Journal article Open Access

Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach

Seyed Habib A. Rahmati; Mohsen Sadegh Amalnick

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.1108352</identifier>
      <creatorName>Seyed Habib A. Rahmati</creatorName>
      <creatorName>Mohsen Sadegh Amalnick</creatorName>
    <title>Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach</title>
    <subject>gauge capability</subject>
    <date dateType="Issued">2015-07-01</date>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1108351</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">Different terms of the Statistical Process Control (SPC)
has sketch in the fuzzy environment. However, Measurement System
Analysis (MSA), as a main branch of the SPC, is rarely investigated
in fuzzy area. This procedure assesses the suitability of the data to be
used in later stages or decisions of the SPC. Therefore, this research
focuses on some important measures of MSA and through a new
method introduces the measures in fuzzy environment. In this
method, which works based on Buckley approach, imprecision and
vagueness nature of the real world measurement are considered
simultaneously. To do so, fuzzy version of the gauge capability (Cg
and Cgk) are introduced. The method is also explained through
example clearly.</description>
    <description descriptionType="Other">{"references": ["Automotive Industry Action Group (AIAG), Measurement Systems\nAnalysis Reference Manual. 3rd ed., Chrysler, Ford, General Motors\nSupplier Quality Requirements Task Force, 2002.", "J. M. Juran, F. M. Gyrna, Quality Planning and Analysis, McGraw-Hill,\nNew York, 1993.", "S. Senol, Measurement system analysis using designed experiments with\nminimum \u03b1-\u03b2 Risks and n. Measurement, 36, 131\u2013141, 2004.", "H. T. Lee, Cpk index estimation using fuzzy numbers. European Journal\nof Operational Research, 129, 683-688, 2001.", "P. K. Leung, F. Spiring, Adjusted action limits for Cpm based on\ndepartures from normality. International Journal of Production\nEconomics, 107, 237-249, 2007.", "A. Parchami, M. Mashinchi, A.R. Yavari, and H.R. Maleki, Process\nCapability Indices as Fuzzy Numbers. Austrian Journal of Statistics,\n34(4), 391\u2013402, 2005.", "A. Parchami, M. Mashinchi. Fuzzy estimation for process capability\nindices. Information Sciences, 177, 1452\u20131462, 2007.", "J.J. Buckley, Elementary Queuing Theory based on Possibility Theory.\nFuzzy Sets and Systems37 1990, pp. 43\u201352.", "J.J. Buckley, Y. Qu, (1990), On Using \u03b1 -Cuts to Evaluate Fuzzy\nEquations. Fuzzy Sets and Systems 38,309\u2013312.\n[10] J.J. Buckley, T. Feuring, Y. Hayashi, (2001), Fuzzy Queuing Theory\nRevisited. International Journal of Uncertainty, Fuzziness, and\nKnowledge-based Systems 9,527\u2013537.\n[11] J.J. Buckley, E. Eslami, Uncertain Probabilities \u0399: The Discrete Case;\nSoft Computing 2003a, pp. 500-505.\n[12] J.J. Buckley, E. Eslami, Uncertain Probabilities \u03a0: The Continuous\nCase; Soft Computing 2003b, pp. 500-505.\n[13] J.J. Buckley, Fuzzy Statistics: Hypothesis Testing; Soft Computing,\n2005a, (9) pp. 512-518."]}</description>
All versions This version
Views 3030
Downloads 1515
Data volume 3.1 MB3.1 MB
Unique views 3030
Unique downloads 1515


Cite as