer Science,
vol. 3378, pp. 325–341. Springer (2005)

[35] Boyar, J., Peralta, R.: A New Combinational Logic Minimization Tech-
nique with Applications to Cryptology. In: Experimental Algorithms, Lec-
ture Notes in Computer Science, vol. 6049, pp. 178–189. Springer (2010)

[36] Boyar, J., Peralta, R.: A Small Depth-16 Circuit for the AES S-Box. In:
Information Security and Privacy Research, SEC. IFIP Advances in Infor-
mation and Communication Technology, vol. 376, pp. 287–298. Springer
(2012)

124

[37] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomor-
phic Encryption Without Bootstrapping. In: Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference. pp. 309–325. ITCS
’12, ACM, New York, NY, USA (2012)

[38] Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In:
Proc. of USENIX conference on Security. USENIX Association (2010)

[39] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology 13(1), 143–202 (2000)

[40] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/

[41] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: Proceedings of 42nd IEEE Symposium on Founda-
tions of Computer Science, FOCS. pp. 136–145 (2001)

[42] Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Com-
put. Syst. Sci. 18(2), 143–154 (1979)

[43] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure
protocols (abstract). In: Advances in Cryptology - CRYPTO ’87, A Confer-
ence on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA, August 16-20, 1987, Proceedings. Lecture Notes
in Computer Science, vol. 293, p. 462. Springer (1987)

[44] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Al-
gorithms, chap. 8.2 Counting Sort, pp. 168–170. MIT Press and McGraw-
Hill, 2nd edn. (2001)

[45] Cramer, R., Damgård, I.B., Nielsen, J.B.: Secure Multiparty Computation
and Secret Sharing. Cambridge University Press (2015)

[46] Damgård, I., Damgård, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confi-
dential benchmarking based on multiparty computation. Cryptology ePrint
Archive, Report 2015/1006 (2015), http://eprint.iacr.org/

[47] Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Uncondition-
ally secure constant-rounds multi-party computation for equality, compar-
ison, bits and exponentiation. In: Third Theory of Cryptography Confer-
ence, TCC. Lecture Notes in Computer Science, vol. 3876, pp. 285–304.
Springer (2006)

125

http://eprint.iacr.org/
http://eprint.iacr.org/

[48] Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous mul-
tiparty computation: Theory and implementation. In: Public Key Cryptog-
raphy – PKC 2009, Lecture Notes in Computer Science, vol. 5443, pp.
160–179. Springer (2009)

[49] Damgård, I., Keller, M.: Secure multiparty AES. In: Financial Cryptogra-
phy and Data Security. Lecture Notes in Computer Science, vol. 6052, pp.
367–374. Springer (2010)

[50] Damgård, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing
AES via an Actively/Covertly Secure Dishonest-Majority MPC Protocol.
In: Security and Cryptography for Networks, Lecture Notes in Computer
Science, vol. 7485, pp. 241–263. Springer (2012)

[51] Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Advances in Cryptology –
CRYPTO 2012, Lecture Notes in Computer Science, vol. 7417, pp. 643–
662. Springer (2012)

[52] Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient
mixed-protocol secure two-party computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015. The Internet
Society (2015)

[53] Dwork, C.: Differential privacy. In: Proceedings of ICALP 2006. Lecture
Notes in Computer Science, vol. 4052, pp. 1–12. Springer (2006)

[54] Edmonds, J.: How to Think about Algorithms, chap. 5.2 Counting Sort (a
Stable Sort), pp. 72–75. Cambridge University Press (2008)

[55] Fette, I., Melnikov, A.: The WebSocket Protocol. RFC 6455 (Proposed
Standard) (Dec 2011), http://www.ietf.org/rfc/rfc6455.
txt

[56] Forster, F.: libsortnetwork. Published online at http://verplant.
org/libsortnetwork/ (June 2011), accessed December 16, 2015

[57] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster Maliciously Secure
Two-Party Computation Using the GPU. In: Security and Cryptography
for Networks, Lecture Notes in Computer Science, vol. 8642, pp. 358–379.
Springer International Publishing (2014)

[58] Freedman, M., Nissim, K., Pinkas, B.: Efficient Private Matching and Set
Intersection. In: Advances in Cryptology – EUROCRYPT 2004, Lecture
Notes in Computer Science, vol. 3027, pp. 1–19. Springer (2004)

126

http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6455.txt
http://verplant.org/libsortnetwork/
http://verplant.org/libsortnetwork/

[59] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stan-
ford University (2009), https://crypto.stanford.edu/craig

[60] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the Forty-first Annual ACM Symposium on Theory of Com-
puting. pp. 169–178. STOC ’09, ACM, New York, NY, USA (2009)

[61] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomor-
phic encryption. In: Public Key Cryptography – PKC 2012, Lecture Notes
in Computer Science, vol. 7293, pp. 1–16. Springer (2012)

[62] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Advances in Cryptology – EUROCRYPT 2012, Lec-
ture Notes in Computer Science, vol. 7237, pp. 465–482. Springer (2012)

[63] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Advances in Cryptology – CRYPTO 2012, Lecture Notes in
Computer Science, vol. 7417, pp. 850–867. Springer (2012)

[64] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the
AES circuit (updated implementation). Cryptology ePrint Archive, Report
2012/099 (2012), http://eprint.iacr.org/

[65] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In: Advances in Cryptology - CRYPTO 2013, Lecture Notes in Computer
Science, vol. 8042, pp. 75–92. Springer (2013)

