DWTS

Doppler Wind and Temperature Sounder

The next step for improving weather forecasts

DWTS: Motivation

Why measure winds in the upper atmosphere?

- 1. Weather Forecasting
- 2. Severe Storm Impact
- 3. Space Weather

Weather Forecasting

- Medium- and long-range weather is well-known to be significantly affected by stratospheric dynamics
 - Baldwin and Dunkerton (2001): Stratospheric harbingers can be used as a predictor of tropospheric weather regimes
 - Thompson et al. (2001): Dynamic coupling of stratosphere and troposphere yields statistically significant predictability on monthly and yearly timescales
 - Charron et al. (2010): Discuss stratospheric extensions to improve tropospheric forecasts
 - Sigmond et al. (2013): Showed enhanced predictability by using a good representation of the stratosphere.
- Forecast improvements await the first global stratospheric wind and temperature observation system!

From Sigmond et al., 2013

Severe Storm Intensity

 Predicting tropical cyclone <u>intensity</u> has been limited by lack of global stratospheric wind measurements

Space Weather

Office of Science and Technology Policy

White House OSTP recently released Space Weather report:

"Space Weather Observing Systems: Current Capabilities and Requirements for the Next Decade"

Calls out the critical gap in measurements of mesospheric winds and temperature and neutral winds.

Environmental Parameter	Platform/Asset (owner)	Req	Requirements	suts	Me	Measurement	nent				Dat	3 Avail	Data Availability				Comments
		200	000	AZAN	poeds	bnuona	utie-nl atomañ	EATI	HAIS	FY14	FYIS	PIAS	FY18	FY19	FY20	HASS	22.43.5
Wesospheric Temperature	perature		۲			H	H	Э	b	0	٥	0	0	2	D	0	<u>(n</u>
	TIMED/TIDI (NASA)				¥1	H	22			H			H			H	TIMED // EOL: FY14, No NRT data available
	TIMED/SABER (NASA)				¥1	H	Et.						H			H	TIMED // EOL: FY14; No NRT data available
	DMSP/SSMIS (DoD)				ts	-	#a	5	0	n n	0	0	n n	n n	2	0	U) Current stated EOL for DMSP F19 is 2021 per CSAT
	JPSS/ATMS (DoC)				uş.	H	ut:						F				JPSS // EOL: >FY22; Mesosphere capability discussed but not planned
	MetOp/AMSU (EUMETSAT)				115	H	22			H		H	ı				MetOp // EOL: >FY22; Mesosphere capability not planned
	AURA/MLS (NASA)	Γ	Γ		u _s	H	12	(1)	(3)	(3)		H	H			H	AURA // EOL: uncertain; Utilitity is good; Availability is uncertain
	ODIN/OSIRIS (ESA)				45	-	22					H	H	F		H	ODIN//EOL: TSD
	Lidar Network (NSF)					41	壮		H	H			H	Г		H	NSF-sponsored ground stations at a handful of American sector and Europian sites
	VHF Radars (NSF)					n	22			H			H	Г		H	NSF-sponsored ground stations at a handful of American sector and Europian sites
esospheric Wind	Wesospheric Winds (Speed & Direction)		-			H	H										
	TIMED/TIDI (NASA)				22.	H	23.						H			H	TIMED // EDL: FY14, No NRT data available
	MF/HF Radars (NOAA & NSF)					19	22		H	Н		Н	H			H	NSF sponsored ground stations at a handful of American sector and Europian sites
	VHF Radars (NSF)					==	22		-	H		H	H			H	NSF sponsored ground stations at a handful of American sector and Europian sites
utral Winds (Sp.	Veutral Winds (Speed & Direction)	۲	۲			H	H	٦	n	0							
	C/NOFS/NWM (DoD)				43.	F	22.	Þ	2				H			H	C/NOFS EQU: FY12 ; quality has been limited by solar conditions, single satellite
	SENSE/WINCS (DoD)				ts	H	22		f	חר		H	Н	П	H	Н	Coverage limited by single in situ measurement
	TIMED/TIDI (NASA)				¥5		tt						H			H	TIMED EOL: FY14, no NRT data available
	Optical Interferometer Network (NSF)					73	22						Н			H	NSF-sponsored ground stations at a handful of American sector and Europian sites
utral Density, C.	Veutral Density, Composition & Temperature	۰	۰			H	H	_		-	-	i i	2	D	D	0	(n
	(0o0) ISUSS/SSING				41.	H	22	-1	-	-	7	n	nn	n	n	0 0	U) Current stated EOL for DMSP F-19 is 2021 per CSAT
	(dod) inds/szani (bob)				vis	H	n	-			Е	2	0	2	a	0 10	U) DMSP F-19 // EOL: FY21, Limited data quality on F18 also on F17 & F19 terminator orbits
	SENSE/WINCS (DoD)				ŧs.	-	22		f	0			Н			H	SENSE EOL: FY14 coverage limited by single in situ measurement
	GRACE (NASA)				4tt	F	źr.			H		H	H			H	GRACE in extended mission ops., No NRT data available
	GOCE (ESA)				¥\$	F	21		H	H		H	H			H	GOCE // EOL: FY12, No NRT data available
	SWARM (ESA)				¥3.		22		H	Н		Н	Н			Н	SWARM // EOL: FY16, NRT data availability unknown; operational products not assured
	TIMED/TIDI (NASA)					Н	Н		H	Н		Н	Н	П	H	Н	TIMED // EOL: FY14, No NRT data available
	TIMED/SABER (NASA)				115		22			H			H			H	TIMED // EOL: FY14, No NRT data available
	Optical Interferometer Network (NSF)					73	22			Н			Н				NSF-sponsored ground stations at a handful of American sector and Europian sites
Veutral Density Profile	rofile	-	-			Н	L	-	-	-	-	n	0	0	D	0 10	(n)
	DMSP/SSUSI (DoD)				123	Н	22	-	-	_	-	0	0	٦	n	0 (0	U) Current stated EOL for DMSP F-19 is 2021 per CSAT
	(DoD) (DoD)				43	H	22		=	-	Н	U.	n n	n	7	(0)	U) DMSP F-19 // EOL: FY21, Limited data quality on F18 also on F17 & F19 terminator orbits

