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Abstract

A detailed theoretical investigation is given which demonstrates that a recently pro-
posed statistical scaling symmetry is physically void. Although this scaling is mathe-
matically admitted as a unique symmetry transformation by the underlying statistical
equations for incompressible Navier-Stokes turbulence on the level of the functional
Hopf equation, by closer inspection, however, it leads to physical inconsistencies and
erroneous conclusions in the theory of turbulence.†

The new statistical symmetry is thus misleading in so far as it forms within an un-
modelled theory an analytical result which at the same time lacks physical consistency.
Our investigation will expose this inconsistency on different levels of statistical descrip-
tion, where on each level we will gain new insights for its non-physical transformation
behavior. With a view to generate invariant turbulent scaling laws, the consequences
will be finally discussed when trying to analytically exploit such a symmetry. In fact,
a mismatch between theory and numerical experiment is conclusively quantified.

We ultimately propose a general strategy on how to not only track unphysical sta-
tistical symmetries, but also on how to avoid generating such misleading invariance
results from the outset. All the more so as this specific study on a physically incon-
sistent scaling symmetry only serves as a representative example within the broader
context of statistical invariance analysis. In this sense our investigation is applicable
to all areas of statistical physics in which symmetries get determined in order to either
characterize complex dynamical systems, or in order to extract physically useful and
meaningful information from the underlying dynamical process itself.
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1. Introduction

With the aid of today’s modern computer algebra systems, the method of symmetry
analysis is one of the most prominent and efficient tools to investigate differential equations
arising in various sciences (Ovsiannikov, 1982; Stephani, 1989; Olver, 1993; Ibragimov,
1994; Andreev et al., 1998; Bluman & Kumei, 1996; Meleshko, 2005). A considerable
number of special techniques for simplifying, reducing, mapping and solving differential
equations have been developed and enhanced so far.

The natural language for symmetry transformations is that of a mathematical group,
which either can be discrete or continuous. If an invariant transformation group involves
one or more parameters which can vary continuously it is called a Lie symmetry group,
named after Sophus Lie who first developed the theory of continuous transformation groups
at the end of the nineteenth century (Lie, 1893).

In fact, most differential equations of the sciences possess nontrivial Lie symmetry
groups. Under favorable conditions these symmetries can be exploited for various pur-
poses, e.g. performing integrability tests and complete integration of ODEs, finding in-
variant and asymptotic solutions for ODEs and PDEs, constructing conservation laws and
dynamical invariants, etc. Not to forget that Lie-groups are also successfully utilized in
the ‘opposite’ direction in modelling dynamical behavior itself, i.e. used for constructing
dynamical equations which should admit a certain given set of symmetries. The most im-
pressive results to date were gained by gauge theory for quantum fields (Weinberg, 2000;
Penrose, 2005). Hence the existence of symmetries thus has a profound and far-reaching
impact on solution properties and modelling of differential equations in general. Their
presence very often simplifies our understanding of physical phenomena.

Of particular interest are scaling symmetries as they lead to concepts as scale invari-
ance of dynamical laws or self-similarity of solution manifolds. A scaling symmetry of a
physical system can either be associated with a finite dimensional Lie-group (global scaling
symmetry) in which all group parameters are strict constants, or with an infinite dimen-
sional Lie-group (local scaling symmetry) in which at least one group parameter is not
constant, e.g. by showing a space-time coordinate dependence of the considered system.

Most physical processes, however, only admit global scaling symmetries since the re-
quirement for a local scaling symmetry is too restrictive. In fact, a physical process which
admits a local scaling symmetry also admits this symmetry globally. For example, for
a local scaling symmetry exhibiting space-time dependent group parameters (which es-
sentially forms the cornerstone of every quantum gauge theory) the corresponding global
symmetry is then just given by the same symmetry where only the group parameters are
identically fixed at every point in space-time. The opposite, in which a global symmetry
automatically implies a local symmetry, is, of course, not the rule.

The purpose of this article is to show that in general caution has to be exercised when
interpreting and exploiting symmetries if they act in a purely statistical manner. Although
being mathematically admitted as statistical symmetries by the underlying statistical sys-
tem of dynamical equations, they nevertheless can lead to physical inconsistencies. With-
out loss of generality, we will demonstrate this issue at the example of a new and recently
proposed global statistical scaling symmetry for the incompressible Navier-Stokes equa-
tions. Our study and its conclusion can then be easily transferred to any other statistical
symmetry within the Navier-Stokes theory, or, more generally, to any other theory within
physics which necessitates a statistical description in the thermodynamical sense.

The current study is organized as follows: Section 2 opens the investigation by intro-
ducing the single and only continuous (Lie-point) scaling symmetry which the deterministic
incompressible Navier-Stokes equations can admit. Although being the only true scaling
symmetry, it is yet not the only scaling transformation which leaves these equations in-
variant when viewed in a broader context. Regarding the class of all possible invariant
Lie-point scaling transformations, a brief outline is given to distinguish between the con-
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cept of a symmetry transformation and that of an equivalence transformation. A careful
distinction between these two concepts is surely necessary in to order fully grasp the spirit
of this article.

Section 3 then changes from the deterministic to the statistical description. By choos-
ing the functional Hopf formulation we are dealing with a formally closed and thus com-
plete statistical approach to turbulence. Instead of the weaker invariant class of equivalence
transformations, this enables us to generate true statistical symmetry transformations, in
particular a new scaling symmetry is considered which first got mentioned in the study of
Wac lawczyk & Oberlack (2013a).

Section 4 is at the heart of the article’s line of reasoning. It not only demonstrates that
the new Hopf scaling symmetry induces a disguised symmetry, which, on a lower level of
statistical description, only acts as an equivalence transformation, but also gives a math-
ematical proof that both the Hopf symmetry and its induced equivalence transformation
are essentially unphysical.

Section 5 presents the consequences when generating statistical scaling laws from such
a misleading symmetry transformation. These laws will be matched to DNS data at the
example of a zero-pressure-gradient (ZPG) turbulent boundary layer flow for the high
Reynolds number case of Reθ = 6000 (based on the momentum thickness θ of the flow).
Best curve fits are generated with the aid of using basic tools from statistical data analysis,
as the chi-square method to quantitatively measure the quality of the fits relative to the
underlying DNS error. As a result, a mismatch between theory and numerical experiment
is clearly quantified.

Section 6 concludes and completes the investigation. Theoretically as well as graphi-
cally we will conclude that all recently proposed statistical scaling laws which are based
on this new unphysical symmetry have no predictive value and, in our opinion, should be
discarded to avoid any further misconceptions in future work when generating turbulent
scaling laws according to the invariance method of Lie-groups. In a brief historical outline
we finally point out that even if this method of Lie-groups in its full extent is applied and
interpreted correctly, it nevertheless faces strong natural limits which prevents the effect
of achieving a significant breakthrough in the theory of turbulence.

A large but indispensable part of this investigation has been devoted to the appendix.
All appendices stand for their own and can be read independently from the main text. In
particular Appendix A & C are written in the form of a compendium to serve as an aid
and to accompany the reader through the main text. Their purpose is to mathematically
support the criticism we put forward in our first part, the theoretical part of our study
from Section 2 to Section 4.

2. The deterministic incompressible Navier-Stokes equations

For reasons of simplicity we will in the following only consider the general solution manifold
of the incompressible Navier-Stokes equations in the infinite domain without specifying
any initial or boundary conditions (Batchelor, 1967; Pope, 2000; Davidson, 2004).

The corresponding deterministic equations can either be written in local differential
form as

∇ · u = 0,

∂tu + (u · ∇)u = −∇p+ ν∆u,

}
(2.1)

or equivalently, when using the continuity equation to eliminate the pressure from the
momentum equations, in nonlocal integro-differential form as

∂tu + (u · ∇)u = −∇
∫ ∇′ ·

[
(u′ · ∇′)u′

]

4π · |x − x′| d3x′ + ν∆u. (2.2)

By construction, equation (2.2) has the property that if the initial velocity field u is
solenoidal, i.e. if ∇ · u is initially zero, then it will be solenoidal for all times.
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The single and only continuous (Lie-point) scaling symmetry which the deterministic
incompressible Navier-Stokes equations (2.1), or in the form (2.2), can admit is given by
(Olver, 1993; Fushchich et al., 1993; Frisch, 1995; Andreev et al., 1998)

S : t̃ = e2εt, x̃ = eεx, ũ = e−εu, p̃ = e−2εp, (2.3)

being just a global scaling symmetry with constant group parameter ε. That (2.3) really
acts as a symmetry transformation can be easily verified due its globally uniform structure:
By inserting transformation (2.3) into system (2.1), or into (2.2), will leave the equations
in each case fully indifferent.

Before we turn in the next section to a complete (fully determined) statistical de-
scription of the Navier-Stokes equations, it is essential at this stage to make a careful
distinction between two different kinds of invariant transformations. Those being true
symmetry transformations and those being only equivalence transformations (Ovsiannikov,
1982; Ibragimov, 1994, 2004).

Although both types of invariant transformations form a Lie-group, they each have a
completely different impact when trying to extract valuable information from a given dy-
namical system. The knowledge of symmetry transformations is mainly used to construct
special or general solutions of differential equations, while equivalence transformations are
used to solve the equivalence problem for a certain class of differential equations by group
theory, that is, to find general criteria whether two or more different differential equa-
tions are connected by a change of variables drawn from a transformation group. Hence,
the quest for a symmetry transformation is thus fundamentally different to that for an
equivalence transformation. The difference between these two kinds of transformations is
defined as:

• A symmetry of a differential equation is a transformation which maps every solu-
tion of the differential equation to another solution of the same equation. As a
consequence a symmetry transformation leads to complete form-indifference of the
equation. It results as an invariant transformation if the considered equation is
closed.†

• An equivalence transformation for a differential equation in a given class is a change
of variables which only maps the equation to another equation in the same class. As a
consequence an equivalence transformation only leads to a weaker form-invariance of
the equation. It results as an invariant transformation either if existing parameters
of the considered equation get identified as own independent variables, or if the
considered equation itself is unclosed.‡

Hence, although both transformations are invariant transformations and both form a Lie-
group, they yet lead to different implications. Let us illustrate this decisive difference at
two simple examples:

Example 1: By considering the viscosity ν in (2.1) not as a parameter, but rather,
next to the space-time coordinates, as an own independent variable, a detailed invariance
analysis will give the following additional scaling group, which in infinitesimal form reads
as (Ünal, 1994, 1995)

XE1(f) : f(ν) ·
(
t∂t + xi∂xi + ν∂ν

)
, (2.4)

being an infinite dimensional Lie-group with a group parameter f depending on the vis-
cosity variable ν. Specifying for example f(ν) = 1 will reduce to a finite dimensional

†A set of equations is defined as closed if the number of equations involved is either equal to or more
than the number of dependent variables to be solved for.

‡A set of equations is defined as unclosed if the number of equations involved is less than the number
of unknown dependent variables.
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subgroup, for which the non-infinitesimal form can then be explicitly determined to

E1 : t̃ = eε1t, x̃ = eε1x, ũ = u, p̃ = p, ν̃ = eε1ν. (2.5)

Hence, just by considering the viscosity, or alternatively the Reynolds number Re ∼ 1/ν,
as an own independent variable, we see that next to the global scaling symmetry S (2.3)
we gained an additional global scaling invariance E1 (2.5): The viscosity as well as the
space-time coordinates scale in exactly the same manner respective to the constant group
parameter ε1. However, this additional invariant transformation (2.5) does not act as a
true symmetry, but only in the weaker sense as an equivalence transformation, in that
it only maps the Navier-Stokes equation in the class of different viscosities to another
equation in that same class. Indeed, inserting transformation (2.5) into form (2.1), will
not leave it form-indifferent, but only form-invariant

∇̃ · ũ = 0,

∂t̃ũ + (ũ · ∇̃)ũ = −∇̃p̃+ ν̃∆̃ũ,

}
(2.6)

since the parametric value changed to ν̃ 6= ν. Particularly in this simple case, however, we
can alternatively also say that transformation (2.5) actually maps a solution of equation
(2.1), with a certain value in viscosity ν, to another solution of the same equation (2.6),
but with a different value in viscosity ν̃. Yet, note that irrespective of the functional
choice for the continuous group parameter f , the invariant transformation (2.4) will never
reduce to a true symmetry transformation. Every specific functional choice of f will give
a different global equivalence scaling transformation.

Example 2: Taking the statistical ensemble average of the deterministic Navier-Stokes
equations in the form (2.1), we get, due to the existence of the nonlinear convective term,
the following unclosed (underdetermined) set of equations (Pope, 2000; Davidson, 2004)

∇ · 〈u〉 = 0,

∂t〈u〉 + ∇ · T = −∇〈p〉 + ν∆〈u〉,

}
(2.7)

where the second rank tensor T = 〈u ⊗ u〉 is the unclosed second velocity moment based
on the full instantaneous velocity field u. In the most general case T is to be identified
as an unknown and thus arbitrary functional of the space-time coordinates (x, t) and of
the mean fields of velocity 〈u〉 and pressure 〈p〉 along with its spatiotemporal variations,
either in local, nonlocal or mixed form.

For reasons of simplicity let us consider T for the moment as an arbitrary function
which only shows an explicit dependence on the space-time coordinates, i.e. T = T(x, t).
If we now perform an invariance analysis of the underdetermined system (2.7), by ex-
tending, next to the mean velocity 〈u〉 and the mean pressure 〈p〉, the list of dependent
variables with the unclosed and thus arbitrary function T as an own dependent variable,
we immediately gain the following invariant statistical scaling†

E2 : t̃ = t, x̃ = x, 〈ũ〉 = eε2〈u〉, T̃ = eε2T, 〈p̃〉 = eε2〈p〉, (2.8)

which globally only scales the system’s dependent variables while the coordinates stay
invariant. It is clear that this invariant transformation cannot act as a symmetry trans-
formation. It can only act in the weaker sense as an equivalence transformation, since in

†Note that in the general case a careful distinction must be made between the transformed expression

〈̃u〉, which directly refers to the transformed mean velocity field, and the transformed expression 〈ũ〉, which,
on the other hand, refers to the transformed instantaneous (fluctuating) velocity field being averaged only
after its transformation. However, in the specific and simple case as (2.8) both transformed fields are

identical 〈̃u〉 = 〈ũ〉. The obvious reason is that since transformation E2 (2.8) only represents a globally
uniform scaling with the constant factor eε2 , it will commute with every averaging operator 〈, 〉 (for a more
detailed discussion on this subject, see Appendix D.1).
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the considered functional class of arbitrary second moment functions T = T(x, t) it only
maps the unclosed first moment equation (2.7) into another equation of the same class:

∇̃ · 〈ũ〉 = 0,

∂t̃〈ũ〉 + ∇̃ · T̃ = −∇̃〈p̃〉 + ν∆̃〈ũ〉,

}
(2.9)

where the unclosed and thus arbitrary function T itself gets mapped to a new and different,
but still unclosed and thus arbitrary function T̃ 6= T. However, since T̃ is from the same
considered functional class as T, it thus also exhibits an explicit dependence only on the
coordinates: T̃ = T̃(x̃, t̃).

Again, the invariant transformation (2.8) only represents an equivalence and not a
symmetry transformation of the unclosed system (2.7), since it turns this system only into
an equivalent but not identical form. To see this explicitly, imagine we would specify the
unclosed moment function T = T(x, t), say by

T(x, t) = ∇φ(x) ⊗ ∇φ(x), with φ(x) = e−x
2
. (2.10)

Then according to (2.8) the transformed moment is defined or given by

T̃(x̃, t̃) = eε2T(x, t)

= eε2

(
∇φ(x) ⊗ ∇φ(x)

)

= eε2

(
∇̃φ(x̃) ⊗ ∇̃φ(x̃)

)
, since x̃ = x.