[66] Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216
(2003), http://eprint.iacr.org/

[67] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing. pp. 218–229. STOC ’87, ACM, New York, NY, USA (1987)

[68] Grandison, T., Johnson, C., Kiernan, J.: Hippocratic databases: Current
capabilities and future trends. In: Handbook of Database Security, pp. 409–
429. Springer US (2008)

[69] Grofig, P., Härterich, M., Hang, I., Kerschbaum, F., Kohler, M., Schaad,
A., Schröpfer, A., Tighzert, W.: Experiences and observations on the
industrial implementation of a system to search over outsourced en-
crypted data. In: Sicherheit 2014: Sicherheit, Schutz und Zuverlässigkeit,
Beiträge der 7. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft

127

https://crypto.stanford.edu/craig
http://eprint.iacr.org/
http://eprint.iacr.org/

für Informatik e.V. (GI), 19.-21. März 2014, Wien, Österreich. LNI,
vol. 228, pp. 115–125. GI (2014), http://subs.emis.de/LNI/
Proceedings/Proceedings228/article7.html

[70] Hadavi, M.A., Jalili, R., Damiani, E., Cimato, S.: Security and search-
ability in secret sharing-based data outsourcing. International Journal of
Information Security 14(6), 513–529 (2015)

[71] Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort:
An efficient sorting algorithm for practical secure multi-party computation.
Cryptology ePrint Archive, Report 2014/121 (2014), http://eprint.
iacr.org/

[72] Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practi-
cally Efficient Multi-party Sorting Protocols from Comparison Sort Algo-
rithms. In: Proc. of ICISC’12, Lecture Notes in Computer Science, vol.
7839, pp. 202–216. Springer (2013)

[73] Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols
using standardsmartcards. In: ACM Conference on Computer and Com-
munications Security. pp. 491–500 (2008)

[74] The transaction information system for 1000-euro purchases will be com-
pleted in November. Ärileht, Oct 22, 2013. http://arileht.delfi.
ee/news/uudised?id=66955998 (in Estonian). Last accessed: Sept
5, 2014.

[75] Henecka, W., K ögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.:
TASTY: Tool for Automating Secure Two-party Computations. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security. pp. 451–462. CCS ’10, ACM, New York, NY, USA (2010)

[76] Hollerith, H.: US395781 (A) - ART OF COMPILING STATISTICS. Euro-
pean Patent Office (1889), http://worldwide.espacenet.com/
publicationDetails/biblio?CC=US&NR=395781

[77] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster Secure Two-party Compu-
tation Using Garbled Circuits. In: Proceedings of the 20th USENIX Con-
ference on Security. pp. 35–35. SEC’11, USENIX Association, Berkeley,
CA, USA (2011)

[78] Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-
honest protocols with dual execution. In: Security and Privacy (SP), 2012
IEEE Symposium on. pp. 272–284 (May 2012)

128

http://subs.emis.de/LNI/Proceedings/Proceedings228/article7.html
http://subs.emis.de/LNI/Proceedings/Proceedings228/article7.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://arileht.delfi.ee/news/uudised?id=66955998
http://arileht.delfi.ee/news/uudised?id=66955998
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=395781
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=395781

[79] Ippolito, B.: Remote JSON – JSONP. Published online at http://bob.
ippoli.to/archives/2005/12/05/remote-json-jsonp/
(Dec 2005), accessed December 16, 2015

[80] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In:
4th Theory of Cryptography Conference, TCC. Lecture Notes in Computer
Science, vol. 4392, pp. 575–594. Springer (2007)

[81] Ishiguro, T., Kiyomoto, S., Miyake, Y.: Latin Dances Revisited: New An-
alytic Results of Salsa20 and ChaCha. In: Information and Communica-
tions Security, Lecture Notes in Computer Science, vol. 7043, pp. 255–266.
Springer (2011)

[82] ISO: ISO/IEC 14882:2011 Information technology — Programming lan-
guages — C++. International Organization for Standardization (Feb 2012),
http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=50372

[83] Jagomägi, T.: Private communication with an ITL board member (2013)

[84] Jagomägis, R.: SecreC: a Privacy-Aware Programming Language with Ap-
plications in Data Mining. Master’s thesis, Institute of Computer Science,
University of Tartu (2010)

[85] Jagomägis, R., Jensen, J.U., Jõemets, M., Nielsen, K., Nordholt, P.S., Re-
bane, R., Vaht, M.: D23.1 – Secure Survey Prototype. Confidential deliv-
erable of the PRACTICE (Privacy-Preserving Computation in the Cloud)
project (2015)

[86] Jawurek, M., Johns, M., Rieck, K.: Smart metering de-pseudonymization.
In: Proceedings of the 27th Annual Computer Security Applications Con-
ference. pp. 227–236. ACSAC ’11, ACM, New York, NY, USA (2011)

[87] Jónsson, K.V., Kreitz, G., Uddin, M.: Secure Multi-Party Sorting and Ap-
plications. Cryptology ePrint Archive, Report 2011/122 (2011), http:
//eprint.iacr.org/

[88] Kamm, L.: Privacy-preserving statistical analysis using secure multi-party
computation. Ph.D. thesis, University of Tartu (2015), http://hdl.
handle.net/10062/45343

[89] Kamm, L., Willemson, J.: Secure Floating-Point Arithmetic and Private
Satellite Collision Analysis. International Journal of Information Security
pp. 1–18 (2014)

