Journal article Open Access
Seyed Habib A. Rahmati; Mohsen Sadegh Amalnick
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">Automotive Industry Action Group (AIAG), Measurement Systems Analysis Reference Manual. 3rd ed., Chrysler, Ford, General Motors Supplier Quality Requirements Task Force, 2002.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">J. M. Juran, F. M. Gyrna, Quality Planning and Analysis, McGraw-Hill, New York, 1993.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">S. Senol, Measurement system analysis using designed experiments with minimum α-β Risks and n. Measurement, 36, 131–141, 2004.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">H. T. Lee, Cpk index estimation using fuzzy numbers. European Journal of Operational Research, 129, 683-688, 2001.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">P. K. Leung, F. Spiring, Adjusted action limits for Cpm based on departures from normality. International Journal of Production Economics, 107, 237-249, 2007.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">A. Parchami, M. Mashinchi, A.R. Yavari, and H.R. Maleki, Process Capability Indices as Fuzzy Numbers. Austrian Journal of Statistics, 34(4), 391–402, 2005.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">A. Parchami, M. Mashinchi. Fuzzy estimation for process capability indices. Information Sciences, 177, 1452–1462, 2007.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">J.J. Buckley, Elementary Queuing Theory based on Possibility Theory. Fuzzy Sets and Systems37 1990, pp. 43–52.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">J.J. Buckley, Y. Qu, (1990), On Using α -Cuts to Evaluate Fuzzy Equations. Fuzzy Sets and Systems 38,309–312. [10] J.J. Buckley, T. Feuring, Y. Hayashi, (2001), Fuzzy Queuing Theory Revisited. International Journal of Uncertainty, Fuzziness, and Knowledge-based Systems 9,527–537. [11] J.J. Buckley, E. Eslami, Uncertain Probabilities Ι: The Discrete Case; Soft Computing 2003a, pp. 500-505. [12] J.J. Buckley, E. Eslami, Uncertain Probabilities Π: The Continuous Case; Soft Computing 2003b, pp. 500-505. [13] J.J. Buckley, Fuzzy Statistics: Hypothesis Testing; Soft Computing, 2005a, (9) pp. 512-518.</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">SPC</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">MSA</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">gauge capability</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Cg</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Cgk.</subfield> </datafield> <controlfield tag="005">20200120163459.0</controlfield> <controlfield tag="001">1108352</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Mohsen Sadegh Amalnick</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">204380</subfield> <subfield code="z">md5:5279c4b76249f0265140f97b176a3d4d</subfield> <subfield code="u">https://zenodo.org/record/1108352/files/10002207.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2015-07-01</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-waset</subfield> <subfield code="o">oai:zenodo.org:1108352</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Seyed Habib A. Rahmati</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-waset</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.1108351</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.1108352</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 30 | 30 |
Downloads | 15 | 15 |
Data volume | 3.1 MB | 3.1 MB |
Unique views | 30 | 30 |
Unique downloads | 15 | 15 |