(2.11)

Hence, while system (2.7) turns into the closed form

∇ · 〈u〉 = 0,

∂t〈u〉 + ∇ ·
[
∇φ(x) ⊗ ∇φ(x)

]
= −∇〈p〉 + ν∆〈u〉,

}
(2.12)

the transformed system (2.9), according to (2.11), will turn into

∇̃ · 〈ũ〉 = 0,

∂t̃〈ũ〉 + eε2∇̃ ·
[
∇̃φ(x̃) ⊗ ∇̃φ(x̃)

]
= −∇̃〈p̃〉 + ν∆̃〈ũ〉,

}
(2.13)

which obviously, due to the explicit factor eε2 , is not identical to the corresponding un-
transformed differential system (2.12). Instead, we can only say that system (2.13) is
equivalent to system (2.12) in that they originate from the same class of functions T̃ and
T which both only show an explicit dependence on the coordinates.

This of course stands in strong contrast to any given symmetry transformation of a
closed system. For example, the scaling symmetry S (2.3) of the deterministic Navier-
Stokes equations (2.1), which, if we would specify a certain solution u = u0 and p = p0, it
will be mapped according to S (2.3) to another solution u0 → ũ = ũ0 and p0 → p̃ = p̃0 of
the same and thus to (2.1) identical equation:

∇̃ · ũ = 0,

∂t̃ũ + (ũ · ∇̃)ũ = −∇̃p̃+ ν∆̃ũ.

}
(2.14)

Furthermore, the statistical symmetry

S : t̃ = e2εt, x̃ = eεx, 〈ũ〉 = e−ε〈u〉, T̃ = e−2εT, 〈p̃〉 = e−2ε〈p〉, (2.15)

which corresponds to S (2.3) when reformulated for the mean fields up to the second
velocity moment, leaves only the unclosed system (2.7) invariant, but not the specified
closed system (2.12). That means that the specification (2.10) is not compatible with the
statistical symmetry S (2.15), thus showing that the specific functional choice (2.10) on the
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averaged level is inconsistent to the underlying deterministic (fluctuating) level (2.1). In
strong contrast to the statistical equivalence transformation E2 (2.8) which is compatible
to both the unspecified system (2.7) and the specified system (2.12).

This explicit demonstration clearly shows that a Lie symmetry transformation induces
a far more stronger invariance than a Lie equivalence transformation. Hence, the conse-
quences which can be drawn from a symmetry transformation are by far more richer than
for any equivalence transformation.

Three things should be noted here. Firstly, since the transformation (2.8) only scales
the system’s dependent variables by keeping the coordinates invariant, it is a typical scal-
ing invariance which only linear systems can admit. Indeed, due to the identification of
the unclosed function T as an own dependent variable, we turned the underdetermined
statistical system (2.7) formally into a linear set of equations. As we will discuss in more
detail in the next sections, such an identification is misleading, since it is hiding essential
information about the underlying deterministic theory. In other words, although transfor-
mation (2.8) correctly acts as a mathematical equivalence transformation for the statistical
system (2.7), we will demonstrate that it nevertheless leads to a physical inconsistency.

Secondly, the type and particular structure of an equivalence transformation strongly
depends on the explicit variable dependence of T itself. Allowing for various different
functional dependencies, as e.g. for T = T(x, t; u), or more generally for T = T(x, t; u{n})
where u{n} denotes the collection of functions u together with all their derivatives up to
order n, can cause different equivalence groups in each case (Meleshko, 1996; Ibragimov,
2004; Bila, 2011; Chirkunov, 2012).

Thirdly, the equivalence transformation (2.8) given in this example has a much weaker
impact when trying to extract information from the solution manifold of its underlying
dynamical set of equations than the equivalence transformation (2.5) given in the previous
example. In contrast to E1 (2.5), which at least could map between specific solutions of
different viscosity, the equivalence transformation E2 (2.8) is completely unable to map be-
tween specific solutions. The reason is that the considered system of equations is unclosed
and thus underdetermined, however not arbitrarily, but in the specified sense that the un-
closed term T = 〈u ⊗ u〉 can be physically and uniquely determined from the underlying
but analytically non-accessible deterministic velocity field u. In other words, this circum-
stance, in having an underlying theory from which the unclosed term T physically emerges,
opens the high possibility that physical solutions get mapped into unphysical ones when
employing an equivalence transformation as E2 (2.8). This problem will be discussed next.

2.1. The concept of an invariant solution

In order to understand and recognize the subtle difference between a symmetry and an
equivalence transformation in its full spectrum, we will discuss this difference again, how-
ever, from a different perspective, from the perspective of generating invariant solutions.

First of all, one should recognize that the Lie algorithm to generate invariant trans-
formations for differential equations can be equally applied in the same manner without
any restrictions to under-, fully- as well as overdetermined systems of equations (Ovsian-
nikov, 1982; Stephani, 1989; Olver, 1993; Ibragimov, 1994; Andreev et al., 1998; Bluman
& Kumei, 1996; Meleshko, 2005), even if the considered system is infinite dimensional
(Frewer, 2015a,b). However, only for fully or overdetermined systems these invariant
Lie transformations are called and have the effect of symmetry transformations, while
for underdetermined systems these invariant Lie transformations are called and have the
effect of equivalence transformations.

In other words, although both a symmetry as well as an equivalence transformation
form a Lie-group which by construction leave the considered equations invariant, the
action and the consequence of each transformation is absolutely different. While a sym-
metry transformation always maps a solution to another solution of the same equation, an
equivalence transformation, in contrast, generally only maps a possible solution of one
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underdetermined equation to a possible solution of another underdetermined equation,
where in the latter case we assume of course that a solution of an underdetermined equation
can be somehow constructed or is somehow given beforehand.

Now, it is clear that if for an unclosed and thus underdetermined equation, or a set of
equations, the unclosed terms are not correlated to an existing underlying theory, then the
construction of an invariant solution will only be a particular and non-privileged solution
within an infinite set of other possible and equally privileged solutions. But if, on the
other hand, the unclosed terms are in fact correlated to an underlying theory, either in
that they underly a specific but analytically non-accessible process or in that they show
some existing but unknown substructure, then the construction of an invariant solution
is misleading and essentially ill-defined, in particular if no prior modelling assumptions
for the unclosed terms are made. To follow this conclusion in more detail we refer to
Appendix A for an extensive discussion on this subject.

Hence, for an unclosed and thus underdetermined system of equations either infinitely
many and equally privileged solutions (including all possible invariant solutions) can be
constructed, or, depending on whether the unclosed terms are correlated to an underlying
but analytically non-accessible theory as turbulence, no true solutions and thus also no true
invariant solutions can be determined as long as no prior modelling procedure is invoked to
close the system of equations. Therefore, since closed systems do not face this problem, the
construction of invariant solutions from symmetry transformations is well-defined, while
for equivalence transformations, which are admitted by unclosed systems, the construction
of invariant solutions is misleading and can be even ill-defined as in the statistical theory
of turbulence. Thus using for example the equivalence transformation (2.8) to generate a
privileged statistical invariant solution for the unclosed system (2.7) is basically ill-defined,
if no prior modelling assumptions for the underlying substructure of T is made to close
the equations (see first part of Appendix A.2).

However, if nevertheless within the theory of turbulence such invariant results are gen-
erated, they must be carefully interpreted as only being functional relations or functional
complexes which stay invariant under the derived equivalence group, and not as being
privileged solutions of the associated underdetermined system, as done, for example, in
Oberlack & Günther (2003); Khujadze & Oberlack (2004); Günther & Oberlack (2005);
Oberlack et al. (2006); Oberlack & Rosteck (2010); She et al. (2011); Oberlack & Ziele-
niewicz (2013); Avsarkisov et al. (2014) and Wac lawczyk et al. (2014). In all these studies
the underlying statistical system of dynamical equations is unclosed and thus underde-
termined, however, not arbitrarily underdetermined, but underdetermined in the sense
that all unclosed terms can be physically and uniquely determined from the underlying
but analytically non-accessible instantaneous (fluctuating) velocity field. In particular the
system considered in Oberlack & Rosteck (2010), although formally infinite in dimension,
reveals itself by closer inspection as such an underdetermined system, for which, as was
already said before, the determination of invariant solutions is ill-defined (see last part of
Appendix A.2). This study of Oberlack & Rosteck (2010), which serves as a key study for
the recent results made in Oberlack & Zieleniewicz (2013); Avsarkisov et al. (2014) and
Wac lawczyk et al. (2014), will be analyzed in more detail in the next sections.

Important to note is that up to now only in the specific case of homogeneous isotropic
turbulence (Davidson, 2004; Sagaut & Cambon, 2008) all those invariant functional com-
plexes which are gained from equivalence scaling groups can be further used to yield more
valuable results, in particular the explicit values for the decay rates (Oberlack, 2002), since
one has exclusive access to additional nonlocal invariants such as the Birkhoff-Saffman or
the Loitsyansky integral. However, for wall-bounded flows it is not clear yet how to use
or exploit such invariant functional complexes in a meaningful way, since up to now no
additional nonlocal invariants are known.†

†This aspect also needs to be addressed in Oberlack’s earlier work (Oberlack, 1999, 2001), where also
only equivalence transformations were obtained, but which, in addition, were specifically obtained as
a result of an incorrect conclusion (Frewer et al., 2014b).
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Finally it is worthwhile to mention that for example the work of Khabirov & Ünal
(2002a,b) clearly shows in how equivalence transformations within the theory of turbulence
can be exploited in a correct manner, which stands in strong contrast to the misleading
approach of Oberlack et al. The major difference to the Oberlack et al. approach is that
in Khabirov & Ünal (2002a,b) the invariant functions for the unclosed term (which are
generated within different optimal Lie subalgebras for all possible Lie-point equivalence
transformations of the unclosed Kármán-Howarth equation) are not identified as true
solutions of the underlying unclosed equation itself, but, instead, are identified as possible
model terms which then in each case consequently leads to a closed model equation. This
is done in Khabirov & Ünal (2002a), while in Khabirov & Ünal (2002b) these closed
Kármán-Howarth model equations are then solved in each case by the now well-defined
technique of invariant solutions, which Khabirov & Ünal (2002a,b) then call physical
invariant solutions. Of course, in how far these solutions then describe reality must be
checked in each case by experiment or DNS. But that’s a different problem!

We want to close this section by giving a citation from Khabirov & Ünal (2002b)
which exactly describes the behavior and effect of an equivalence transformation when
trying to exploit it in order to gain insight into the solution manifold of an unclosed and
thus underdetermined equation: “Equivalence transformations may affect the behavior
of solutions in physical sense. In other words, they may transform physical solutions into
unphysical ones. But inverse equivalence transformations may act better in physical sense.
These properties of the equivalence transformations will be made use of in the sequel.”

3. A complete statistical description: The Hopf equation

In order to determine new statistical symmetry transformations, and not equivalence trans-
formations, we have to operate within a framework which offers a complete and fully de-
termined statistical description of Navier-Stokes turbulence. Any statistical description
which is not formally closed, that is, every statistical description which from the outset
would involve unclosed and thus arbitrary functionals, is not suited for this purpose. As
was shown in the previous section (Example 2), every invariance analysis would then only
generate very weak equivalence transformations.

Currently there are only two statistical approaches to incompressible and spatially
unbounded Navier-Stokes turbulence which independently offer a complete and fully de-
termined statistical description. Both approaches formally circumvent the explicit closure
problem of turbulence in that they not only overcome the local differential framework in
favor of a consistent nonlocal integral framework, but also in that they operate on a higher
statistical level which goes beyond the level of the statistical moments. In each case the
consequence is a linearly infinite but formally closed statistical approach.

These two approaches are the Lundgren-Monin-Novikov chain of equations (Lundgren,
1967; Monin, 1967; Friedrich et al., 2012) and the Hopf equation (Hopf, 1952; McComb,
1990; Shen & Wray, 1991). While the former operates on the high statistical level of the
probability density functions for the n-point velocity moments

Hn =
〈
u(x1, t) ⊗ · · · ⊗ u(xn, t)

〉
, n ≥ 1, (3.1)

the Hopf equation operates on the even higher level of the probability density functionals
for these moments (3.1). As shown in Monin (1967), the Lundgren-Monin-Novikov system
is just the discrete version of the functional Hopf equation. The former is iteratively given
as an infinite but fully determined hierarchy of linearly coupled equations, while the latter
is given as a single fully determined linear functional equation of infinite dimension. Since
in both cases no arbitrary functions are involved, they both can be formally identified as
closed systems.

To note is that a third statistical approach exists, which also leads to a linearly infi-
nite hierarchy of equations, the so-called Friedmann-Keller chain of equations (Monin &
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Yaglom, 1971), which, in contrast to the other two approaches, operates directly on the
lower level of the n-point velocity moments (3.1). This chain can either be formulated
in the local differential framework, as presented in Oberlack & Rosteck (2010) and also
recently in Wac lawczyk et al. (2014), or in the nonlocal integral framework as presented
in Fursikov (1999) and re-derived in Appendix B.

However, in contrast to the Lundgren-Monin-Novikov chain or the Hopf equation, the
Friedmann-Keller chain is not closed, not even in a formal sense. This matter is exten-
sively discussed in Appendix C. Irrespective of the analytical framework and in the sense
as explained in detail in Appendix C, the Friedmann-Keller chain always involves more
unknown functions than determining equations. For both the integral framework as pre-
sented in Appendix B, as well as for the differential framework as presented in Oberlack &
Rosteck (2010) and Wac lawczyk et al. (2014), this can be easily confirmed by just explic-
itly counting the number of equations versus the number of functions to be determined.
In this sense the Friedmann-Keller chain, although infinite in dimension, does not serve
as a fully determined statistical description of Navier-Stokes turbulence. Any invariance
analysis performed upon this chain will only generate the weaker class of equivalence
transformations, simply because the chain is always permanently underdetermined and
thus involving arbitrary functions.

Now, in order to prove our statement that a new statistical scaling symmetry is phys-
ically inconsistent with the underlying deterministic Navier-Stokes equations (2.2), either
the Lundgren-Monin-Novikov chain or Hopf equation can be used. They are equivalent in
so far as they both lead to the same conclusion. However, to prove this statement in the
next section as efficiently as possible, we will only choose the functional Hopf-approach.

The functional Hopf equation (HEq)

∂Φ

∂t
=

∫
d3xαk

(
i
∂

∂xl

δ2

δαkδα l
+ ν∆

δ

δαk

)
Φ, (3.2)

describes the dynamical evolution of the characteristic or moment-generating functional

Φ[α(x); t] =

∫
P [u(x); t] ei

∫
d3

x α(x)·u(x)Du(x), (3.3)

which is the functional Fourier transform (Klauder, 2010; Kleinert, 2013) of the proba-
bility density functional P [u(x); t] for the velocity field u sampled for each time step in
infinitely non-denumerable (continuum) number of points x, which itself plays the role of
a continuous index inside the functionals Φ and P , but nonetheless still to be interpreted
next to the coordinate t and the field α(x) as an own independent and active variable in
the underlying dynamical equation (3.2). In other words, both functionals Φ and P do
not explicitly depend on x, i.e. in equation (3.2) the variable x only appears implicitly in
the dependent variable Φ upon which the coordinate operators can then act on. The func-
tional variable α(x), however, is an arbitrary but real, integrable and time-independent
solenoidal external source function with vanishing normal component at the (infinite far)
boundary. In order to guarantee for physical consistency, a mathematical solution of the
Hopf equation (3.2) is only admitted if for all times the following conditions are fulfilled

Φ∗[α(x); t] = Φ[−α(x); t], Φ[0; t] = 1,
∣∣Φ[α(x); t]

∣∣ ≤ 1, (3.4)

which stem from the fact that the probability density functional is real, non-negative,
and normalized to one in sample space, i.e.