129

http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/
http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://eprint.iacr.org/
http://eprint.iacr.org/
http://hdl.handle.net/10062/45343
http://hdl.handle.net/10062/45343

[90] Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively
secure mpc with dishonest majority. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security. pp. 549–
560. CCS ’13, ACM, New York, NY, USA (2013)

[91] Knuth, D.E.: The art of computer programming, volume 3: (2nd ed.) sort-
ing and searching. Addison Wesley Longman Publishing Co., Inc., USA
(1998)

[92] Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with
malicious adversaries. In: Proceedings of the 21st USENIX Conference
on Security Symposium. pp. 14–14. Security’12, USENIX Association,
Berkeley, CA, USA (2012), http://dl.acm.org/citation.cfm?
id=2362793.2362807

[93] Krips, T., Willemson, J.: Hybrid model of fixed and floating point num-
bers in secure multiparty computations. In: Proceedings of the 17th In-
ternational Information Security Conference, ISC 2014, Lecture Notes in
Computer Science, vol. 8783, pp. 179–197. Springer (2014)

[94] Lane, J., Heus, P., Mulcahy, T.: Data Access in a Cyber World: Making Use
of Cyberinfrastructure. Transactions on Data Privacy 1(1), 2–16 (2008)

[95] Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient
lookup-table protocol in secure multiparty computation. In: ACM SIG-
PLAN International Conference on Functional Programming, ICFP’12. pp.
189–200. ACM (2012)

[96] Laur, S., Talviste, R., Willemson, J.: From Oblivious AES to Efficient and
Secure Database Join in the Multiparty Setting. In: Applied Cryptography
and Network Security. ACNS’13, Lecture Notes in Computer Science, vol.
7954, pp. 84–101. Springer (2013)

[97] Laur, S., Talviste, R., Willemson, J.: From oblivious aes to efficient and
secure database join in the multiparty setting. Cryptology ePrint Archive,
Report 2013/203 (2013), http://eprint.iacr.org/

[98] Laur, S., Willemson, J., Zhang, B.: Round-Efficient Oblivious Database
Manipulation. In: Information Security, Lecture Notes in Computer Sci-
ence, vol. 7001, pp. 262–277. Springer (2011)

[99] Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy Beyond k-
anonymity and `-diversity. In: Proceedings of ICDE 2007 (2007)

130

http://dl.acm.org/citation.cfm?id=2362793.2362807
http://dl.acm.org/citation.cfm?id=2362793.2362807
http://eprint.iacr.org/

[100] Lindell, Y., Pinkas, B.: A Proof of Security of Yao’s Protocol for Two-Party
Computation. Journal of Cryptology 22(2), 161–188 (2009)

[101] Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-
diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge
Discovery from Data (TKDD) 1(1) (Mar 2007)

[102] Malka, L.: Vmcrypt: Modular software architecture for scalable secure
computation. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security. pp. 715–724. CCS ’11, ACM, New York,
NY, USA (2011)

[103] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay—a secure two-party
computation system. In: Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13. pp. 20–20. SSYM’04, USENIX Associ-
ation, Berkeley, CA, USA (2004), http://dl.acm.org/citation.
cfm?id=1251375.1251395

[104] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: Proceedings of the 1st ACM Conference on Electronic
Commerce. pp. 129–139. EC ’99, ACM, New York, NY, USA (1999)

[105] Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse
datasets. In: Proceedings of IEEE S&P ’08. pp. 111–125 (2008)

[106] National Institute of Standards and Technology (NIST): Advanced Encryp-
tion Standard (AES). Federal Information Processing Standards Publica-
tions FIPS-197 (2001)

[107] Nielsen, J., Nordholt, P., Orlandi, C., Burra, S.: A new approach to prac-
tical active-secure two-party computation. In: Advances in Cryptology -
CRYPTO 2012, Lecture Notes in Computer Science, vol. 7417, pp. 681–
700. Springer (2012)

[108] Nielsen, K.: Private communication with the authors of the Danish sugar
beet auction (2015)

[109] Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. RFC
7539 (Informational) (May 2015), http://www.ietf.org/rfc/
rfc7539.txt

[110] Pfitzmann, B., Waidner, M.: Composition and integrity preservation of
secure reactive systems. In: Proceedings of the 7th ACM Conference on
Computer and Communications Security, CCS. pp. 245–254. ACM (2000)

131

http://dl.acm.org/citation.cfm?id=1251375.1251395
http://dl.acm.org/citation.cfm?id=1251375.1251395
http://www.ietf.org/rfc/rfc7539.txt
http://www.ietf.org/rfc/rfc7539.txt

[111] Pikma, T.: Auditing of Secure Multiparty Computations. Master’s thesis,
Institute of Computer Science, University of Tartu (2014)

[112] Pinkas, B., Schneider, T., Smart, N., Williams, S.: Secure two-party com-
putation is practical. In: Advances in Cryptology – ASIACRYPT 2009,
Lecture Notes in Computer Science, vol. 5912, pp. 250–267. Springer
(2009)

[113] Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB:
Protecting Confidentiality with Encrypted Query Processing. In: Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples. pp. 85–100. SOSP ’11, ACM, New York, NY, USA (2011)

[114] Pullonen, P., Siim, S.: Combining Secret Sharing and Garbled Circuits
for Efficient Private IEEE 754 Floating-Point Computations. In: Financial
Cryptography and Data Security - FC 2015 Workshops, BITCOIN, WAHC
and Wearable 2015, San Juan, Puerto Rico, January 30, 2015, Revised Se-
lected Papers, Lecture Notes in Computer Science, vol. 8976, pp. 172–183.
Springer (2015)

