Journal article Open Access

Forecasting for Financial Stock Returns Using a Quantile Function Model

Yuzhi Cai


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Koenker, R. (2005). Quantiles Regression. Cambridge University Press.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Gilchrist, W.G. (2000). Statistical Modelling with Quantile Functions.
Chapman &amp; Hall/CRC.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cai, Y. (2015). A general quantile function model for economic and
financial time series. Econometric Reviews. Accepted.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cai, Y. (2013). Quantile function models for survival data analysis.
Australian and New Zealand Journal of Statistics 55, 155-172.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cai, Y. (2010a). Multivariate quantile function models. Statistica Sinica
20, 481-496.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cai, Y. (2010b). Polynomial power-Pareto quantile function models.
Extremes 13, 291-314.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cai, Y. (2009). Autoregression with non-Gaussian Innovations.
Journal of Time Series Econometrics, Vol.1, Iss.2, Article 2. DOI:
10.2202/1941-1928.1016.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cai, Y, Montes-Rojas, G. and Olmo, J. (2013). Quantile double AR time
series models for financial returns. Journal of Forecasting 32, 551-560.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Engle, R.F. and Manganelli, S. (2004). CAViaR: Conditional
autoregressive value at risk by regression quantiles. Journal of
Business and Economic Statistics 22, 367-381.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">DJIA</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Financial returns</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">predictive distribution</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">quantile function model.</subfield>
  </datafield>
  <controlfield tag="005">20200120171155.0</controlfield>
  <controlfield tag="001">1109383</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">294399</subfield>
    <subfield code="z">md5:775d4d71fb449ff4042f5c40465e3045</subfield>
    <subfield code="u">https://zenodo.org/record/1109383/files/10002644.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-09-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-waset</subfield>
    <subfield code="o">oai:zenodo.org:1109383</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Yuzhi Cai</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Forecasting for Financial Stock Returns Using a Quantile Function Model</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-waset</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">In this talk, we introduce a newly developed quantile
function model that can be used for estimating conditional
distributions of financial returns and for obtaining multi-step ahead
out-of-sample predictive distributions of financial returns. Since we
forecast the whole conditional distributions, any predictive quantity
of interest about the future financial returns can be obtained simply
as a by-product of the method. We also show an application of the
model to the daily closing prices of Dow Jones Industrial Average
(DJIA) series over the period from 2 January 2004 - 8 October 2010.
We obtained the predictive distributions up to 15 days ahead for
the DJIA returns, which were further compared with the actually
observed returns and those predicted from an AR-GARCH model.
The results show that the new model can capture the main features
of financial returns and provide a better fitted model together with
improved mean forecasts compared with conventional methods. We
hope this talk will help audience to see that this new model has the
potential to be very useful in practice.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1109382</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1109383</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
263
83
views
downloads
All versions This version
Views 263261
Downloads 8383
Data volume 24.4 MB24.4 MB
Unique views 245243
Unique downloads 8080

Share

Cite as