∫
P [u(x); t]Du(x) = 1, with P [u(x); t] ≥ 0.

This then defines the (infinite) physical dimension of the probability density functional as
[P ] = [1/Du] with Du =

∏
x

(
√
d3x/2π)3 · d3u(x), while the characteristic functional Φ is

dimensionless.
Finally note that the above-presented functional integration element

∫
Du(x) for the

Fourier transform (3.3) is symmetrically defined as the following infinite product of one-
dimensional integrals over u(xn) = (ui(xn)) ∈ R

3 at every point xn = (xi)n ∈ R
3 for
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every component and coordinate i = 1, 2, 3 (see e.g. Kleinert (2013), Chapter 13):

∫
Du(x) =

3∏

i=1

∫
Dui(x) =

3∏

i=1

∞∏

(n1,n2,n3)=−∞

∫
dui(ǫ · n)√

2π/ǫ3
. (3.5)

Hereby, space-time is grated into a fine equidistant lattice, where for every coordinate xi

the following discrete lattice points were introduced

x → xn = ǫ · n = ǫ · (n1, n2, n3) ∈ R
3, ni ∈ Z, (3.6)

with a very small lattice spacing ǫ.

4. The new statistical scaling symmetry and its inconsistency

It is straightforward to recognize that the linear Hopf equation (3.2) admits the following
(functional) Lie-point scaling symmetry

Q : t̃ = t, x̃ = x, α̃ = α, Φ̃ = eq (Φ − 1) + 1, (4.1)

where q is a globally constant and real group parameter. This invariance first got men-
tioned in Wac lawczyk & Oberlack (2013a). Note that symmetry Q is only compatible
with the first two physical constraints given in (3.4). The third, non-holonomic constraint
in (3.4) gets violated if the characteristic functional is generally transformed as (4.1).

But, if the values of the group constant q are restricted to q ≤ 0 then symmetry Q

(4.1) is fully compatible with all three physical constraints (3.4). However, by restricting
the values of q to q ≤ 0, the symmetry (4.1) turns into a semi-group since no inverse
element can be defined or constructed anymore. In other words, the third constraint in
(3.4) breaks the Lie-group structure of the symmetry (4.1) down to a semi-group.

The connection of the moment generating functional Φ (3.3) to the multi-point velocity
correlation functions Hn (3.1) is given as (Hopf, 1952; McComb, 1990; Shen & Wray, 1991)

Hn =
〈
u(x1, t) ⊗ · · · ⊗ u(xn, t)

〉
= (−i)n δnΦ[α(x); t]

δα(x1) · · · δα(xn)

∣∣∣∣
α=0

. (4.2)

By inserting Q (4.1) into the above functional relation (4.2) of the transformed domain

(−i)n δnΦ̃[α̃(x̃); t̃]

δα̃(x̃1) · · · δα̃(x̃n)

∣∣∣∣
α̃=0

= (−i)n δ
n
[
eqΦ[α(x); t] + (1 − eq)

]

δα(x1) · · · δα(xn)

∣∣∣∣
α=0

= eq · (−i)n δnΦ[α(x); t]

δα(x1) · · · δα(xn)

∣∣∣∣
α=0

, (4.3)

we can see how the symmetry transformation Q (4.1) induces the following invariant
transformation for the n-point velocity correlation functions (3.1)

QE : t̃ = t, x̃n = xn, H̃n = eqHn, n ≥ 1, (4.4)

which for the first time was derived in Khujadze & Oberlack (2004) as a “new statistical
symmetry” of Navier-Stokes turbulence. For their derivation they however only consid-
ered the unclosed multi-point equations for the velocity moments up to order n = 2 in
the limit of an inviscid parallel shear flow in ZPG turbulent boundary layer flow†, while
recently in Oberlack & Rosteck (2010) this result (4.4) was re-derived most generally with-
out any flow restrictions by using the full infinite chain of Friedmann-Keller equations. In

†In Khujadze & Oberlack (2004) the iterative sequence of the “new statistical scaling symmetry” (4.4)
begins only from n = 2 onwards, i.e only for all n ≥ 2. The transformation for n = 1 is excluded, i.e. the
mean velocity H1 = 〈u〉 stays invariant.
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both derivations the statistical invariance analysis was performed in the local differential
framework based on the corresponding deterministic form (2.1), in which the pressure
field is explicitly present. Thus in both derivations their results also include, next to the
n-point velocity moments Hn, all invariant transformations for the velocity-pressure corre-
lations. Of course, these correlations are not part of our result given here, since we derived
(4.4) from the Hopf equation (3.2) which is based on the underlying nonlocal deterministic
integral form (2.2), in which the pressure field has been consistently eliminated from the
dynamical equations.

Indeed, it can be easily verified that transformation QE (4.4) is admitted as an invariant
transformation also by the nonlocal integro-differential Friedmann-Keller equations

∂tHn + An · Hn + Bn · Ĥn+1 = 0, n ≥ 1, (4.5)

which are defined and derived in Appendix B. However, as noted in Appendix B and dis-
cussed in more detail in Appendix C, the invariant transformation QE (4.4) does not act
as a symmetry transformation, but only in the weaker form as an equivalence transforma-
tion. The reason is that the hierarchy (4.5) forms an unclosed system. The still missing
transformation rule for the unclosed n-point function of (n + 1)-th moment Ĥn+1, which
formally stands for Ĥn+1 = Hn+1|xn+1=xn , is then dictated by the given transformation
rule (4.4) for the corresponding (n+ 1)-point function Hn+1 as

˜̂
Hn+1 = H̃n+1

∣∣
x̃n+1=x̃n

=
(
eqHn+1

)∣∣
xn+1=xn

= eq
(
Hn+1

∣∣
xn+1=xn

)
= eqĤn+1. (4.6)

It is clear that this simple transformation rule (4.6) is only due to the global and uniform
nature of QE (4.4), in which all system variables transform uniformly by the same constant
scaling exponent q and independent from the coordinates, which themselves stay invariant.

Important to note here is that in Oberlack & Rosteck (2010) the invariant transfor-
mation QE (4.4) is considered as a true symmetry transformation. However, as already
discussed in Section 3 and explained in Appendix C, this claim is not correct. Transfor-
mation QE (4.4) can only act as an equivalence transformation and not as a symmetry
transformation. Hence, the invariance analysis performed in Oberlack & Rosteck (2010)
is based on equivalence and not on symmetry groups, simply because unclosed and thus
arbitrary functions are permanently involved within the considered analysis.

But this insight now has consequences in the interpretation of their newly derived
statistical scaling laws, because these laws as presented in Oberlack & Rosteck (2010)
may not be interpreted as being privileged solutions of the underlying statistical set of
equations as was done therein. They may only be interpreted as being functional relations
or functional complexes which stay invariant under the derived equivalence group, nothing
more! Therefore these new relations derived in Oberlack & Rosteck (2010) only possibly but
not necessarily can serve as useful turbulent scaling functions. Moreover, a comparison to
DNS results reveals that these new statistical scaling laws presented in Oberlack & Rosteck
(2010) are unphysical as they clearly fail to fulfil the most basic predictive requirements
of a scaling law. For ZPG turbulent boundary layer flow this investigation is presented
and further discussed in Section 5.

The reason for this failure is twofold: Next to the reason just discussed, that the in-
variance analysis in Oberlack & Rosteck (2010) was performed upon an underdetermined
statistical system which cannot admit true invariant solutions without establishing a cor-
rect link to the underlying deterministic equations, the second and more stronger reason is
that the symmetry Q (4.1) itself is unphysical. This physical inconsistency of course trans-
fers down to QE (4.4), as it is induced by Q. This will also explain why on the higher level
of the probability density functionals a true symmetry transformation, such as Q (4.1),
only induces an equivalence transformation, such as QE (4.4), and not a corresponding
symmetry transformation on the lower level of the n-moment functions Hn.

Before we proceed with the proof, it is worthwhile to see that when considering the
chain only up to the second moment (n ≤ 2), the general equivalence transformation
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QE (4.4) will reduce in the smooth limit of zero correlation length to the equivalence
transformation E2 (2.8) discussed in Section 2:

lim
|x2−x1|→0

Q
(n≤2)
E = E2\〈p̃〉, (4.7)

where, due to the eliminated pressure field in the underlying Hopf equation, the missing
transformation rule 〈p̃〉 = eq〈p〉 for the mean pressure field in QE (4.4) is consistently
dictated by the mean solenoidal velocity field H̃1 = 〈ũ〉 through the one-point momentum
equation (2.7) as given in E2 (2.8). Hence, the above mentioned and still to be proven
physical inconsistency of Q (4.1) will thus even fully transfer down to E2 (2.8).

4.1. Proof of the physical inconsistency of symmetry Q

The physical inconsistency of symmetry Q (4.1) can be readily observed when connecting
the averaged (statistical) level back to the fluctuating (deterministic) level. For the Hopf
equation (3.2) the transition rule in going from the fine-grained (fluctuating) to the coarse-
grained (averaged) level is defined by the path integral (3.3), which in each time step t
sums up all coarse-grained probabilities P for all possible realizations in the fine-grained
velocity field u. Now, in order to see the inconsistency, it is necessary to consider the
inverse functional Fourier transform of (3.3) in the transformed domain of Q (4.1):

P̃ [ũ(x̃); t̃] =

∫
Φ̃[α̃(x̃); t̃] e−i

∫
d3

x̃ α̃(x̃)·ũ(x̃)Dα̃(x̃). (4.8)

By inserting the transformation Q (4.1) into the right-hand side of (4.8) we get

P̃ [ũ; t̃] =

∫ [
eqΦ[α; t] + (1 − eq)

]
e−i

∫
d3

x α·uDα

= eqP [u; t] + (1 − eq) · δ[u], (4.9)

which is the corresponding transformation rule for P , if Φ transforms as given in (4.1),
where for better readability we suppressed the implicit dependence x̃ = x on both sides.
The function δ[·] is the functional analog of the Dirac δ-function, and is called the δ-
functional (Klauder, 2010; Kleinert, 2013). In the lattice approximation, corresponding
to (3.5) with (3.6), they are defined as an infinite product of ordinary one-dimensional
δ-functions

δ[u] =
3∏

i=1

δ[ui] =
3∏

i=1

∞∏

n=−∞

√
2π/ǫ3 · δ(ui(ǫ · n)), (4.10)

and thus having the obvious property
∫

Du δ[u] = 1,

∫
Dα δ[α] = 1. (4.11)

Note that since the variables x and α transform invariantly under (4.1), the velocity field
u must stay invariant too, otherwise we would loose the definition (3.3) of a functional
Fourier transform in the transformed domain.

However, on the other hand, if we insert Q (4.1) into the functional relation (4.2) in
order to explicitly generate the transformation rule for the n-point velocity moments, as
was already exercised in (4.3), we will get again

(−i)n δnΦ̃[α̃(x̃); t̃]

δα̃(x̃1) · · · δα̃(x̃n)

∣∣∣∣
α̃=0

= eq · (−i)n δnΦ[α(x); t]

δα(x1) · · · δα(xn)

∣∣∣∣
α=0

, (4.12)

which, if using the representation of Φ (3.3), turns into the following relations

n = 1 :

∫
P̃ [ũ(x̃); t̃] · ũ(x̃1) · Dũ(x̃) = eq

∫
P [u(x); t] · u(x1) · Du(x),

n = 2 :

∫
P̃ [ũ(x̃); t̃] · ũ(x̃1) ⊗ ũ(x̃2) · Dũ(x̃) = eq

∫
P [u(x); t] · u(x1) ⊗ u(x2) · Du(x),

...
...

... (4.13)
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By recognizing again the already mentioned fact that the velocity field (along with its
continuous index) is an invariant under the considered transformation Q (4.1), we can
replace the variable ũ(x̃) in (4.13) with u(x) and vice versa for all points. Then, by
equating in its present and already irreducible form the left-hand side with the right-hand
side for each order n, we obtain from (4.13) the transformation relation†

P̃ [ũ; t̃] = eqP [u; t], (4.14)

which is in conflict with the previously found transformation rule (4.9) for P , i.e. there
is no unique transformation rule for the probability density functional P . Consequently,
via the fine- to coarse-grained transition rule (4.8) the symmetry transformation Q (4.1)
induces an inconsistency. This conflict, however, can only be solved if q = 0, but which
then turns the symmetry transformation Q (4.1) into a trivial identity transformation.

Worthwhile to note is that by physical intuition alone one already can recognize this
conflict just by solely observing relation (4.9) more closely. Because, since the variables x,
u and t transform invariantly under Q (4.1) we can identically write the transformation
rule (4.9) also as

P̃ [u; t] = eqP [u; t] + (1 − eq) · δ[u], (4.15)

which states that although the system on the fine-grained level u stays unchanged, it nev-
ertheless undergoes a global change P → P̃ on the coarse-grained level, which is completely
unphysical and not realized in nature.

We thus have a classical violation of cause and effect, as the system would experience an
effect (change in averaged dynamics) without a corresponding cause (change in fluctuating
dynamics). Note that the opposite conclusion is not the rule, i.e. a change on the fluctua-
ting level can occur without inducing an effect on the averaged level. A macroscopic or
coarse-grained (averaged) observation might be insensitive to many microscopic or fine-
grained (fluctuating) details, a property of nature widely known as universality (see e.g.
Marro (2014)). For example, a high-level complex coherent turbulent structure, though a
consequence of the low-level fluctuating description, does not depend on all its details on its
lowest level. The opposite again, however, is not realized in nature, i.e., stated differently,
if the coherent structure experiences a global change, e.g. in scale or in a translational shift,
it definitely must have a cause and thus must go along with a corresponding change on
the lower fluctuating level — see also the discussions, e.g., in Frewer et al. (2015, 2016a).

Exactly this non-physical behavior can also be independently observed in the induced
transformation rule QE (4.4) for the n-point velocity moments Hn (3.1). It can either be
exposed directly on the fluctuating level as an unphysical equivalence transformation, or
indirectly on the averaged level as a superfluous or artificial equivalence transformation. In
any case, on each level we will gain different insights for this non-physical transformation
behavior.

Hence, fully detached from the finding that the equivalence transformation QE (4.4)
for the velocity moments is induced by an unphysical symmetry transformation Q (4.1) on
the higher statistical level of the corresponding probability densities, we will now repeat
our investigation on the lower statistical level of the velocity moments themselves, by only
focussing on the link between QE (4.4) and the unclosed Friedmann-Keller equations (4.5).

4.2. The unphysical behavior of equivalence QE on the fluctuating level

In the case of the Friedmann-Keller chain, especially when used in the oversimplified form
(4.5), particular care has to be taken when actually performing a systematic invariance
analysis on these equations. The problem is that in contrast to the other two statistical
approaches, i.e. the Lundgren-Monin-Novikov chain or the Hopf equation, the Friedmann-
Keller chain does not naturally come along with additional physical constraints which are
necessary in order to reveal the nonlinear and nonlocal connection between all constituents
(see Appendix C).

†Note that a local relation can only be identified correctly from an integral relation if it’s formulated
irreducibly, i.e., in a form such that it cannot be reduced or simplified any further.
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This circumstance can easily lead to misleading results, as it is the case for QE (4.4).
Here it is necessary to recognize that QE (4.4) is an invariant scaling transformation which
only linear systems can admit, since only the system’s dependent variables get uniformly
scaled, while the coordinates (t,x) themselves stay invariant. Indeed, the corresponding
dynamical system which admits QE (4.4) is the Friedmann-Keller chain of equations (4.5),
which is a linear system, since An and Bn are both linear operators (see Appendix B).