[115] R Core Team: R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria (2014), http:
//www.R-project.org/

[116] Shamir, A.: How to share a secret. Communications of the ACM 22, 612–
613 (1979)

[117] Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved Key Recovery Attacks on
Reduced-Round Salsa20 and ChaCha. In: Information Security and Cryp-
tology – ICISC 2012, Lecture Notes in Computer Science, vol. 7839, pp.
337–351. Springer (2013)

[118] Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Designs,
Codes and Cryptography 71(1), 57–81 (2014)

[119] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on
encrypted data. In: Security and Privacy, 2000. S&P 2000. Proceedings.
2000 IEEE Symposium on. pp. 44–55 (2000)

[120] Sweeney, L.: K-anonymity: A model for protecting privacy. Int. J. Uncer-
tain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (Oct 2002)

[121] Talviste, R.: Deploying secure multiparty computation for joint data
analysis—a case study. Master’s thesis, Institute of Computer Science, Uni-
versity of Tartu (2011)

132

http://www.R-project.org/
http://www.R-project.org/

[122] Thompson, K.: Reflections on trusting trust. Communications of the ACM
27(8), 761–763 (1984)

[123] Vabariigi President: “Käibemaksuseaduse ja raamatupidamise seaduse
muutmise seaduse” väljakuulutamata jätmine. RT III, 21.12.2013, 1,
https://www.riigiteataja.ee/akt/321122013001 (in Es-
tonian)

[124] Vaht, M.: The Analysis and Design of a Privacy-Preserving Survey System.
Master’s thesis, Institute of Computer Science, University of Tartu (2015)

[125] Violino, B.: Security technique protects multi-party computation. Com-
munications of the ACM (January 22 2010), published online at http:
//cacm.acm.org/news/68288

[126] Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic pro-
tocols for secure two-party sorting, selection, and permuting. In: Proc. of
ASIACCS’10. pp. 226–237. ACM (2010)

[127] Willemson, J., Ansper, A.: A secure and scalable infrastructure for inter-
organizational data exchange and egovernment applications. In: Availabil-
ity, Reliability and Security, 2008. ARES 08. Third International Confer-
ence on. pp. 572–577 (March 2008)

[128] Willemson, J.: Pseudonymization Service for X-Road eGovernment Data
Exchange Layer. In: Proceedings of EGOVIS 2011. Lecture Notes in Com-
puter Science, vol. 6866, pp. 135–145. Springer (2011)

[129] Yao, A.C.C.: Protocols for secure computations. In: Foundations of Com-
puter Science, 1982. SFCS ’08. 23rd Annual Symposium on. pp. 160–164
(Nov 1982)

[130] Yao, A.C.C.: How to generate and exchange secrets. In: Foundations of
Computer Science, 1986., 27th Annual Symposium on. pp. 162–167 (Oct
1986)

[131] Zhang, B.: Generic constant-round oblivious sorting algorithm for mpc.
In: Provable Security, Lecture Notes in Computer Science, vol. 6980, pp.
240–256. Springer (2011)

133

https://www.riigiteataja.ee/akt/321122013001
http://cacm.acm.org/news/68288
http://cacm.acm.org/news/68288

ACKNOWLEDGMENTS

Throughout my studies, I have received support from the European Social Fund
Doctoral Studies and Internationalisation Programme DoRa that has given me the
opportunity to combine my studies with the work I love. During my studies,
my research has been mainly supported by the following projects and grants: the
European Union Seventh Framework Programme (FP7/2007- 2013) under grant
agreement no. 284731 (UaESMC), the Implementing Agency Archimedes Foun-
dation for the Privacy-preserving statistical studies on linked databases (PRIST)
project, and the European Union Horison 2020 innovation and cooperation project
SUNFISH under grant agreement no. 644666. I also recognise the support by the
European Regional Development Fund through the Estonian Center of Excellence
in Computer Science (EXCS) and the European Social Fund through the Estonian
Doctoral School in Information and Communication Technology (IKTDK).

I’d like to thank both academic and supporting staff in the Institute of Com-
puter Science at the University of Tartu and my colleagues at Cybernetica AS –
the two organisations that have become a large part of my identity and without
which it is difficult to imagine my everyday life. My sincere gratitude goes out to
the whole SHAREMIND team and especially to all of the colleagues at Cybernetica
who have supervised me, either officially or unofficially: Dan Bogdanov, Peeter
Laud, Jan Willemson and Liina Kamm.

However, most of all, I am grateful to my supervisor, colleague, friend and
mentor Dan Bogdanov who has guided me starting from my bachelor studies.
Without his support, I would certainly not be where I am now, both profession-
ally and academically. As the challenges of this thesis were both practical and
theoretical, I am most grateful for the insights of my academical supervisor Sven
Laur. He ensured that I always go beyond solving the immediate problem and give
the issue a full scientific treatment. There is nothing more heart-warming than a
supervisor finally saying “Looks like a thesis.”

Finally, I would like to give a warm hug to my wife Karin who has stood
beside me throughout my studies and career, supporting and expressing great in-
terest in what I do. I know that I am not an easy person to be with, especially
when there is a deadline near by that I have to meet. Thank you.