Space Weather

Critical effects on communication, commerce, civilian and military space assets

- Electric Power Grid: Large scale blackouts and damage to transformers
- □ Global Satellite Communications: Widespread service disruptions
- GPS Positioning and Timing: Degradations of military weapons accuracy, air traffic management, transportation, navigation, commerce, wireless comm., and more
- Satellites & Spacecraft: Loss of satellites/space situational awareness, increased risk of satellite loss and to astronaut health

DWTS: Measurement Concept

Courtesy Space Dynamics Lab

Doppler-modulated Gas Correlation

- Gas-filter correlation radiometer imaging the limb to the side of the spacecraft
- Leading-edge pixels see blue-shifted emission; trailing pixels see redshifted emission.
- Each row collects a full
 Doppler scan for each air
 parcel at that altitude

Doppler Spectroscopy

Doppler Spectroscopy

Top: Gas-cell transmittance vs. wavenumber showing a CO_2 absorption line.

Middle 7 panels: Atmospheric emission from this CO_2 line reaching 7 different columns of detector

Bottom: Doppler integrated signal is formed by combining measurements across a row.

Width of the measured signal indicates the air temperature.

Cross-track winds appear as a shift along horizontal axis. Along track winds scale the horizontal axis. Total area of the signal (normalized by the maximum) provides a direct calibration of cell pressure.

Nitric oxide spectrum at 5.4 microns

Lambda-doubling in NO spectrum

NO doublets produce multi-peak signal

Doppler shift (view angle)

DWTS Performance

- Full performance evaluation with rigorous radiometric simulations
 - Day/night
 - Various solar activity levels
 - Along- and cross-track sensitivities
 - Temperature precision
 - Coverage statistics

Cross-track winds shift the signal

Along-track winds scale the spectrum

Signal width indicates temperature

Effect of solar activity

Upper limit of measurement for day, night, at solar max, min and storms. Light blue is predicted maximum retrieval altitude. Green has S/N 10 times greater than threshold.

Predicted Sensitivity

Comparison with Other Instruments

Compact 3-channel design

Courtesy Space Dynamics Lab

DWTS Design	n Specs	
mass	7.0 kg	
power	7.4 Watts	5
volume	14 x 20 x	< 30 cm
data rate	20 kbps c	gvg
spectral	NO	$1851 \pm 22 \text{ cm}^{-1}$
bandpasses	N_2O	$2165 \pm 10 \text{ cm}^{-1}$
	¹³ CO ₂	$2270 \pm 12 \text{ cm}^{-1}$
FOV	20 x 20 d	deg
aperture	5 cm dian	neter
focal length	10 cm	

Global Coverage

DWTS gives daily global coverage, and biweekly full local-solar time sampling

Example coverage with only 2 microsats

DWTS

- There is a critical need for high-altitude wind and temperature observations (e.g. new US Presidential study and GAO report)
 - Weather forecasting
 - Severe storm prediction
 - Space weather monitoring
- DWTS uses new approach with tested technology and will provide global winds and temperatures from cloud-top to 250 km. (Such measurements are unavailable from other technologies.)
- Currently in discussions with NOAA, Taiwan, NASA, JAXA and CSA to deploy first satellite. When fully implemented, a constellation of small-satellites in LEO will provide the critical wind and temperature data for weather, storm prediction and space weather needs.

The End

DWTS

Earth + DWTS