However, this result, that the hierarchical system (4.5) admits QE (4.4) as an equiv-
alence transformation, is misleading, since it suggests that all correlation functions Hn

scale uniformly with the same scaling factor, which really is not the case as the underlying
theory dictates a nonlinear correlation between all these quantities. The problem clearly
lies in the notation: Using a formal symbol as Hn, where only an external index n allows to
distinguish between different multi-point functions, hides the actual underlying correlation
information among them. In this sense the notation used in equation (4.5) is counterpro-
ductive from the perspective of an analysis on invariance, in that it oversimplifies the
physical situation by representing the dynamics for the n-point velocity correlations as a
linear PDE system, while it is actually based on a nonlinear theory.†

It is this misleading aspect which was not recognized and taken into account in Ober-
lack & Rosteck (2010). That is to say, by explicitly revealing the underlying nonlinear
structure behind the formal symbol Hn in (4.5), namely that Hn+1 contains one determin-
istic velocity field u more than Hn, will ultimately break the equivalence scaling QE (4.4),
as will be shown next.

Since the velocity correlation function Hn in QE (4.4) is nonlinearly built up by n
multiplicative evaluations of the instantaneous (fluctuating) velocity field u according to
(3.1), the following chain of reasoning instantly emerges: Since for n = 1 the averaged
function H1 = 〈u1〉 scales as eq for all points x1 = x in the domain, the corresponding
fluctuating quantity u1 has to scale in the same manner, since every averaging operator 〈, 〉
is linearly commuting with any constant scale factor. But this implies that any product
of n fluctuating fields u1 ⊗ · · · ⊗ un has to scale as en·q, which again implies that also
the corresponding averaged quantity Hn = 〈u1 ⊗ · · · ⊗ un〉 then has to scale as en·q.
Symbolically the chain reads as

H̃1 = eqH1 ⇒
〈
ũ(x̃1, t̃)

〉
= eq

〈
u(x1, t)

〉
, for all points x1 = x

⇒
〈
ũ(x̃k, t̃)

〉
= eq

〈
u(xk, t)

〉
, for all k ≥ 1

⇒
〈
ũ(x̃k, t̃)

〉
=
〈
equ(xk, t)

〉
, for all possible configurations u

⇒ ũ(x̃k, t̃) = equ(xk, t)

⇒ ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃) = en·qu(x1, t) ⊗ · · · ⊗ u(xn, t)

⇒
〈
ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃)

〉
=
〈
en·qu(x1, t) ⊗ · · · ⊗ u(xn, t)

〉

⇒
〈
ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃)

〉
= en·q〈u(x1, t) ⊗ · · · ⊗ u(xn, t)

〉

⇒ H̃n = en·qHn. (4.16)

For a detailed explanation of this proof in all its steps, please refer to Appendix D. Con-
clusion (4.16) clearly demonstrates that if the one-point function H1 globally scales as eq

then the n-point function Hn has to scale accordingly, namely as en·q and not as eq as
dictated by QE (4.4). Only the former scaling en·q will guarantee for an all-over consistent
relation between the fluctuating and averaged level of the dynamical Navier-Stokes system.
In other words, if a dynamical system experiences a global transformational change on the
averaged level then there must exist at least one corresponding change on the fluctuating
level (Frewer et al., 2016a). But exactly this is not the case for QE (4.4) as both H1 and
Hn scale therein with the same global factor, for which, thus, a corresponding fluctuating
scaling cannot be derived or constructed, neither as a symmetry nor as any regular trans-
formation, meaning that the system experiences a global change on the averaged level with
no corresponding change on the fluctuating level — again the classical violation of cause

†Note that also the Hopf equation, and its discrete version, the Lundgren-Monin-Novikov equations
are linear systems, but at the expense of operating on a higher statistical level than the moments of the
Friedmann-Keller chain of equations, which, by definition, are all uniquely correlated in a nonlinear manner.
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and effect as was already discussed before. Hence, on the lower statistical level of the
velocity moments, too, the physical consistency can only be restored if q = 0, i.e. if the
equivalence transformation QE (4.4) gets broken.

To conclude, it should be pointed out that this proof (4.16) clearly shows that the
transformation (4.4) itself, i.e. detached from any transport equations, leads to contradic-
tions as soon as one considers more than one point (n ≥ 2). However, for n = 1, i.e. for
the mean velocity H1 = 〈u〉 itself, no contradiction exits. Only as from n ≥ 2 onwards,
the contradiction starts, which also can be clearly observed when comparing to DNS data
as will be demonstrated in Section 5: The mismatch of the corresponding scaling laws
which involve this contradictive scaling group (4.4) gets more strong as the order of the
moments n increases.

Also finally note again that in order to perform the proof (4.16) we basically used
the consistency of n = 1 (the first four lines of (4.16)) to show the inconsistency for all
n ≥ 2 (the remaining lines of (4.16)). Hence, irrelevant of whether QE (4.4) represents an
invariance or not, the transformation itself leads for n ≥ 2 to contradictions.

4.3. The superfluous behavior of equivalence QE on the averaged level

The immediate consequence on the averaged level in using an oversimplified statistical rep-
resentation is that QE (4.4) will show a superfluous or artificial transformation behavior
as soon as one changes to a more detailed representation which reveals more informa-
tion about the underlying theory. From the perspective of an invariance analysis, it is
intuitively clear that changing the statistical description for example to the Reynolds de-
composed representation will be superior to the oversimplified notation used in (4.5), as
it explicitly will reveal the nonlinearity within the system on the averaged lower level of
the moments. Performing a Reynolds decomposition, for example, of the instantaneous
2-point velocity field H2 into its mean and fluctuating part, will thus lead to

H2 =
〈
u1 ⊗ u2

〉
=
〈(

U1 + u′
1

)
⊗
(
U2 + u′

2

)〉

= R12 + U1 ⊗ U2. (4.17)

This relation explicitly unfolds its nonlinear connection to the one-point velocity fields,
where R12 = 〈u′

1 ⊗ u′
2〉 is the corresponding 2-point correlation function for the (zero-

mean) fluctuating field u′ evaluated in the points x = x1 and x2 respectively, while U1

and U2 is the mean velocity evaluated in the same points. Next, the decomposition for
the instantaneous 3-point velocity field H3

H3 =
〈
u1 ⊗ u2 ⊗ u3

〉
=
〈(

U1 + u′
1

)
⊗
(
U2 + u′

2

)
⊗
(
U3 + u′

3

)〉

= R123 + U1 ⊗ U2 ⊗ U3

+ R12 ⊗ U3 + R13 ⊗ U2 + R23 ⊗ U1, (4.18)

will not only nonlinearly connect to 1-point, but also to 2-point functions. This nonlin-
ear connection will then iteratively continue for all higher multi-point functions. Hence,
in a bijective, one-to-one manner the equivalence transformation QE in the oversimpli-
fied (linear) representation (4.4) then changes to the following more detailed (nonlinear)
representation

QE : t̃ = t, x̃n = xn, Ũn = eq Un, · · ·
R̃nm = eq Rnm +

(
eq − e2q) · Un ⊗ Um, · · ·

R̃nml = eq Rnml

+
(
eq − e2q) ·

(
Rnm ⊗ Ul + Rnl ⊗ Um + Rml ⊗ Un

)

+
(
eq − 3e2q + 2e3q) · Un ⊗ Um ⊗ Ul, · · · (4.19)

where we explicitly expressed the transformation only up to third order in the velocity
field for all point-indices n,m, l ≥ 1 in all possible combinations.
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In contrast to representation (4.4), the above representation (4.19) of QE immediately
reveals its superfluous or artificial behavior as an equivalence transformation. In (4.19) one
can see that the aim of all terms containing the prefactor eq is to enforce a linear system
scaling invariance which attempts to scale all field variables uniformly and independently
from its coordinates. But since the underlying Navier-Stokes theory is inherently nonlinear,
typical error terms proportional to e2q and e3q then emerge in (4.19) which need to be
subtracted accordingly in order to allow for a misleading linear invariance property within
a true nonlinear system of moments. In other words, although transformation (4.19)
acts as a true equivalence transformation in the correspondingly Reynolds decomposed
representation of the instantaneously averaged system (4.5), it acts artificially in that it
interprets the nonlinear terms Un ⊗ Um, Un ⊗ Um ⊗ Ul, etc. as error terms which all are
corrected for in order to achieve the desired linear system scaling invariance, but which,
as was demonstrated before in (4.16), ultimately cannot exist physically as it induces
inconsistencies already on the fluctuating level.

In order to avoid a misconception on this subtle issue, we will repeat the above argu-
mentation again by using different words and by viewing it from a different perspective.

Our claim here is that for the moments the H notation as used by Oberlack et al. should
not be used when performing an analysis on invariance, because, due to its high nota-
tional simplification, it can easily lead to misleading results, in particular when ignoring
its connection to the underlying deterministic theory. Careful, our statement is only to be
interpreted as a precautionary measure to avoid possible misguidance from the outset. We
do not say that the H notation is wrong, we just say that it is counterproductive to use,
because when working with this oversimplified notation without making a direct connec-
tion to the underling deterministic theory, one clearly has a higher risk to produce non-
physical results than when working in the classical R notation. The self-evident reason is
that the oversimplified H notation hides essential information of the underlying determin-
istic Navier-Stokes equations, while the R notation, in contrast, reveals it. In other words,
when not connecting the notation to the underlying deterministic theory, the R notation is
physically more transparent and helpful than the mathematically equivalent H notation.

Of course, as both notations are just linked by a bijective (one-to-one) mapping, the
classical R notation is not free of the risk to induce a non-physical result, too. But such
a non-physical result will be more easy to track in the detailed R notation than in the
oversimplified H notation, where it’s even not noticeable without properly connecting
the notation to the underlying theory. In the R notation, however, unphysical results
immediately reveal themselves by showing an artificial functional behavior, as in the case
of the new unphysical scaling invariance (4.19).

It is clear that since this scaling invariance is unphysical in the H notation (4.4) it is also
unphysical in the R notation (4.19). But in contrast to relation (4.4), the corresponding
relation (4.19) immediately indicates that it’s unphysical. To be explicit, let’s consider
the new scaling invariance in the R notation (4.19) for the one-point correlations up to
second order

t̃ = t, x̃ = x, Ũ = eqU, τ̃ = eqτ + (eq − e2q) · U ⊗ U, · · · (4.20)

where τ = 〈u′ ⊗ u′〉 is the Reynolds-stress tensor, and compare it to the single and
only scaling symmetry of the deterministic Navier-Stokes equations S (2.3), which, when
transcribed into the statistical form of the R notation, will read

t̃ = e2εt, x̃ = eεx, Ũ = e−εU, τ̃ = e−2ε
τ , · · · (4.21)

Although both (4.20) and (4.21) are mathematically admitted as invariant transforma-
tions of the underlying Reynolds-stress transport equations up to second order (Pope,
2000; Davidson, 2004), it is only transformation (4.20) which on this level of description
immediately shows an artificial and thus a physically non-useful transformation behavior.
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Thus, without making a connection to the underlying fluctuating dynamics we already
can observe that (4.20) is actually a physically non-useful transformation just by solely
inspecting expression (4.20). This is definitely not possible in the oversimplified H nota-
tion (4.4), and hence, therefore, one has the higher risk of being misguided when using
this notation.

The reason why on this level of description (4.20) acts artificially and (4.21) not, is that
in order to explicitly scale the values of the Reynolds-stress tensor τ → τ̃ one has to involve
the mean velocity field itself (in the quadratic form U ⊗ U). But such a transformation
(4.20) is not in accord with the idea of a Reynolds decomposition which has the intention to
study turbulence statistics relative to the mean velocity field U. The problem is that since
the untransformed Reynolds-stress τ is quadratically built up by a (zero-mean) fluctuating
field u′ which measures the mean stress relative to the mean velocity U, the transformed
quantity τ̃ in (4.20) doesn’t have this ‘relative measure’-property anymore because the
values are now mixed with mean-velocity values. In other words, within the transformed
system the quantity τ̃ cannot be identified as a Reynolds-stress anymore, which actually
should measure the stress relative to the transformed mean velocity Ũ.

In this sense, transformation (4.20) is not physically useful, which we directly can
also observe when fitting the resulting scaling laws to DNS data (see Section 5). The
observed result will be a clear mismatch between theory and experiment, but, as soon as
the unphysical structure of transformation (4.20) is excluded or removed from the scaling
laws, the matching will improve again by several orders of magnitude which, ultimately,
is a clear indication that the scaling (4.20) is unphysical.

Moreover, when returning back to the previously mentioned perspective where the
additional scaling terms in (4.20) are only required to restore a misleading linear scaling
within a nonlinear theory of moments, the artificial transformation behavior of (4.20) can
also be immediately seen when generating invariant functions. Consider the following
invariant one-point function of transformation (4.20)

F(x) =
τ + U ⊗ U√

U · U
. (4.22)

Now, when explicitly performing this invariant transformation

F̃(x̃) =
τ̃ + Ũ ⊗ Ũ√

Ũ · Ũ

=
eqτ + (eq − e2q) · U ⊗ U + (eqU) ⊗ (eqU)√

(eqU) · (eqU)
=

τ + U ⊗ U√
U · U

= F(x), (4.23)

we see how the transformation rule for the Reynolds-stress τ acts artificially, in that one
of its direct aims is to only cancel the disturbing nonlinear terms. Hence, it’s highly ques-
tionable whether, and in which sense, the invariant function (4.22) is actually physically
relevant, since its corresponding invariant transformation (4.20) is not incorporating the
nonlinear terms into the transformation process itself but instead only treats them as
‘error terms’ which must be cancelled accordingly.

Finally, the reader should note that such a superfluous construction is not specific to
the Navier-Stokes theory, i.e. the construction principle itself to yield the misleading type
of invariance (4.19) is not unique or particular to the Navier-Stokes equations but can be
established basically in any statistical system of any nonlinear theory. In other words, the
superfluous type of linear scaling invariance (4.19) inherently also exists for example in any
unclosed statistical model of the nonlinear Maxwell or the nonlinear Schrödinger equations
(see Appendix E), by just reformulating the corresponding expressions accordingly. Hence,
if one is not careful enough wrong conclusions will be the general consequence.

In a more general sense we can thus conclude that systematically ignoring any infor-
mation about the functional structure of an either closed or an unclosed model equation,
which is directly linked to an underlying theory in using an oversimplified representa-
tion (instead of an appropriate representation which explicitly reveals this information),
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unawarely allows for generating unphysical and thus useless results when performing an
analysis on invariance. This conclusion can be stated as the following general principle:

P: For every invariance analysis to be performed on an equation-based model which
is linked to an underlying physical theory, it is crucial how the model equations are repre-
sented. It is necessary to reveal all information available for the system. If the notation
tends to be oversimplified by not revealing all essential information, the analysis runs the
risk to generate non-physical results without knowing.

In other words, caution has to be exercised in knowing that mathematical notation,
even if formally correct, always has the unfortunate ability to simplify or even oversimplify
the actual physical situation and thus causing misguidance, or suggesting an intuition
which by closer inspection is not supported.