134

KOKKUVÕTE
(SUMMARY IN ESTONIAN)

TURVALISE ÜHISARVUTUSE
RAKENDAMINE

Andmetest on kasu vaid siis kui neid kasutada. Üha suurenevate andmemahtudega
tekib organisatsioonidel uus probleem – neil ei ole ressursse, et kogutud andmeid
talletada ja analüüsida. Pilveteenuste kasutamine andmete hoiustamiseks ja arvu-
tusteks on mitmel puhul majanduslikult mõistlik lahendus, kuid tihti ei luba kon-
fidentsiaalsusnõuded andmeid pilves hoida. Andmete krüpteerimine enne pilve
laadimist lahendab selle probleemi, kuid sel juhul ei saa nende andmetega pilves
midagi peale hakata. Pilves hoiustatud krüpteeritud andmete pidev allalaadimine
ja dekrüpteerimine ei ole andmemahte arvestades tavaliselt sobiv lahendus.

Isegi, kui selline lähenemisviis organisatsioonile sobib, piirab see tugevalt ko-
gutud andmete potentsiaalset väärtust. Kõige enam saab andmetest õppida, kui
ühendada erinevad andmekogud. Nii on võimalik avastada seoseid ja trende või
saada jälile sotsiaalsete probleemide põhjustele. Näiteks saab riik haridus- ja mak-
suandmeid ühendades läbi viia kõrghariduse erialade tasuvusanalüüse. Sarnaseid
näiteid leiab ka erasektorist – ühendades erinevate pankade maksekohustuste and-
med, on võimalik väljastada väiksema krediidiriskiga laene.

Pahatihti on aga selliste andmekogude liitmine konfidentsiaalsus- või privaat-
susnõuete tõttu keelatud. Õigusega, sest taoline kombineeritud andmekogu oleks
atraktiivne sihtmärk nii häkkeritele kui ka lihtsalt uudishimulikele töötajatele ja
ametnikele, kes oma positsiooni kuritarvitada võivad.

Turvaline ühisarvutus on tehnoloogia, mis võimaldab mitmel sõltumatul osa-
poolel koos andmeid töödelda, ilma et ükski neist pääseks ligi konkreetsetele väär-
tustele. Nimetatud tehnoloogia on krüptograafia teoorias tuntud juba enam kui 30
aastat, kuid esimese päris andmete peal töötava turvalise ühisarvutuse rakenduse-

135

ni jõuti alles 2008. aastal. Peale seda on turvalist arvutust kasutatud ka hajusates
lahendustes, mis töötavad üle interneti ning seda tehnoloogiat pakutakse isegi tee-
nusena konkreetsete usaldus- ja privaatsusprobleemide lahendamiseks.

Selles töös vaatlemegi usaldusküsimusi ja tehnilisi probleeme, mis kaasnevad
turvalise ühisarvutuse tehnoloogia juurutamisega praktilistes rakendustes. Esmalt
anname ülevaate kahest esimesest praktilisest turvalise ühisarvutuse juurutusest,
milleks olid turvaline suhkrupeedi oksjon Taanis 2008. aastal ning Eesti Infoteh-
noloogia ja Telekommunikatsiooni Liidu (ITL) liikmete finantsandmete analüüs
2011. aastal. Toome välja nende rakenduste kitsaskohad, mis võiks turvalise ühis-
arvutuse edasist levikut piirata, ning kirjeldame lahendusi.

Käesoleva töö autor on teostanud ja testinud turvalist andmete sorteerimist
ning erinevate andmekogude liitmist. Olulise tulemusena kirjeldame ka AES plokk-
šifri teostust, kus ei võti, andmed ega ka krüpteeritud tulemus pole ühelegi arvu-
tavale osapoolele teada.

Lähtudes ITL-i liikmete finantsandmete analüüsirakenduse näitest, pöörame
erilist tähelepanu turvalist ühisarvutust kasutavatele veebirakendustele. Kuna üha
enam rakendusi ja teenuseid muutuvad pilvepõhisteks, muutuvad ka veebipõhised
kasutajaliidesed järjest olulisemaks. Anname ülevaate, kuidas veebitehnoloogiate
areng võimaldab üha mugavamalt veebilehitsejal teostada krüptograafilisi operat-
sioone ja suhelda turvalise ühisarvutuse arvutusosapooltega.

Käesoleva töö põhitulemus on ülevaade esimesest turvalise ühisarvutusega
läbiviidud uuringust PRIST, milles kasutati suuremahulisi registriandmeid. Au-
tor keskendub eelkõige uuringu tehnilistele, juurutus- ja usaldusküsimustele, mis
tulenevad turvalise ühisarvutuse rakendamisest suurtes organisatsioonides nagu
riigiasutused. Kirjeldame protsessi, mis on vaja läbida, et tagada sellise uuringu
vastavus seadusandlusega. Näiteks on PRIST uuring esimene turvalise ühisarvu-
tuse rakendus, kus arvutusosapoolte sõltumatus ja sellest tulenevad kohustused on
ka lepinguliselt tagatud. Anname ülevaate projekti käigus tõstatunud tehnilistest,
inimlikest ja jõudlusprobleemidest, kirjeldame kasutatud lahendusi ning pakume
välja ideid, kuidas taolisi probleeme tulevikus vältida.

