Published May 2, 2015 | Version 10001502
Journal article Open

Synchrotron X-ray Based Investigation of Fe Environment in Porous Anode of Shewanella oneidensis Microbial Fuel Cell

Description

The iron environment in Fe-doped Vycor Anode was investigated with EXAFS using Brookhaven Synchrotron Light Source. The iron-reducing Shewanella oneidensis culture was grown in a microbial fuel cell under anaerobic respiration. The Fe bond length was found to decrease and correlate with the amount of biofilm growth on the Fe-doped Vycor Anode. The data suggests that Fe-doped Vycor Anode would be a good substrate to study the Shewanella oneidensis nanowire structure using EXAFS.

Files

10001502.pdf

Files (246.8 kB)

Name Size Download all
md5:b0b726584a31b6bee38a28538d57fbec
246.8 kB Preview Download

Additional details

References

  • Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells. Yifeng Zhang, Booki Min, Liping Huang, and Irini Angelidaki. Applied and Environmental Microbiology, June 2009, p. 3389–3395
  • Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells. Nevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL, et al. (2009) PLoS ONE 4(5): e5628 doi:10.1371/journal.pone.0005628
  • Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells. Gemma Reguera, Kelly P. Nevin, Julie S. Nicoll, Sean F. Covalla, Trevor L. Woodard, and Derek R. Lovley. Applied and Environmental Microbiology, Nov. 2006, p. 7345– 7348
  • Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens. Kengo Inoue, Xinlei Qian, Leonor Morgado, Byoung-Chan Kim, Tünde Mester, Mounir Izallalen, Carlos A. Salgueiro, and Derek R. Lovley. Applied and Environmental Microbiology, June 2010, p. 3999–4007
  • Enhancement of Survival and Electricity Production in an Engineered Bacterium by Light Driven Proton Pumping. Ethan T. Johnson, Daniel B. Baron, Bele´n Naranjo, Daniel R. Bond, Claudia Schmidt-Dannert, 1 and Jeffrey A. Gralnick. Applied and Environmental Microbiology, July 2010, p. 4123–4129
  • Substrate-Level Phosphorylation Is the Primary Source of Energy Conservation during Anaerobic Respiration of Shewanella oneidensis Strain MR-1. Kristopher A. Hunt, Jeffrey M. Flynn, Bele´n Naranjo, Indraneel D. Shikhare, and Jeffrey A. Gralnick Journal of Bacteriology, July 2010, p. 3345–3351
  • Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Yuri A. Gorby, Svetlana Yanina, Jeffrey S. McLean, Kevin M. Rosso, Dianne Moyles, Alice Dohnalkova, Terry J. Beveridge, In Seop Chang, Byung Hong Kim, Kyung Shik Kim, David E. Culley, Samantha B. Reed, Margaret F. Romine, Daad A. Saffarini, Eric A. Hill, Liang Shi, Dwayne A. Elias, David W. Kennedy, Grigoriy Pinchuk, Kazuya Watanabe, Shun'ichi Ishii, Bruce Logan, Kenneth H. Nealson, and Jim K. Fredrickson. PNAS, July 25, 2006, vol. 103, p.11358-11363
  • Lower BH1, Shi L, Yongsunthon R, Droubay TC, McCready DE, Lower SK. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol. 2007 Jul; 189(13):4944-52. Epub 2007 Apr 27. http://www.ncbi.nlm.nih.gov/pubmed/17468239
  • Mitchell AC1, Peterson L, Reardon CL, Reed SB, Culley DE, Romine MR, Geesey GG. Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite.. Geobiology. 2012 Jul; 10(4):355-70. doi: 10.1111/j.1472-4669.2012.00321.x. Epub 2012 Feb 23. http://www.ncbi.nlm.nih.gov/pubmed/22360295 [10] A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Sun M, Zhang F, Tong ZH, Sheng GP, Chen YZ, Zhao Y, Chen YP, Zhou SY, Liu G, Tian YC, Yu HQ. Biosens Bioelectron. 2010 Oct 15; 26(2):338-43. Epub 2010 Aug 11 [11] Jian Ding, Tongxiang Fan, Di Zhang, Katsuhiko Saito, Qixin Guo. Structural and optical properties of porous iron oxide. Solid State Communications Volume 151, Issue 10, May 2011, Pages 802–805 http://www.sciencedirect.com/science/article/pii/S0038109811001104 [12] Photochemistry of Fe(CO)5 adsorbed onto porous Vycor glass. Michael S. Darsillo, Harry D. Gafney, Michael S. Paquette J. Am. Chem. Soc., 1987, 109 (11), pp 3275–3286 [13] Iron and iron oxide particle growth in porous Vycor glass; correlation with optical and magnetic properties. Sunil, D.; Gafney, H. D.; Rafailovich, M. H.; Sokolov, J.; Gambino, R. J.; Huang, D. M. Journal of Non-Crystalline Solids (2003), 319(1,2), 154-162. [14] Jinquan Don, Sunil, D., Harry Gafney. Influence of Amorphous Silicon Matrices on the Formation, Structure, and Chemistry of iron, iron oxide nanoparticles. Journal of the American Chemical Society 131(41) 14768-14777 (2009). [15] James M. Byrne, Nicole Klueglein, Carolyn Pearce, Kevin M. Rosso, Erwin Appel, Andreas Kappler. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 27 March 2015: Vol. 347 no. 6229 pp. 1473-1476 [16] Pirbadian S, El-Naggar MY. Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys. 2012 Oct 28; 14(40):13802-8. http://www.ncbi.nlm.nih.gov/pubmed/22797729 [17] Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A. 2014 Sep 2; 111(35):12883-8. http://www.ncbi.nlm.nih.gov/pubmed/25143589 [18] Gorgel M, Ulstrup JJ, Bøggild A, Jones NC, Hoffmann SV, Nissen P, Boesen T. High-resolution structure of a type IV pilin from the metalreducing bacterium Shewanella oneidensis. BMC Struct Biol. 2015 Feb 27; 15(1):4. http://www.ncbi.nlm.nih.gov/pubmed/25886849 [19] Malvankar NS, Lovley DR. Microbial nanowires for bioenergy applications. Curr Opin Biotechnol. 2014 Jun; 27:88-95. http://www.ncbi.nlm.nih.gov/pubmed/24863901 [20] Polizzi NF, Skourtis SS, Beratan DN. Physical constraints on charge transport through bacterial nanowires. Faraday Discuss. 2012; 155:43- 62; discussion 103-14. http://www.ncbi.nlm.nih.gov/pubmed/22470966