4.4. An example of a physically consistent statistical scaling symmetry

We want to close Section 4 with a contrasting (positive) example of a statistical scaling
symmetry admitted by the Hopf equation (3.2), which not only is compatible with all three
constraints (3.4), but which also acts fully consistent on the coarse-grained (averaged) as
well as on the fine-grained (fluctuating) level. The symmetry is

SHEq : t̃ = e2εt, x̃ = eεx, α̃ = e−2ε
α, Φ̃ = Φ, (4.24)

which is the only admitted physical (global) scaling symmetry S (2.3) of the Navier-Stokes
equations just reformulated here for the Navier-Stokes-Hopf equation (3.2).† Note that
(4.24) then induces the transformation rule for the

• velocity field: since the exponent inside the kernel of (3.3) should stay invariant, i.e.
d3x̃ · α̃ · ũ = d3x · α · u, in order to consistently define a functional Fourier transform
also in the transformed (scaled) domain, the velocity field must scale as

ũ = e−εu, (4.25)

• functional derivative: since the functional derivative carries the physical dimension
of the considered field variable per volume, it must scale as

δ

δα̃
=

∂

∂α̃d3x̃
= e−ε ∂

∂αd3x
= e−ε δ

δα
, (4.26)

• functional volume element: since for path integrals the measure is of infinite size, it
will scale accordingly for each field as

Dα̃ =
∏

x̃

(√
d3x̃/2π

)3 · d3
α̃(x̃)

=
∏

x

e−3ε/2(
√
d3x/2π

)3 · d3
α(x) =

(∏

x

e−3ε/2
)
Dα, (4.27)

Dũ =
∏

x̃

(√
d3x̃/2π

)3 · d3ũ(x̃)

=
∏

x

e+3ε/2(
√
d3x/2π

)3 · d3u(x) =
(∏

x

e+3ε/2
)
Du, (4.28)

†The ‘official’ theoretical development of extending classical point symmetry analysis from partial
to functional differential equations is provided in Oberlack & Wac lawczyk (2006), and recently also in
Wac lawczyk & Oberlack (2013b) adjusting it to Fourier space. However, it still lacks completeness, since
the extension is based on an incomplete set of variables, in that the continuous index point x (in coordi-
nate space) or k (in wavenumber space) are considered as being unchangeable quantities, which is not the
case, simply because both variables carry a physical dimension which always, at least, must allow for a
(re-)scaling in the units. A clear counter-example is given by (4.24). But also from a pure mathematical
perspective, the independent variables x or k have to be included into the transformation process, even
if they at most only act as integration (dummy) variables, nevertheless, their transformational change is
always ruled by the Jacobian. Hence, by making sole use of the extended Lie algorithm developed in
Oberlack & Wac lawczyk (2006) and Wac lawczyk & Oberlack (2013b), the fundamental scaling symmetry
(4.24) can not be generated and essentially an important symmetry as (4.24) will thus be missed. For more
details, we refer to our comments Frewer & Khujadze (2016a); Frewer et al. (2016b) and to our reactions
Frewer & Khujadze (2016b); Frewer et al. (2016c), respectively.
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where it should be noted that the continuous counting index (not the variable itself)
stays invariant under transformation (4.24), i.e.

∏
x̃

=
∏

x
, since by x̃ = eεx any set

of real numbers is mapped again in a one-to-one manner to a set of real numbers of
the same measure,

• probability density functional: since the physical constraint
∫
P [u; t]Du = 1 must

stay invariant, it has to scale as

P̃ [ũ; t̃] =
(∏

x

e−3ε/2
)
P [u; t], (4.29)

which, in contrast to (4.15), makes an intuitive physical statement, in that if the
system experiences a global change in scale on the fine-grained level u → ũ of type
(4.25), then the system will experience this change in scale also on the coarse-grained
level accordingly P → P̃ (4.29).

• n-point velocity correlation functions: since the construction of all Hn in the Hopf
framework are given according to rule (4.2), they scale as

H̃n = e−n·ε Hn, (4.30)

which is the only correct possible scaling behavior for the incompressible Navier-
Stokes n-point velocity correlation functions. To date, no other statistical scaling
symmetry exists!

5. Comparing to DNS results

This section will investigate if all statistical scaling laws which are based on the “new
statistical scaling symmetry” QE (4.4) qualify as useful scaling laws. For geometrically
simple wall-bounded flows the general construction principle to generate these laws as
“first-principle results” in the inertial region is given in Oberlack & Rosteck (2010, 2011),
which recently in Avsarkisov et al. (2014) got extended to include more sophisticated
wall-bounded flows.† Of particular interest are those laws, which according to Oberlack
& Rosteck (2010, 2011) should scale all higher order velocity moments beyond the log-
law of the mean-velocity profile. The corresponding derivation procedure is revisited in
Appendix F. Up to third moment, the explicit functional structure for all one-point velocity
moments is derived in (F.10) and given as

U(y) = αU · ln(y + c) + βU ,

τ ij(y) = αijH + βijH · (y + c)γ − δ1iδ1jU(y)2,

T 111 = α111
H + β111

H · (y + c)2γ − 3U(y) · τ11(y) − U(y)3,

T 112 = α112
H + β112

H · (y + c)2γ − 2U(y) · τ12(y),

T ij1 = αij1H + βij1H · (y + c)2γ − U(y) · τ ij(y), for (i, j) = (2, 2), (3, 3),

T ij2 = αij2H + βij2H · (y + c)2γ , for (i, j) = (2, 2), (3, 3).





(5.1)

At the example of ZPG turbulent boundary layer flow these “new statistical scaling laws”,
which by construction all apply in the inertial region of the flow, will be matched to DNS
data. The investigation itself will be based on the method of least square fits (chi-square
methods) for DNS data with a Reynolds number as high as Reθ = 6000. An open source
software package which runs in Mathematica was used for all fitting needs, designed and
programmed by Zielesny (2011). The DNS data was made available to us on the courtesy
of Jiménez et al. (Simens et al., 2009; Borrell et al., 2013).

†In Oberlack & Rosteck (2010, 2011) as well as in Avsarkisov et al. (2014) all scaling laws for wall-
bounded flows are actually based on two “new statistical symmetries”. Next to the “new scaling symmetry”
(4.4) also a “new translation symmetry” is involved, but which, as the scaling symmetry too, turns out
to be completely unphysical. This can be easily demonstrated by using the same procedure as shown and
developed in this article.
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The curve fitting strategy is organized as follows: The complete fitting procedure will
be based on an experimentally obtained fit for the mean streamwise velocity profile in the
form of the modified (y-shifted) log-law according to (5.1):

U+
exp = αU,exp · ln(y+ + cexp) + βU,exp, (5.2)

where all variables and parameters were normalized to wall units.† This y-shifted (non-
classical) log-law (5.2) was first derived and proposed in Oberlack (2001), and then later
re-derived in Oberlack & Rosteck (2010) as shown in Appendix F. The corresponding three
parameters κexp = 1/αU,exp = 0.38, βU,exp = 4.1 and cexp = 5.0 are taken from Lindgren
et al. (2004), which were determined as an average-fit over an ensemble of experimental
data sets ranging in Reθ from 2500 up to 27000. Hence, this particular specification in the
log-law parameters should also apply to our chosen DNS data set, as its Reynolds number
value of Reθ = 6000 lies within that ensemble range. The idea behind this strategy is to
make use of the universal scaling behavior of the log-law, under the critical assumption,
of course, that it’s valid. In other words, if we assume the universality of the log-law to be
correct, it is more than reasonable to take a well-established average-fit over an ensemble
of experiments within a wide range of different Reynolds numbers and to imbed it into
a numerical data set for a Reynolds number which lies inside that range. In this way, as
will be done herein, one obtains a robust reference for all upcoming fits to be generated
in this section.

Figure 1, left plot (L), convinces with a good comparison for our chosen DNS data set
of Reθ = 6000 to other sets with different Reynolds numbers. Also the above universal
modified log-law (5.2) is included to get an impression for its range of validity.

As the general aim of this section is to perform proper fits by using basic methods
from statistical data analysis, the error of the considered data needs to be known. For-
tunately the numerical error for some simulated quantities in the case of ZPG turbulent
boundary layer flow are easily determined. Due to statistical symmetries in the flow the
mean spanwise velocity component as well as all moments involving an uneven number of
fluctuating spanwise velocity fields should be exactly zero by theory. However, every nu-
merical simulation is and always will be unable to resolve these zero-fields exactly to zero.
Hence the difference can be interpreted as the error of the simulation for that particular
field, i.e. the mean spanwise velocity component W then serves as the error for U , and
e.g. the Reynolds stress τ23 can serve as the error for τ22 and τ33, etc.

5.1. Curve fitting for Reθ = 6000 in the inertial region

The course of action will follow the underlying statistical hierarchy, by first fitting the
lowest order moments to be then used as input information to fit the next higher order
ones. The process starts with Figure 1, right plot (R), for the mean streamwise velocity
profile. It shows the result of comparison between the above in (5.2) specified and discussed
log-law

U+
exp = 1/0.38 · ln(y+ + 5) + 4.1, (5.3)

and the corresponding DNS data at Reθ = 6000. According to Lindgren et al. (2004) the
fit should be valid down to about y+ ∼ 100. The upper limit is then fixed symmetrically
by taking the same residual as found at the lower limit. This then gives a convincing
fit ranging from y+ ∼ 100 to y+ ∼ 330, shown in Figure 1R as the shaded region, with
a rather good reduced chi-square (χ2

red) value of 75. Here the mean spanwise velocity
W locally served in each point of the considered range as the underlying error field to
determine the necessary quality of that fit.

†The normalization into wall units is based on the kinematic viscosity ν and the mean streamwise
friction velocity Uτ =

√
ν · ∂yU |y=0, which needs to be extracted from DNS data. In order to avoid an

overloading of notation, the ‘+’-index in the parameters will be suppressed.
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Figure 1: Left plot: Comparison between DNS data from Borrell et al. (2013) of the mean stream-
wise velocity profile for Reθ = 6000 (middle solid line from top end), and from Schlatter & Örlü
(2010) for Reθ = 4500 (lower solid line from top end), and the experimental data set from Österlund
et al. (2000) for Reθ = 27000 (upper solid line from top end). The dashed line shows the log-law
(5.3), which was experimentally gained as an average-fit over an ensemble of Reθ ranging from
2500 up to 27000 (Lindgren et al., 2004).
Right plot: The solid line displays the DNS data of the mean streamwise velocity profile for
Reθ = 6000 (Borrell et al., 2013), while the dashed line shows again the experimentally fitted
log-law (5.3). Inside the grey-shaded region, ranging from y+ = 100 to 330, the statistical fitting
error is δfit = 1.3 · 10−3 and χ2

red = 7.5 · 101 when referred to the underlying DNS error. Hereby
the shaded region visualizes the inertial range, which from hereon will now consistently define the
fitting domain in all plots.

As a result the log-law in Figure 1R thus slightly underfits the DNS data in this range,
as its χ2

red-value is above the optimal value of one (Zielesny, 2011). In particular, the rule
is that relative to the underlying numerical error of the data, any χ2

red-value smaller than
one indicates a so-called overfit of the data meaning that the considered fitting range of
the domain is possibly too small, while a value larger than one indicates an underfit of the
data showing that either the considered fitting range of the domain is too large or that the
considered function itself is inappropriate. However, despite this small underfit residing
in Figure 1R we preferably gained an universal (Reynolds number independent) reference
for all remaining scaling laws still to be fitted in this section — however only under the
critical assumption of course that the universality principle holds.

Note that we excluded, on purpose, the lower end range from y+ ∼ 30 to y+ ∼ 100
as part of the log-region. Our aim here is to operate and to continue the investigation
with a convincing fit for the log-law (5.3). Including the range below y+ ∼ 100 would only
deteriorate the quality of the fit (by nearly one order of magnitude in χ2

red), since this range
clearly shows a small overshoot which noticeably deviates from a typical log-behavior in
both the experimental and the DNS data as seen in Figures 1L and 1R.

Finally to note is that in all plots to be discussed from hereon, the solid line represents
the DNS data for Reθ = 6000 from Borrell et al. (2013), while the dashed line represents
the corresponding best-fit according to the functional form as given in (5.1). To enforce
consistency, all fits will only be performed within the shaded region covering here the
inertial range between y+ ∼ 100 and y+ ∼ 330. Additionally, all fits will be compared
relative to the underlying DNS error in a consistent manner by employing either the cor-
responding zero-fields or the budget residuals. The explicit values of the fitted parameters
will be stated up to three digits precise in the corresponding caption of each figure.
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Figure 2: Left plot: All Reynolds stresses for Reθ = 6000 (Borrell et al., 2013) plotted over the
complete wall-normal range.
Right plot: A selection of third order velocity moments for Reθ = 6000 (Borrell et al., 2013) plotted
in the same wall-normal range as left. In both plots the grey-shaded area shows the inertial region.

Before we start investigating the higher order moments inside the shaded inertial range,
it is helpful to first visualize the second and third order velocity moments in the complete
wall-normal domain of the flow. While Figure 2L presents all second moments, Figure 2R
only shows those third moments which were selected later on for a detailed investigation. In
both plots the shaded inertial range was made visible in order to get a strong comparative
impression of the complete functional structure inside and outside that domain.

Figure 3L shows the best-fit for the Reynolds-stress component (5.1)

τ11+ = α11
H + β11

H · (y+ + cexp)γ − U+2
exp, (5.4)

the new mixed scaling law first derived in Oberlack & Rosteck (2010) as the zero-correlation-
length limit of the corresponding 2-point function, which next to a power-law also includes
the universal log-law U+

exp (5.3). Figure 3R however shows the best-fit for

τ̂11+ = α̂11
H + β̂11

H · (y+ + cexp)γ̂ , (5.5)

an alternative three-parametric scaling law, which, just for the sake of interest, excludes
the unphysical log-part U+2

exp from the newly proposed scaling law (5.4). Our motivation to
use (5.5) as comparison to (5.4) stems from the idea to observe the difference in functional
behavior when a physical subgroup of T ◦ S1 ◦ S2 ◦ Q1 ◦ Q2 (F.1)-(F.5) is being considered,
that is, to compare function (5.4) with an alternative function which is not linked to the
unphysical “new statistical symmetries” Q1 (F.4) and Q2 (F.5).

When excluding these two from the group T ◦ S1 ◦ S2 ◦ Q1 ◦ Q2, the physical subgroup
T ◦ S1 ◦ S2 is obtained, from which then, if the scaling in the mean velocity profile U
(F.7) is not forced to be broken, only pure power laws as given by (5.5) can be induced as
invariant functions, thereby explicitly demonstrating that the functional shift U+2

exp in (5.4)
has its origin solely in the unphysical “new statistical symmetries” Q1 and Q2. However,
the reader should note that the power-law as specifically defined in (5.5) is not a genuine
invariant function of the considered physical subgroup T ◦ S1 ◦ S2, due to the constant
offset α̂11

H we explicitly included in order to ensure a same level of competitiveness as for
function (5.4) which features three open parameters. In other words, although (5.5) cannot
be identified as an exact invariant function of T◦S1◦S2, it is nevertheless motivated through
this physical transformation group to take the structural form of an invariant power-law,
providing for (5.5) thus a far more stronger physical background than T ◦ S1 ◦ S2 ◦ Q1 ◦ Q2
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Figure 3: Left plot: Best-fit of τ11+ according to the new statistical scaling law (5.4). The cor-
responding parameters are α11

H
= −321.3, β11

H
= 302.6, γ = 0.145, with the quality measures

δfit = 5.5 · 10−3, χ2
red = 3.3 · 102.

Right plot: Best-fit of τ̂11+ according to the pure power-law (5.5), without the unphysical log-
squared-term U+2

exp appearing in the new scaling law (5.4). The corresponding parameters are

α̂11
H

= 5.893, β̂11
H

= −0.134, γ̂ = 0.464, with the quality measures δfit = 1.9 · 10−3, χ2
red = 3.1 · 101.
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Figure 4: Left plot: Best-fit of τ11+ according to the new statistical scaling law (5.4) using different
fitting precisions. It shows the high sensitivity against small perturbations in the parameters values,
when going from six digits (lower and best matching fit), to four digits (middle fit) down to three
digits (upper fit). The corresponding parameters are given in the left part of the table below.
Right plot: Best-fit of τ̂11+ according to the power-law (5.5), without the unphysical log-squared-
term U+2

exp appearing in the new scaling law (5.4). In contrast to the fit in the left plot it shows
complete insensitivity against small perturbations in the parameters values when going from six
down to three digits. The corresponding parameters are given in the right part of the table below.