Lõpetuseks pakume töös välja arhitektuuri, mis ühendab endas födereeritud
andmevahetusplatvormi ja turvalise ühisarvutuse tehnoloogiat. Selline lahendus
võimaldab läbi viia erinevaid andmekogusid hõlmavaid uuringuid, tagades sa-
mal ajal iga andmeomaniku seatud andmete kasutamise piirangu range järgimise.
Praktilise näitena pakub töö autor välja Eesti riigi andmevahetuskihi X-tee täius-
tamise turvalise ühisarvutuse teenusega, kasutades selleks turvalise ühisarvutuse
platvormi SHAREMIND. Selline arhitektuur muudab PRIST-i laadsete mitut and-
mekogu hõlmavate uuringute läbiviimise oluliselt kiiremaks ja mugavamaks. See
omakorda võimaldab avalikul võimul olla paremini kursis riigis toimuvaga ning
teostada efektiivsemat juhtimist.

136

LIST OF ORIGINAL PUBLICATIONS

1. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis (short paper). In: Proceedings of
the 16th International Conference on Financial Cryptography and Data Se-
curity. FC’12. Lecture Notes in Computer Science, vol. 7397, pp. 57–64.
Springer (2012).

2. Laur, S., Talviste, R., Willemson, J.: From Oblivious AES to Efficient and
Secure Database Join in the Multiparty Setting. In: Applied Cryptography
and Network Security. ACNS’13, Lecture Notes in Computer Science, vol.
7954, pp. 84–101. Springer (2013).

3. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste,
R., Willemson, J.: Privacy-preserving statistical data analysis on federated
databases. In: Proceedings of the Annual Privacy Forum. APF’14. Lecture
Notes in Computer Science, vol. 8450, pp. 30–55. Springer (2014).

4. Bogdanov, D., Laur, S., Talviste, R.: A Practical Analysis of Oblivious Sort-
ing Algorithms for Secure Multi-party Computation. In: Proceedings of the
19th Nordic Conference on Secure IT Systems. NordSec’14, Lecture Notes
in Computer Science, vol. 8788, pp. 59–74. Springer (2014).

5. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Stu-
dents and Taxes: a Privacy-Preserving Social Study Using Secure Compu-
tation. Proceedings on Privacy Enhancing Technologies (PoPETs) 2016(3)
(2016), (to appear).

137

CURRICULUM VITAE

Personal data

Name Riivo Talviste

Birth April 2nd, 1987
Pärnu, Estonia

Citizenship Estonian

Languages Estonian, English

E-mail riivo.talviste@cyber.ee

Education

2011– University of Tartu, Ph.D. candidate in Computer Science

2009–2011 University of Tartu, M.Sc. in Information Technology

2006–2009 University of Tartu, B.Sc. in Information Technology

2003–2006 Pärnu Koidula Gymnasium, secondary education

1994–2003 Pärnu Old Town Secondary School, primary education

Employment

2015– University of Tartu, visiting lecturer in IT Law

2012– Cybernetica AS, junior researcher

2011–2012 Cybernetica AS, programmer

2008–2010 Swedbank AS, software developer

138

ELULOOKIRJELDUS

Isikuandmed

Nimi Riivo Talviste

Sünniaeg ja -koht 2. aprill 1987
Pärnu, Eesti

Kodakondsus eestlane

Keelteoskus eesti, inglise

E-post riivo.talviste@cyber.ee

Haridustee

2011– Tartu Ülikool, informaatika doktorant

2009–2011 Tartu Ülikool, MSc infotehnoloogias

2006–2009 Tartu Ülikool, BSc infotehnoloogias

2003–2006 Pärnu Koidula Gümnaasium, keskharidus

1994–2003 Pärnu Vanalinna Põhikool, põhiharidus

Teenistuskäik

2015– Tartu Ülikool, IT-õiguse külalislektor

2012– Cybernetica AS, nooremteadur

2011–2012 Cybernetica AS, programmeerija

2008–2010 Swedbank AS, tarkvaraarendaja

139

140

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

141

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.

142

43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.

143

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying gene
regulation. Tartu 2011, 151 p.

75. Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary

associative algebras. Tartu 2011, 99 p.
76. Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p.
77. Bingsheng Zhang. Efficient cryptographic protocols for secure and private

remote databases. Tartu 2011, 206 p.
78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software develop-

ment projects – Estonian experience. Tartu 2012, 106 p.
80. Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
82. Vitali Retšnoi. Vector fields and Lie group representations. Tartu 2012,

108 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
85. Erge Ideon. Rational spline collocation for boundary value problems.

Tartu, 2013, 111 p.
86. Esta Kägo. Natural vibrations of elastic stepped plates with cracks. Tartu,

2013, 114 p.

87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language
development in enterprise information systems. Tartu, 2013, 151 p.

88. Boriss Vlassov. Optimization of stepped plates in the case of smooth yield
surfaces. Tartu, 2013, 104 p.

89. Elina Safiulina. Parallel and semiparallel space-like submanifolds of low
dimension in pseudo-Euclidean space. Tartu, 2013, 85 p.

90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,
2014, 121 p.

91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java
Applications. Tartu, 2014, 155 p.

92. Naved Ahmed. Deriving Security Requirements from Business Process
Models. Tartu, 2014, 171 p.

93. Kerli Orav-Puurand. Central Part Interpolation Schemes for Weakly
Singular Integral Equations. Tartu, 2014, 109 p.

94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-
party computation. Tartu, 2015, 201 p.

95. Kaido Lätt. Singular fractional differential equations and cordial Volterra
integral operators. Tartu, 2015, 93 p.

96. Oleg Košik. Categorical equivalence in algebra. Tartu, 2015, 84 p.
97. Kati Ain. Compactness and null sequences defined by spaces. Tartu,

2015, 90 p.
98. Helle Hallik. Rational spline histopolation. Tartu, 2015, 100 p.
99. Johann Langemets. Geometrical structure in diameter 2 Banach spaces.

Tartu, 2015, 132 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

	List of publications
	Abstract
	Introduction
	Preliminaries
	Biological background
	Statistical background

	Sources of multivariate data
	Gene expression microarray
	Tissue microarray
	SNP array
	RNA sequencing
	Reverse transcription quantitative PCR
	Summary

	Analysis methods
	Exploratory analysis methods
	Principal component analysis
	Clustering

	Confirmatory analysis methods
	Differential expression
	Gene set analysis
	Support vector machine
	Binomial test

	Summary

	Comparison of cancer models
	Overview of PREDECT project
	Centralized data collection and analysis
	Improved breast cancer xenograft model (paper I)
	Tissue slices in different cultivation conditions (paper II)
	ClustVis web tool for matrix visualization (paper III)

	Imprinted and monoallelically expressed genes in the human placenta (paper IV)
	Molecular mechanisms of atopic dermatitis (paper V)
	microRNAs as diagnostic markers for endometriosis (paper VI)
	Conclusions
	Bibliography
	Acknowledgements
	Kokkuvõte (Summary in Estonian)
	Publications
	Curriculum vitae
	Elulookirjeldus
	2_slices_crop.pdf
	Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices

	Results

	Atmospheric oxygen levels and filter supports are required for retention of tissue morphology in slices.
	Cultivation of tumour slices induces changes in key stress pathways.
	Cultivation at an air-liquid interface, with a filter support, induces loco-regional changes in biomarkers.
	The type of slice support system impacts upon stress biomarker expression.
	Archiving of tumour slices.

	Discussion

	Methods

	Tumour material from mice.
	Cell line-derived xenograft (CDX) tumour samples.
	Patient-derived xenograft (PDX) tumour samples.
	GEMM-derived primary NSCLC tumours.
	Tumour harvesting.
	Primary Patient Tumours.
	Tissue slice preparation and cultivation.
	TMA preparation from thin tissue slices.
	Immunohistochemical staining.
	Quantitation of IHC.
	Quantitation of necrosis in GEMM slices.
	Total RNA extraction from tumour tissues.
	cDNA synthesis and TaqMan-based qPCR.
	Gene expression analysis.

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Tumour tissue slice culture workflow.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Histopathology of cultivated tumour slices.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Evaluation, by Principal Component Analysis (PCA), of the changes in stress biomarkers observed under different conditions of slice culture.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Pathway changes induced by tumour slice culture.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Loco-regional changes in IHC biomarkers in tumour slices cultivated under optimal conditions (filter support, atmospheric oxygen).
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Observations made in murine CDX and PDX tumours were confirmed in patient tumour samples.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Comparison of slice support materials and slice incubation cultivation systems.
	﻿Figure 8﻿﻿.﻿﻿ ﻿ Tissue Micro Array (TMA) workflow for the archiving of tissue slice material.
	﻿Table 1﻿﻿. ﻿ Summary of tested cultivation conditions and tumour models used.
	﻿Table 2﻿﻿. ﻿ Tissue specific conditions for immunohistochemical staining (RT - room temperature).

	5_apoptosis_crop.pdf
	Mechanisms of IFN-γ–induced apoptosis of human skin keratinocytes in patients with atopic dermatitis
	Methods
	Keratinocyte cultures and apoptosis detection
	Skin biopsy specimens for mRNA expression analysis
	mRNA array analysis
	Statistics

	Results
	Increased IFN-γ–induced apoptosis of keratinocytes from patients with AD
	The expression of death and decoy receptors and their ligands in keratinocytes is not different between healthy subjects, p ...
	Several apoptosis-related genes are differentially regulated in keratinocytes from patients with AD
	Increased expression of IFN-γ–regulated genes is observed in biopsy specimens from lesional AD skin
	CCL5, CCL8, and IFITM1 proteins are highly expressed in AD skin
	IFN-γ induces the expression of the potential target genes in keratinocytes
	DUSP1, ADM, RAB31, and IFTM cluster gene variants are potentially associated with AD

	Discussion
	References

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	talviste-thesis-to-print.pdf
	Abstract
	Introduction
	Data privacy and secure computation
	Claims of this thesis
	Outline and author's contributions

	Information systems and SMC
	Data security in modern information systems
	Secure computation
	Yao's garbled circuits
	Fully homomorphic encryption
	Linear secret sharing
	Sharemind SMC framework
	Security model for SMC
	Roles in SMC deployment

	Combining SMC into information systems
	Input parties
	Computation parties
	Result parties

	Challenges in developing real-world SMC applications
	State of the art in real-world SMC
	Danish sugar beet auction
	Financial benchmarking with SMC

	Missing capabilities and algorithms
	Lack of best practices in delivering and administration
	Limited practical validation

	Deploying SMC for web applications
	Data flow
	Overcoming barriers
	Secret sharing in web browsers
	Communicating with computation parties

	Prototypes
	Cloud demo
	Internal employee satisfaction survey
	Tax fraud detection prototype
	Secure survey system

	Best practices

	Privacy-preserving database linking
	Introduction
	Privacy-preserving join operation
	Database join for unique key values
	Handling unique multi-column key values
	Database join for non-unique key values
	Related work