Digits α11
H · 10−3 β11

H · 10−3 γ α̂11
H · 10−1 β̂11

H γ̂

6 −0.321261 0.302558 0.144571 0.589339 −0.134415 0.463731
4 −0.3213 0.3026 0.1446 0.5893 −0.1344 0.4637
3 −0.321 0.303 0.145 0.589 −0.134 0.464

Parameters for Figure 4.
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can provide for scaling law (5.4) — a difference which becomes easily visible now when
determining and comparing their best fits.

Although the quality of both fits for (5.4) and (5.5) is comparable relative to the
statistical measure δfit

†, we clearly see however that the fit in Figure 3L for (5.4) definitely
has a far more unnatural functional behavior than the fit in Figure 3R for (5.5). In other
words, although the fit on the left is of nearly equal quality as that on the right regarding
its residual δfit, the scaling law (5.5), which excludes the unphysical log-term U+2

exp, follows
the DNS data more naturally on the right than the scaling law (5.4) on the left of Figure 3,
which includes the log-term U+2

exp. This is also quantitatively expressed by the fact that
the two fitting parameters α11

H and β11
H in the left plot resulted in far higher values than

α̂11
H and β̂11

H in the plot on the right, showing that in order to optimally fit an unnatural
behavior is at the expense of having to use large (unnatural) values in the parameters.

Additionally the fit in Figure 3L is by far more sensitive to small changes in the pa-
rameters than the fit in Figure 3R, which, in contrast to the left plot, shows a very robust
behavior against small perturbations in the parameter values. In order to reproduce Fig-
ure 3L at least six digits of precision are necessary in the values for the fitting parameters:
α11
H = −0.321261 · 103, β11

H = 0.302558 · 103, γ = 0.144571. To reproduce however Fig-
ure 3R only three digits of precision turn out to be already sufficient. This very strong
dependence upon small changes in the parameters demonstrates the artificial behavior of
the new scaling law (5.4), as its corresponding fit in Figure 3L can only be generated un-
der great effort in maintaining a high (unnatural) degree of precision. Figure 4 explicitly
shows and compares this behavior, thus explicitly displaying that (5.4) essentially cannot
be regarded as a physically useful scaling law.

Another measure is χ2
red, which in Figure 3L is greater than one and by one magnitude

larger than in Figure 3R, indicating that the mixed scaling law (5.4) of Oberlack et al.
underfits the data more strongly than an alternative scaling law (5.5) with a pure power-
law behavior would do, hence ultimately indicating again that relative to the underlying
DNS error the pure power-law in Figure 3R fits the DNS data more naturally. For both
fits the local error field was taken to be the zero-field τ13+.

This fitting procedure is then repeated for the streamwise triple velocity moment T 111+

shown in Figure 5L and Figure 5R. Without even referring to any statistical measures one
clearly sees that the corresponding mixed scaling law of Oberlack et al. (5.1)

T 111+ = α111
H + β111

H · (y+ + cexp)2γ − 3U+
exp · τ11+ − U+3

exp, (5.6)

shown in Figure 5L, is completely incapable to predict the corresponding DNS data in the
shaded inertial region correctly. To guarantee for a consistent fit of (5.6) the parameters
γ and those of τ11+ were taken as determined in the previous fit for Figure 3L, thus
essentially dealing only with a 2-parametric fitting function for α111

H and β111
H . In stark

contrast, Figure 5R shows a huge improvement in the fitting results as soon as the two
unphysical log-terms appearing in the above scaling law are removed, and, instead of (5.6),
the following pure power-law is used

T̂ 111+ = α̂111
H + β̂111

H · (y+ + cexp)3γ̂/2. (5.7)

As before for the Reynolds stress τ̂11+ (5.5), this is again motivated by us to compare
the newly proposed function (5.6) to an alternative scaling law which is not linked to the
unphysical “new statistical symmetries” Q1 (F.4) and Q2 (F.5), as they form the origin
of the peculiar functional shift (−3U+

exp · τ11+ − U+3
exp) in (5.6). Carefully note here again,

that although the power-law for the triple moment (5.7) with exponent 3γ̂/2 has been
consistently generated from the physical subgroup T ◦ S1 ◦ S2 ⊂ T ◦ S1 ◦ S2 ◦ Q1 ◦ Q2

(F.1)-(F.5) in accord with the power-law for the double moment (5.5) with exponent γ̂,

†The dimensionless quality measure δfit is the normalized root mean squared error relative to the
maximum value inside the considered domain to be fitted.
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Figure 5: Left plot: Best-fit of T 111+ according to the new statistical scaling law (5.6). Based on
the result γ = 0.145 from Figure 3L, the best fitted parameters are α111

H
= −2755, β111

H
= 1913,

with the quality measures δfit = 1.8, χ2
red = 7.8 · 106.

Right plot: Best-fit of T̂ 111+ according to the pure power-law (5.7), excluding both physically
inconsistent log-terms appearing in the new scaling law (5.6). Based on the result γ̂ = 0.464

from Figure 3R, the corresponding parameters are α̂111
H

= 0.711, β̂111
H

= −0.021, with the quality
measures δfit = 6.6 · 10−2, χ2

red = 1.7 · 104.

the complete scaling function as specifically defined in (5.7) is not a genuine invariant
function of the considered physical subgroup T ◦ S1 ◦ S2 itself. This is due to the constant
offset α̂111

H which we included again to ensure for both functions (5.6) and (5.7) the same
size of parameter space, as only this will allow for an equal and fair comparison.

Referring to χ2
red in Figure 5, the improvement in choosing the pure power-law (5.7)

instead of the mixed law (5.6) spans nearly three orders of magnitude. Of course, to
guarantee for a consistent fit in this case, too, the parameter γ̂ was taken from the previous
result of Figure 3R. For both fits in Figure 5L and Figure 5R the local error field was
approximated by the second moment zero-field (τ13+)3/2, as unfortunately no zero-fields
for third order velocity moments were generated during the DNS.

Figure 6L shows the best-fit for the off-diagonal stress component (5.1)

τ12+ = α12
H + β12

H · (y+ + cexp)γ , (5.8)

where the local error field was taken to be the zero-field τ23+. This result was then
absorbed into the next fit shown in Figure 6R, which again clearly demonstrates the poor
prediction ability of an Oberlack et al. proposed scaling law of mixed type. In particular,
Figure 6R shows the best-fit of the triple velocity moment (5.1)

T 112+ = α112
H + β112

H · (y+ + cexp)2γ − 2U+
exp · τ12+, (5.9)

with the fixed parameter γ = 0.145, which was already consistently determined for τ11+

in Figure 3L. Here the local error field was approximated by the zero-field (τ23+)3/2.
Finally, Figure 7L shows the best-fit for the Reynolds-stress component (5.1)

τ33+ = α33
H + β33

H · (y+ + cexp)γ , (5.10)

and Figure 7R the best-fit for the third order velocity moment (5.1)

T 331+ = α331
H + β331

H · (y+ + cexp)2γ − U+
exp · τ33+, (5.11)

facing again the same poor quality issues. The zero-fields τ23+ and (τ23+)3/2 were respec-
tively chosen again as the underlying DNS error.
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Figure 6: Left plot: Best-fit of τ12+ (5.8). The fitted parameters are α12
H

= −0.961 and β12
H

= 0,
with the quality measures δfit = 1.4 · 10−2, χ2

red = 1.5 · 102.
Right plot: Best-fit of T 112+ according to the new statistical scaling law (5.9). Based on the result
τ12+ = −0.961 from the left plot in this figure, the best fitted parameters are α112

H
= −16.38,

β112
H

= −3.851, with the quality measures δfit = 2.2 · 10−1, χ2
red = 4.9 · 106.
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Figure 7: Left plot: Best-fit of τ33+ according to (5.10). Based on the result γ = 0.145 from Figure
3L, the parameters are α33

H
= 4.798, β33

H
= −1.262, with the quality measures δfit = 1.4 · 10−2,

χ2
red = 1.7 · 102.

Right plot: Best-fit of T 331+ according to the new statistical scaling law (5.11). Based on the result
τ33+ from the left plot in this figure, the best fitted parameters are α331

H
= 43.56, β331

H
= −1.315,

with the quality measures δfit = 7.3 · 10−1, χ2
red = 6.2 · 105.
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6. Concluding remarks

The investigation done in the previous section could independently demonstrate that the
“new statistical scaling laws”, which in particular are based on the “new scaling symmetry”
QE (4.4) recently proposed in Oberlack & Rosteck (2010), are by no means useful and,
in our opinion, should be discarded in future work as they clearly fail to fulfil the most
basic predictive requirements of a scaling law. This is addressed in particular to those
scalings which are of mixed type, containing next to a power-law also a log-law, where the
latter, due to using for the statistical moments an overall inconsistent invariance analysis in
not properly incorporating the underlying deterministic theory, arise as unphysical terms
proportional to the mean streamwise velocity profile.

Section 4 explicitly revealed this failure. When taking the perspective of the equiva-
lence transformation QE (4.4) for the n-point velocity correlations, the reason is twofold,
depending on the particular level of the statistical description:

i) The lower level equivalence QE (4.4) is induced by the higher level symmetry Q (4.1),
which itself is physically inconsistent. By considering the fine- to coarse-grained
transition rule (4.8), this inconsistency in Q (4.1) is exposed as a violation of cause
and effect, in that the system on the statistical higher level would experience an
effect without a corresponding cause.

ii) The invariance QE (4.4) is admitted by a specific system of equations (4.5) whose
statistical representation hides essential information about the underlying determin-
istic system. Since nonlinear aspects of turbulence theory are not revealed, QE (4.4)
misleadingly represents itself as an invariance which only linear systems can admit.

Both reasons now turn the invariance QE (4.4) into an unphysical transformation.
Reason i), because the physical inconsistency on the higher level is directly transferred
onto the lower level. Reason ii), because when revealing the hidden nonlinear information,
the invariance gets broken as shown in (4.16), since the linear scaling, in which all system
variables scale uniformly and independently from its coordinates, is fully incompatible
with any nonlinear structure.

This very same conclusion also applies to the second “new statistical symmetry” (F.5),
first proposed in Oberlack & Rosteck (2010) and recently again in Wac lawczyk et al.
(2014). Admitted by the unclosed system (4.5) as a translation equivalence, in which
again the coordinates stay invariant and only the system variables get transformed due
to the equation’s oversimplified and thus misleading representation as a linear system of
gradient-type, it straightforwardly can be exposed as a further unphysical invariance just
by using the same procedure developed in this study.

Thus the claim made in Oberlack & Rosteck (2010) and Wac lawczyk et al. (2014),
in dealing with a first-principle construction method to generate scaling laws for wall-
bounded turbulent flows does not comply, all the more so as the previous section clearly
demonstrated a mismatch between theory and numerical experiment. For the third order
moments this was more strongly pronounced than for the second order moments, and
would most probably continue to decline in quality if the order of the moments is increased
further. In fact, the quality of these fits relative to the measure χ2

red declined drastically by
several orders of magnitude as the moments increased to the next higher order. This just
reflects the physical inconsistency of the invariance QE (4.4), which, as proven in (4.16),
manifestly intensifies as the order of the transformed moments increase. The same is true
for second unphysical invariance (F.5).

Important to note in this respect is that although the comparison was explicitly based
only for the case of a ZPG turbulent boundary layer flow over a flat plate, it is obvious that
all conclusions and results generalize and transfer in a one-to-one manner when comparing
this “new scaling theory” to any other wall-bounded flow configuration, for example as
to a channel-, pipe- or to a Couette-type of flow. For example, the result recently formu-
lated in Avsarkisov et al. (2014) for a more sophisticated wall-bounded flow heavily relies
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on those unphysical “new statistical symmetries”. Thus, generating a useful statistical
scaling law within Avsarkisov et al. (2014) for any higher order velocity moment, which
goes beyond the mean velocity profile, is predetermined to fail when considering all facts
discussed herein. Indeed, this failure is confirmed in Khujadze & Frewer (2016).

To conclude, we finally want to stress again in a brief historical outline that using the
terminology ‘invariant solution’ in the theory of turbulence is more than misleading.

For example, the classical von Kármán log-law was definitely not derived as a solution
of the (unclosed) statistical wall-bounded Navier-Stokes equations, but only as a self-
similar candidate function upon pure dimensional arguments (Monin & Yaglom, 1971). In
other words, although the classical von Kármán log-law is based on a dimensional scaling
symmetry, it is definitely not a first principle solution; it only performs as an invariant func-
tion which only possibly but not necessarily can serve as a useful turbulent scaling function
inside the inertial region. In this region also other different functions exist which all scale
equally well, sometimes even better than the classical log-law (Barenblatt, 1993; Baren-
blatt & Prostokishin, 1993; Barenblatt et al., 2014). The reason for this non-uniqueness
is clearly to be seen as the consequence of the statistical closure problem of turbulence,
in that no true solutions or true invariant solutions can be analytically constructed by
just employing the method of Lie symmetry groups alone (Frewer et al., 2014b; Frewer &
Khujadze, 2016c). Hence, also a so-called ‘advanced’ or ‘modern’ invariance theory still
faces the same problems as von Kármán had at his time.

Another prominent historical example which shows the complexity in the statistical
description of turbulence is that of anomalous scaling and the breaking of global self-
similarity, which both interdependently can be attributed to the complex property of in-
termittency (Frisch, 1985, 1995). For example in the inertial range of homogenous isotropic
turbulence the results clearly show that the flow cannot be globally invariant under scal-
ing, neither in a deterministic nor in a statistical sense. Inertial range intermittency when
measured with the longitudinal multi-point structure functions show a clear lack of global
statistical self-similarity (Frisch, 1995; Biferale et al., 2003). The point we want to stress
here is that even if we would only consider a highly idealized turbulent flow as that of
a homogeneous isotropic turbulent flow, the statistical solutions, in particular the higher
order correlations, are still by far more complicated than we currently can imagine and
that it’s actually unrealistic to believe that this complicated behavior can be captured by
some global scaling symmetries. In particular, when realizing the fact that intermittency
is essentially a property which rather breaks a symmetry than statistically restoring it.

Appendix A. Invariant solutions for underdetermined systems

Since the strong property of a Lie symmetry transformation only applies for fully deter-
mined equations (or overdetermined systems of equations) it can be exploited to construct
invariant solutions of the considered equations. The reader should note that we emphasize
the word ‘solution’. Because, for unclosed and thus underdetermined equations, for which
only Lie equivalence transformations can be generated, this situation is different, as we
want to explicitly demonstrate in the following.

For fully- or overdetermined systems of equations the word ‘solution’ is clearly defined.
However, for underdetermined equations the word ‘solution’ is defined in a broader context.
It is defined as a mathematical expression which directly solves the underdetermined
equation without having to solve it again if more information is added to this equation,
and, of course, that the solution must be in principle constructible without having to
initially model the equation.

A.1. Basic illustrative examples

First consider the following algebraic but underdetermined (unclosed) equation for x

x2 − y = 0. (A.1)
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Formally this equation can be solved for the desired variable x, to give the general solution

x = ±√
y, (A.2)

as a set of infinitely many (non-unique) possible solutions, where the solution set itself
has the geometrical structure of the parabola y = x2. Note that at this stage all infinite
solutions along this parabola are equally privileged, i.e. no preferred solution exists. But
this situation of course will change as soon as we will get additional information about
equation (A.1). Imagine to get the following additional information, either

i) that the unclosed value y can be uniquely constructed from some existing but still
unknown equation z(y) = 0, i.e. that y is determined by a specific but analytically
non-accessible process z which as a hidden process uniquely acts in the background,

or

ii) that the unclosed variable y is showing some uniquely existing but still unknown
substructure y = y(x), i.e. that y is an arbitrary but fixed function of x.

It’s clear that although we give additional information as i) or ii), in both cases equation
(A.1) remains underdetermined and thus unclosed. But, for its solution manifold the
situation completely changed:

a) For information i) the general (infinitely non-unique) solution (A.2) turns into the
unique (up to the option of choosing either plus or minus) but still unknown relation

x = ±√
y0, with z(y0) ≡ 0, (A.3)

which, from all possible solutions (A.2) which lie on the parabola y = x2, is now
a privileged solution on this parabola. That means, once the underlying process z
in (A.3) is known, all other (infinitely many) solutions lying on this parabola with
y 6= y0 must be discarded then as they no longer satisfy equation (A.3) anymore.

b) For information ii) the general solution (A.2) turns into an own unclosed equation
for x

x = ±
√
y(x), (A.4)

which needs to solved again for x, depending of course on the specification of the
function y(x).

In both cases we therefore cannot determine or construct a solution for x without modelling
the process z or without modelling the substructure y(x). Using the word ‘solution’ for
the unmodelled expressions (A.3) or (A.4) would thus be completely misleading.

Hence, for underdetermined equations as given in (A.1) we can either construct non-
unique and equally privileged (mostly infinitely many) solutions (A.2), or no solution at
all if the unclosed term emerges from an underlying but unmodelled process (A.3), or if
it shows an existing but unmodelled substructure (A.4).

The same reasoning also holds for differential equations. For example, consider the
following simple but underdetermined (unclosed) first-order ODE for f

d

dx
f(x) − g(x) = 0, (A.5)

which, if the arbitrary function g is integrable, can be generally solved as

f(x) = f(x0) +

∫ x

x0

g(x′) dx′, (A.6)
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to give a solution set with infinitely many possible and equally privileged solutions for
f = fg (infinite dimensional solution manifold), depending in each case on the particular
specification of the arbitrary function g.

Now, important to note in the context we are considering in this study is that this
infinite set of formal solutions can also include those functions which will stay invariant
under a given invariance (equivalence) group. For example, consider the following Lie
equivalence (scaling) transformation

x̃ = e−αx, f̃ = eαf, g̃ = e2αg, (A.7)

which leaves the unclosed equation (A.5) form-invariant

d

dx̃
f̃(x̃) − g̃(x̃) = 0. (A.8)

Then, from (A.7), the following two invariant functions can be constructed

f(x) =
cf
x
, g(x) =

cg
x2
, (A.9)

which, when choosing the integration constants as cg = −cf , will satisfy (A.6) and thus
will form a solution of (A.5). In other words, among the infinite possible and equally
privileged solutions of (A.5), we have picked out one specific solution (A.9) which has the
additional property of staying invariant under the arbitrarily chosen transformation group
(A.7). But careful, there is no reason at all that solution (A.9) should be identified as a
privileged or preferred solution among the infinite set of all other possible solutions (A.6).
Relative to their corresponding equation (A.5) all solutions including (A.9) are still equally
privileged — solution (A.9) only has some special additional transformational property,
that’s all!

In this sense we can define, in contrast to the strong form of a Lie-symmetry-based
invariant solution, the opposite weak form of an invariant solution when based on a Lie
equivalence transformation, namely as only being a particular and non-privileged solution
within an infinite set of other possible and equally privileged solutions.

But, if we now would get the additional information that the arbitrary function g(x) in
(A.5) either i) can be uniquely determined from some existing but still unknown process h,
e.g. from a functional relation of the form h[g(x)] = 0, or, ii) that it shows some existing
but unknown substructure, e.g. in the functional form g(x) = g[f(x), x], then the general
solution (A.6) looses its status of being an explicit and constructible solution. Because, for
i) the general non-unique solution (A.6) will turn into the unique and privileged relation

f(x) = f(x0) +

∫ x

x0

g0(x′) dx′, with h[g0(x)] ≡ 0, (A.10)

while for ii) it will turn itself into an underdetermined (unclosed) integral equation

f(x) = f(x0) +

∫ x

x0

g[f(x′), x′] dx′, (A.11)

for which in both cases no solution and thus also no invariant solution for f(x) can be
determined or constructed; of course, only as long as the functional h in (A.10) or the
kernel g in (A.11) stays unspecified. In other words, no solution and thus also no invariant
solution can be determined or constructed without invoking a modelling procedure for the
underlying process h or the substructure g.

Hence, for an underdetermined (unclosed) differential equation as (A.5) we thus have
the same situation as before for the unclosed algebraic equation (A.1), in that either
infinitely many and equally privileged solutions (including all possible invariant solutions)
can be constructed, or in that, depending on whether the unclosed term underlies an
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unique but analytically non-accessible process (A.10) or on whether it shows an existing
but analytically unknown substructure (A.11), no solutions and thus also no invariant
solutions can be determined without a prior modelling assumption in both cases. It’s clear
that all arguments given in this example can be easily extended also to underdetermined
(unclosed) PDEs.

A.2. Examples from turbulence theory

First consider the underdetermined (unclosed) differential system (2.7) of Example 2 in
Section 2. We obviously face both issues i) and ii) as defined in the beginning of the
previous Section A.1. First of all, the unclosed second moment T definitely shows a
substructure since it can be uniquely determined from the underlying instantaneous (fluc-
tuating) velocity field u. Furthermore, since the mean velocity field 〈u〉 is the most basic
element which can be constructed from u, the second moment T is mostly assumed to be
in first approximation a functional of the following form (Pope, 2000; Davidson, 2004)

T = T
[
〈u〉,∇ ⊗ 〈u〉

]
. (A.12)

Hence, if this arbitrary functional T stays unspecified, then no solution and thus also no
invariant solution can be determined, which thus corresponds to situation ii). Even if we
would suppress the substructure and would only demand a dependence on the coordinates

T = T
[
x, t
]
, (A.13)

which then, according to system (2.7), would allow (similar to (A.6)) for a formal con-
struction of infinitely many and equally privileged solutions for the mean velocity field
〈u〉, the usage of the word ‘solution’ would nonetheless be misleading in this case because
we basically reside in situation i). The reason for it is twofold: Not only because the
unclosed second moment (A.13) suffices an own unclosed one-point transport equation
E[T] = 0 (Pope, 2000; Davidson, 2004), which is structurally different to system (2.7),
but also because since the second moment (A.13) is uniquely determined by the underly-
ing instantaneous (fluctuating) velocity field u, there can be only one physical (privileged)
realization for T. That means that all other solutions within this infinite dimensional
solution manifold have to be discarded as unphysical, once this physical solution is deter-
minable. But, the probability to find this particular specification (A.13) which belongs to
this one physical solution (also within only a locally pre-specified spatiotemporal range)
is practically zero. Even more unlikely is the case if this one particular specification and
its corresponding physical solution would additionally stay invariant e.g. under the global
scaling group E2 (2.8). Hence, for this reason we claim that without a prior modelling
assumption for the unclosed system (2.7) the determination of its solutions and thus also
of its invariant solutions is misleading and essentially ill-defined.

A further, more general example is the infinite differential chain of n-point moment
equations based on the full instantaneous velocity and pressure fields of the incompressible
Navier-Stokes equations as presented in Oberlack & Rosteck (2010), and also recently in
Wac lawczyk et al. (2014)

∂Hi{n}

∂t
+

n∑

l=1

[
∂Hi{n+1}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

+
∂Ii{n−1}[l]

∂xi(l)

− ν
∂2Hi{n}

∂xk(l)
∂xk(l)

]
= 0, n = 1, . . . ,∞, (A.14)

∂Hi{n}[i(l) 7→k(l)]

∂xk(l)

= 0, for l = 1, . . . , n

∂Ii{n−1}[k][i(l) 7→m(l)]

∂xm(l)

= 0, for k, l = 1, . . . , n and k 6= l,





(A.15)
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where (A.14) are the transport equations for the (equal-time) multi-point velocity corre-
lation functions (3.1) of tensor order n ≥ 1

Hi{n}
:= Hi(1)i(2)...i(n)

:=
〈
ui(1)

(x(1)) · . . . · ui(n)
(x(n))

〉
, (A.16)

and the n-point pressure-velocity correlation functions of tensor order (n− 1)

Ii{n−1}[l] :=
〈
ui(1)

(x(1)) · . . . · ui(l−1)
(x(l−1)) · p(x(l)) · ui(l+1)

(x(l+1)) · . . . · ui(n)
(x(n))

〉
, (A.17)

along with (A.15) as the two continuity constraints.

In the following it will be helpful to briefly introduce the notation of Oberlack et al.
The first index of i{n} in (A.16) defines the tensor character of the quantity H, while the
second index in braces denotes its tensor order. The curly brackets point out that not an
index of a tensor but an enumeration is meant. On the other hand, the spatial component
index i(n) runs in general from 1 to 3 for all points n ≥ 1. For n = 1 one has the connection
to the mean velocity field according to

Hi{1}
= Hi(1)

=
〈
ui(1)

(x(1))
〉

=: Ui(1)
(x(1)), (A.18)

and to the mean scalar pressure

Ii{0}[1] =: I[1] =: P (x(1)). (A.19)

To note is that for convenience and a better readability we denote, in contrast to Oberlack
& Rosteck (2010) and Wac lawczyk et al. (2014), the instantaneous fields by small and all
averaged fields by capital (latin) letters and, as well, we let all indices run from 1 and not
from 0 upwards. Also note that in all definitions to follow the explicit time dependence in
all functions will be suppressed. Next, if the list of indices gets interrupted by one or more
other indices it is pointed out by attaching the replaced value in brackets to the index

Hi{n}[i(l) 7→k(l)] :=
〈
ui(1)

(x(1)) · . . . · ui(l−1)
(x(l−1)) · uk(l)

(x(l)) · ui(l+1)
(x(l+1)) · . . . · ui(n)

(x(n))
〉
, (A.20)

which is further extended by

Hi{n+1}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)] :=
〈
ui(1)

(x(1)) · . . . · ui(n)
(x(n)) · uk(l)

(x(l))
〉

(A.21)

=: Ĥi{n+1}[l], (A.22)

where not only the index i(n+1) is replaced by k(l), but also the independent variable x(n+1)

is replaced by x(l). If it is clear from the context, quantity (A.21) will be constantly abbre-
viated as (A.22).

Now, although infinite in dimension, the hierarchal system (A.14)-(A.15) is by con-
struction unclosed and thus underdetermined, where, due to that Ĥi{n+1}[l] 6= Hi{n+1}

,†

the lower dimensional moments Ĥi{n+1}[l] (A.22) are to be identified as the unclosed terms

since they do not directly enter the system’s next higher order correlation equation (for a
more detailed explanation we refer to Appendix C).

Exactly as in the example before, system (A.14)-(A.15) again represents a specific un-
derdetermined system of equations for which no solutions can be determined endogenously.
The obvious reason is that we again face both issues i) and ii) as defined in the beginning

†Note that although all components of Ĥi{n+1}[l] (A.22) can be uniquely constructed from the higher
dimensional moments Hi{n+1}

once they are known, which can be formally written as the process

Ĥi{n+1}[l] = limx(n+1)→x(l)
Hi{n+1}

, the necessary inverse construction, however, fails.
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of Section A.1. First of all, every unclosed term Ĥi{n+1}[l] (A.22) definitely shows a sub-

structure as they all can be uniquely determined from a single instantaneous (fluctuating)
velocity field u, and therefore will show at each order n a high correlation at least among
its neighboring orders, i.e. in first approximation they will at least be functionals of the
form (for all k = 1, . . . , n):

Ĥi{n+1}[l] = Ĥi{n+1}[l]

[
Hi{n}

; Ĥi{n+1}[k 6=l]; lim(x(n+2),x(n+1))→x(k)
Hi{n+2}

]
. (A.23)

Hence, if these arbitrary functionals Ĥi{n+1}[l] stay unspecified, then no solutions and thus
also no invariant solutions can be determined. Secondly, even if we would suppress the
substructure and would only demand a dependence on the coordinates

Ĥi{n+1}[l] = Ĥi{n+1}[l]

[
x(k), t

]
, (A.24)

which then, according to system (A.14)-(A.15), would allow (similar again to (A.6)) for
a formal construction of infinitely many and equally privileged solutions Hi{n}

for each
order n, the usage of the word ‘solution’ would be again still misleading.

As before, the reason is again twofold: Not only because the unclosed terms (A.24),
defined by (A.21), suffice own unclosed transport equations En[Ĥi{n+1}[l]] = 0 (Pope,

2000; Davidson, 2004), which are structurally different to system (A.14)-(A.15) due to
the non-commuting property of the zero-correlation-length limit (see Appendix C), but
also because since all arbitrary functions (A.24) are uniquely determined by the underly-
ing instantaneous (fluctuating) velocity field u, there can be only one physical (privileged)
realization for each order n. That means that all other solutions within this infinite dimen-
sional solution manifold have to be discarded as unphysical, once this physical solution is
determinable. But, the probability again to find this particular specification (A.24) which
belongs to this one physical solution (also within only a locally pre-specified spatiotemporal
range) is practically zero. Even more unlikely is the case if this one particular specification
and its corresponding physical solution would additionally stay invariant e.g. under the
global scaling group QE (4.4). Hence, for this reason we again claim that without any
prior modelling assumption for the unclosed system (A.14)-(A.15), the determination of
its solutions and thus also of its invariant solutions is misleading and essentially ill-defined.

Appendix B. Formal derivation of the Friedmann-Keller hierarchy

Following the procedure from Fursikov (1999), we briefly revisit the formal derivation of the
integro-differential Friedmann-Keller chain of equations for incompressible and spatially
unbounded Navier-Stokes turbulence.

The starting point is the deterministic Navier-Stokes equation in differential form (2.1).
The pressure gradient can be eliminated by acting to both sides of (2.1) with the operator
P of orthoprojection to solenoidal vector fields. As a result we then get the following
equations being absent of the gradient pressure field

∂tu − P [ν∆u] + P [(u · ∇)u] = 0, with ∇ · u = 0, (B.1)

which in a more compact form can also be written as

∂tu + A · u + B(u) = 0, (B.2)

where A and B is the corresponding linear and nonlinear (quadratic) operator respectively.
The explicit expression for P acting on any arbitrary vector-field f has the form

P [f ] =

∫
d3x′

ρ(x − x′) · f(x′), (B.3)
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where the kernel ρ is given by

ρ(x − x′) = δ3(x − x′) · 1 + ∇ ⊗ ∇
(

1

4π|x − x′|

)

=
2

3
δ3(x − x′) · 1 − 1

4π|x − x′|3
[
1 − 3(x − x′) ⊗ (x − x′)

|x − x′|2
]
. (B.4)

By construction, the projection properties of P are

P[f ] = f , if ∇ · f = 0,

P[f ] = 0, if ∇ × f = 0, e.g. if f = ∇φ.

}
(B.5)

With these definitions at hand, it is now straightforward to show that the corresponding
dynamical equations for the n-point velocity moments Hn (3.1) can be iteratively organized
into the following infinite hierarchy of linear equations, known as the (integro-differential)
Friedmann-Keller equations:

∂tHn + An · Hn + Bn · Ĥn+1 = 0, n ≥ 1, (B.6)

where the two spatial linear operators are defined as

An · Hn =
n∑

i=1

Pxi
[−ν∆xi

Hn] , (B.7)

Bn · Ĥn+1 =
n∑

i=1

Pxi

[
∇xi

· Ĥi,n+1

]
, with Ĥi,n+1 = Hn+1

∣∣
xn+1=xi

, (B.8)

in which the projection operator Pxi
, as well as the differential operators ∆xi

and ∇xi

are to be evaluated for each summand at the specific point x = xi, for all i = 1, . . . , n.
Two important things should be noted here. Firstly, since Ĥn+1 6= Hn+1, i.e. since

Ĥn+1 is not a (n+ 1)-point function but only a lower level n-point function of (n+ 1)-th
moment, the hierarchy of equations (B.6), although infinite in dimension, is not formally
closed. For more details we refer to Appendix C. Hence, the hierarchy of equations (B.6)
is always a permanently underdetermined system, for which any invariance analysis only
will generate the weaker class of equivalence transformations.