	Oblivious AES
	Oblivious implementation of the S-box
	Security analysis
	Performance tweaks

	Benchmarking results
	Test setup
	AES performance
	Secure database join

	Oblivious sorting
	Introduction
	Oblivious sorting algorithms
	Constructions based on oblivious shuffling
	Sorting networks
	Radix sort

	Optimisations
	Vectorisation
	Share representation
	Assuring uniqueness
	Optimising sorting networks

	Sorting secret-shared matrices
	Benchmarking results
	Algorithm implementations
	Test setup
	Sorting vectors
	Sorting matrices

	Conclusion

	Deploying SMC for data integration
	Motivation
	The PRIST project
	Overcoming barriers
	Tools for statisticians
	Data protection regulation
	Tax secrecy
	Contracts

	Project life cycle
	Development and testing
	Delivery and setup
	Setup and administration
	Post mortem

	Best practices and lessons learned
	Fault tolerance
	Performance tweaks
	Rmind recode function

	Conclusion

	Privacy-preserving data integration on federated databases
	Motivation
	The Unified eXchange Platform
	Requirements for SMC
	Status of privacy protection on UXP
	UXP components

	Sharemind as a UXP service
	Roles and data flow
	A hybrid setup
	PRIST as a service
	Final considerations

	Conclusion
	Bibliography
	Acknowledgments
	Kokkuvõte (Summary in Estonian)
	List of original publications
	Curriculum Vitae
	Elulookirjeldus

	nim.pdf
	List of publications
	Abstract
	Introduction
	Preliminaries
	Biological background
	Statistical background

	Sources of multivariate data
	Gene expression microarray
	Tissue microarray
	SNP array
	RNA sequencing
	Reverse transcription quantitative PCR
	Summary

	Analysis methods
	Exploratory analysis methods
	Principal component analysis
	Clustering

	Confirmatory analysis methods
	Differential expression
	Gene set analysis
	Support vector machine
	Binomial test

	Summary

	Comparison of cancer models
	Overview of PREDECT project
	Centralized data collection and analysis
	Improved breast cancer xenograft model (paper I)
	Tissue slices in different cultivation conditions (paper II)
	ClustVis web tool for matrix visualization (paper III)

	Imprinted and monoallelically expressed genes in the human placenta (paper IV)
	Molecular mechanisms of atopic dermatitis (paper V)
	microRNAs as diagnostic markers for endometriosis (paper VI)
	Conclusions
	Bibliography
	Acknowledgements
	Kokkuvõte (Summary in Estonian)
	Publications
	Curriculum vitae
	Elulookirjeldus
	2_slices_crop.pdf
	Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices

	Results

	Atmospheric oxygen levels and filter supports are required for retention of tissue morphology in slices.
	Cultivation of tumour slices induces changes in key stress pathways.
	Cultivation at an air-liquid interface, with a filter support, induces loco-regional changes in biomarkers.
	The type of slice support system impacts upon stress biomarker expression.
	Archiving of tumour slices.

	Discussion

	Methods

	Tumour material from mice.
	Cell line-derived xenograft (CDX) tumour samples.
	Patient-derived xenograft (PDX) tumour samples.
	GEMM-derived primary NSCLC tumours.
	Tumour harvesting.
	Primary Patient Tumours.
	Tissue slice preparation and cultivation.
	TMA preparation from thin tissue slices.
	Immunohistochemical staining.
	Quantitation of IHC.
	Quantitation of necrosis in GEMM slices.
	Total RNA extraction from tumour tissues.
	cDNA synthesis and TaqMan-based qPCR.
	Gene expression analysis.

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Tumour tissue slice culture workflow.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Histopathology of cultivated tumour slices.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Evaluation, by Principal Component Analysis (PCA), of the changes in stress biomarkers observed under different conditions of slice culture.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Pathway changes induced by tumour slice culture.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Loco-regional changes in IHC biomarkers in tumour slices cultivated under optimal conditions (filter support, atmospheric oxygen).
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Observations made in murine CDX and PDX tumours were confirmed in patient tumour samples.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Comparison of slice support materials and slice incubation cultivation systems.
	﻿Figure 8﻿﻿.﻿﻿ ﻿ Tissue Micro Array (TMA) workflow for the archiving of tissue slice material.
	﻿Table 1﻿﻿. ﻿ Summary of tested cultivation conditions and tumour models used.
	﻿Table 2﻿﻿. ﻿ Tissue specific conditions for immunohistochemical staining (RT - room temperature).

	5_apoptosis_crop.pdf
	Mechanisms of IFN-γ–induced apoptosis of human skin keratinocytes in patients with atopic dermatitis
	Methods
	Keratinocyte cultures and apoptosis detection
	Skin biopsy specimens for mRNA expression analysis
	mRNA array analysis
	Statistics

	Results
	Increased IFN-γ–induced apoptosis of keratinocytes from patients with AD
	The expression of death and decoy receptors and their ligands in keratinocytes is not different between healthy subjects, p ...
	Several apoptosis-related genes are differentially regulated in keratinocytes from patients with AD
	Increased expression of IFN-γ–regulated genes is observed in biopsy specimens from lesional AD skin
	CCL5, CCL8, and IFITM1 proteins are highly expressed in AD skin
	IFN-γ induces the expression of the potential target genes in keratinocytes
	DUSP1, ADM, RAB31, and IFTM cluster gene variants are potentially associated with AD

	Discussion
	References

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