Secondly, great care has to be taken when performing a systematic invariance analysis
upon the linear system (B.6). Because, as no natural or additional physical constraints
come along with this system, it can lead to misleading and ultimately to unphysical in-
variance results when not revealing the actual nonlinear and nonlocal structure behind
the oversimplified notation for the symbols Hn and Ĥn+1. In other words, system (B.6)
represents itself as a formal linear system only because an oversimplified notation is being
used, which hides essential information about the underlying deterministic system. In this
sense it admits formal equivalences which also every underdetermined linear system of
gradient-type will admit, but as soon as one unfolds the oversimplified notation, as thor-
oughly discussed in Section 4 at the example of a scaling equivalence, these equivalences
lead to physical inconsistencies.

Appendix C. Formally closed and unclosed infinite systems

For this discussion let us consider all three statistical and infinite dimensional approaches
to turbulence:

Approach 1: The functional Hopf equation (HEq)

∂Φ

∂t
=

∫
d3xαk

(
i
∂

∂xl

δ2

δαkδα l
+ ν∆

δ

δαk

)
Φ, (C.1)
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for the probability density functional

P [u(x); t] =

∫
Φ[α(x); t] e−i

∫
d3

x α(x)·u(x)Dα(x) ≥ 0, (C.2)

of the velocity field sampled at infinitely many, non-denumerable (continuum) number of
points (Hopf, 1952; McComb, 1990; Shen & Wray, 1991). The evolution equation (C.1)
goes along with the three physical constraints

Φ∗[α(x); t] = Φ[−α(x); t], Φ[0; t] = 1,
∣∣Φ[α(x); t]

∣∣ ≤ 1, (C.3)

in order to guarantee for a physical solution for all times t.

Approach 2: The integro-differential Lundgren-Monin-Novikov (LMN) hierarchy
[
∂t +

n∑

i=1

vi · ∇i

]
fn = −

n∑

i=1

∂

∂vi

[
lim

xn+1→xi

ν∆n+1

∫
d3vn+1vn+1fn+1

−
∫
d3xn+1d

3vn+1

(
∇i

1

4π|xi − xn+1|

)
(vn+1 · ∇n+1)2fn+1

]
, (C.4)

for the n-point probability density function (PDF)

fn = fn(x1,v1; . . . ; xn,vn; t) ≥ 0, (C.5)

of the velocity field sampled at a finite number of points, being thus the discrete version of
the above Hopf equation (Lundgren, 1967; Monin, 1967; Friedrich et al., 2012). Apart from
the usual continuity constraints, the evolution equation (C.4) goes along with infinitely
many physical constraints in order to guarantee for a physical solution for all times t. The
most cited ones are i) the reduction or normalization constraint

∫
dv1 f1(x1,v1; t) = 1,

∫
dvn+1 fn+1(x1,v1; . . . ; xn+1,vn+1; t) = fn(x1,v1; . . . ; xn,vn; t), n ≥ 1, (C.6)

ii) the coincidence constraint for n ≥ 2, and 1 ≤ (i, j) ≤ n, i 6= j
∫
dxi δ(xi − xj)fn(x1,v1; . . . ; xn,vn; t) ∼ lim

|xi−xj |→0
fn(x1,v1; . . . ; xn,vn; t)

= fn−1(x1,v1; . . . ; xi−1,vi−1; xi+1,vi+1; . . . ; xn,vn; t) · δ(vi − vj), (C.7)

and iii) the separation property for n ≥ 2, and 1 ≤ (i, j) ≤ n, i 6= j, with |xj | < ∞

lim
|xi−xj |→∞

fn(x1,v1; . . . ; xn,vn; t)

= fn−1(x1,v1; . . . ; xi−1,vi−1; xi+1,vi+1; . . . ; xn,vn; t) · f1(xi,vi; t). (C.8)

Yet the reader should note that besides these three usually mentioned LMN constraints as
‘normalization’, ‘coincidence’ and ‘separation’, there exists a fourth and even more strong
constraint which unfortunately is not mentioned anymore in the recent literature, as e.g.
in Friedrich et al. (2012). We are talking about the additional constraint first derived in
Ievlev (1970) (listed therein as constraint (2.6)), and also presented in Monin & Yaglom
(1975) as constraint (19.139).

Approach 3,1: The differential Friedmann-Keller or multi-point correlation (MPC)
hierarchy

∂Hi{n}

∂t
+

n∑

l=1

[
∂Hi{n+1}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

+
∂Ii{n−1}[l]

∂xi(l)

− ν
∂2Hi{n}

∂xk(l)
∂xk(l)

]
= 0, n ≥ 1, (C.9)



36 M. Frewer, G. Khujadze and H. Foysi

for the n-point velocity moments (A.16)

Hi{n}
:= Hi(1)i(2)...i(n)

:=
〈
ui(1)

(x(1)) · . . . · ui(n)
(x(n))

〉
, (C.10)

and the n-point pressure-velocity moments as defined in (A.17), where both sets of mo-
ments are based on the full instantaneous fields of the incompressible Navier-Stokes equa-
tions (Oberlack & Rosteck, 2010; Wac lawczyk et al., 2014). Note that

Ĥi{n+1}[l] := Hi{n+1}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)] = lim
x(n+1)→x(l)

Hi{n+1}
, (C.11)

is not a (n + 1)-point moment, but only a n-point moment of (n + 1)th order, i.e.
Ĥi{n+1}[l] 6= Hi{n+1}

.

Approach 3,2: The integro-differential Friedmann-Keller or multi-point correlation
(MPC) hierarchy

∂tHn + An · Hn + Bn · Ĥn+1 = 0, n ≥ 1, (C.12)

for the n-point velocity moments

Hn =
〈
u(x1, t) ⊗ · · · ⊗ u(xn, t)

〉
, n ≥ 1, (C.13)

based on the instantaneous velocity field u (Fursikov, 1999). The integral operators An

and Bn are defined in (B.7) and (B.8) respectively. Note that

Ĥn+1 = lim
xn+1→xn

Hn+1, (C.14)

is not a (n + 1)-point moment, but only a n-point moment of (n + 1)th order, i.e.
Ĥn+1 6= Hn+1.

In the discussion to follow, it is essential to recognize that in contrast to the Hopf equation
and the LMN hierarchy, the MPC equations do not go along with additional physical
constraints (besides the usual continuity constraints), neither in the differential nor in the
integro-differential form.

Now, before we investigate these three infinite-dimensional approaches on formal clo-
sure, it is necessary to distinguish the terminology of ‘closed’ from ‘formally closed’. The
latter is obviously a much more weaker concept than the former.

First of all, all three statistical approaches to turbulence are unclosed, because in a
practical sense one either has to discretize the continuous functional formulation or to
truncate the infinite discrete hierarchy of equations. Discretizing the Hopf equation leads
to the LMN equations and truncating these at a certain order then leads to unclosed terms
(arbitrary functions) which need to be modelled in order to close the equations in each
case. The same situation we face for the MPC equations in either form.

But, if we would not discretize the Hopf equation or truncate either system of LMN
and MPC, i.e. if we would formally consider for each approach the full continuous and
infinite formulation, then from a formal point of view, for example from the viewpoint
of an invariance analysis, the Hopf and LMN equations act completely different than the
MPC equations: In contrast to the MPC equations, the Hopf and LMN equations act in
a formally closed manner. In other words, on the formal (non-truncated) level the Hopf
equation and the LMN equations can be regarded as formally closed systems, while the
MPC equations not.

The key point here is that since the LMN system is just the discrete version of the
functional Hopf equation, which for itself undoubtedly acts as a formally closed system,
the LMN system will thus induce in its non-truncated form an infinite dimensional but
functionally unique solution manifold. This is not the case for the MPC system, which in
its non-truncated form would induce infinitely many functionally different and thus non-
unique solutions manifolds, each being itself of course infinite dimensional and equally
privileged.
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This different formal behavior can only be understood when directly comparing the
LMN system (which in its well-known form only holds for spatially unbounded flow con-
figurations) with the MPC system: Next to the usual continuity constraints, the LMN
system goes along with several additional and independent physical constraints, which all
will naturally restrict the general solution space down to a physical (unique) solution space
(like boundary conditions restricting the general solution space for usual PDEs), while the
MPC system is completely free of such constraints (up to the usual continuity constraints).
In other words, the infinite many unphysical solution manifolds of the MPC system cannot
be separated from the physical solution manifold as it automatically happens in the LMN
system.

This restriction in the solution manifold of the LMN system can already be observed
when performing any invariance analysis upon them. Because, for such an analysis the
LMN constraints are obstructive, as they all favor the mechanism of symmetry break-
ing. In strong contrast of course to a performed invariance analysis of the MPC system,
where, due to the absence of physical constraints, no invariance breaking mechanism ex-
ists; all admitted invariant transformations of the MPC system, physical or unphysical,
thus agglomerate to the invariant solution manifold.

In order to demonstrate the difference between ‘formally unclosed’ and ‘formally closed’
in an explicit manner, let’s consider e.g. the following infinite chain of second order PDEs
for the different n-dimensional scalar functions fn := fn(x1, x2, . . . , xn)

Z[fn] :=
∂2fn
∂x2

n

+
∂

∂xn

[
lim

xn+1→xn

fn+1

]
= 0, for n = 1, . . . ,∞, (C.15)

which in principle should mimic the basic behavior of the MPC equations (C.9) in a very
primitive form: The first term in (C.15) stands for the dissipative term and the second
one for the convective term.

First of all, the infinite hierarchy (C.15) is unclosed, because if we would truncate
this system at an arbitrary but fixed order n = n0, we would explicitly gain the unclosed
and thus arbitrary function fn0+1, which then needs to be modelled in order to close this
system at order n0.

But now, since (C.15) is free of any constraints, it is also formally unclosed, i.e. even if
we would not truncate system (C.15) and therefore would formally consider all (infinite)
equations, system (C.15) still has to be regarded as unclosed. The simple reason is that
infinitely many disjoint and thus different solution manifolds can be generated, i.e. system
(C.15) does not induce a unique (infinite dimensional) solution manifold. In other words,
also on the formal (non-truncated) level system (C.15) is still underdetermined.

That (C.15) really induces infinitely many different and independent solution manifolds
can be easily seen. For example consider the following special solution set of (C.15)

fn = 2− 1
2
n2+ 5

2
n−2+c · e− xn

2n−2 −
∑n−1

i=1

xi

2i−1 , c ∈ R, and for all n ≥ 1, (C.16)

which will be part of a more general solution manifold, say, of S1, where all functions fn
will be non-zero:

S1 =
{

Z[fn] = 0
∣∣∣ fn 6= 0, for all n ≥ 1

}
. (C.17)

To construct for (C.15) a from S1 disjoint and thus independent general solution manifold
can now be easily achieved. By choosing at an arbitrary but fixed order n = n0 a specific
functional relation for the next higher order variable fn0+1 = f0

n0+1, one can iteratively
determine all other (infinitely many) possible functions fn for n ≤ n0 as well as for n > n0.
Now, since the choice of n0 and the choice for f0

n0+1 are arbitrary one can consequently
construct infinitely many independent general solution manifolds Sn. For example, if we
would choose n0 = 1 and f0

2 = 0, we obtain the following to (C.16) different special solution

f1 = c1 · x1 + c2, fn = 0, for n ≥ 2, (C.18)



38 M. Frewer, G. Khujadze and H. Foysi

which will be part of a more general solution manifold S2, where the function fn0+1 = fn=2

is permanently zero and all functions fn below n = 2 are strictly non-zero, while all
functions fn beyond n = 2 remain unrestricted in this regard:†

S2 =
{

Z[fn] = 0
∣∣∣ f1 6= 0, f2 = 0 and (fn 6= 0 or fn = 0), for n ≥ 3

}
. (C.19)

It’s clear that this (infinite) solution manifold S2 is independent and disjoint to the previous
(infinite) solution manifold S1 (C.17). If we would choose n0 = 2 and f0

3 = 0, then we will
obtain the following to (C.18) different special solution

f1 = −
∫

x1

dz1

∫

z1

f2(z2, z2) dz2 + c1 · x1 + c2,

f2 = F1(x1) · x2 + F2(x1), fn = 0, for n ≥ 3,





(C.20)

which now will be part of a more general solution manifold S3, where now the function
fn0+1 = fn=3 is permanently zero and all functions fn below n = 3 are strictly non-zero,
while all functions fn beyond n = 3 remain unrestricted again:

S3 =
{

Z[fn] = 0
∣∣∣ f1 6= 0, f2 6= 0, f3 = 0 and (fn 6= 0 or fn = 0), for n ≥ 4

}
. (C.21)

The solution manifold S3 is then independent and disjoint to S2 (C.19) and S1 (C.17).
This process can then be continued to infinity to gain infinitely many independent general
solution manifolds Sn.

But what is actually the deeper reason that (C.15) is formally underdetermined, al-
though each equation is linked to the next higher order one. The main reason is of course
that the system (C.15) is infinite dimensional. But another reason is also that the limit ap-
pearing in (C.15) is artificial. The limit pretends a formal closure although there is none
(Frewer, 2015a). The term in brackets is a n-dimensional function for which no direct
equation corresponds to. It thus presents for each order the unclosed term. For example,
consider (for simplicity) the case n = 1. The limit in (C.15) then takes the explicit form

f̂2(x1) := lim
x2→x1

f2(x1, x2) = f2(x1, x1). (C.22)

The problem is that from a given 2-dimensional function f2(x1, x2), i.e. from ‘above’, one
can uniquely construct the corresponding lower 1-dimensional function f2(x1, x1), but not
vice versa, i.e. from ‘below’, that is, from a given 1-dimensional function f̂2(x1) one cannot
uniquely construct the corresponding higher 2-dimensional function f2(x1, x2). But this
latter process is exactly what happens when writing the limit in (C.15), namely that on
the lower n-dimensional level, i.e. from ‘below’, a higher (n + 1)-dimensional function
is identified. In other words, the limit in (C.15) artificially forces a lower n-dimensional
function f̂n+1 into a higher (n+ 1)-dimensional function fn+1.

Hence, for a system as (C.15) the formal level of unclosedness (degree of underdeter-
minedness) even is higher than, for example, if we would consider instead of (C.15) the
following, also formally unclosed system (Frewer, 2015a,b)

∂2fn
∂x2

n

+
∂fn+1

∂xn
= 0, for n = 1, . . . ,∞, (C.23)

which, in contrast to (C.15), directly and thus uniquely links each equation to the next
higher order one. Because, when choosing an arbitrary but fixed order n = n0 for (C.23),
one only has two variable options to generate a solution: either to specify fn0 or to
specify fn0+1, from which, in each case, all (infinite) remaining functions can be formally
determined then. For system (C.15), however, the two corresponding specifications, either

†The explicit form is: S2 =
{

f1 = c1 · x1 + c2 6= 0, f2 = 0, f3 = f3(x1, x3 − x2), f4(x1, x2, x3, x4), . . .
}

.
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fn0 or f̂n0+1 := limxn0+1→xn0
fn0+1, are not sufficient, because all functions for n > n0

cannot be uniquely determined anymore without exogenously also specifying the functions
fn0+1, fn0+2, etc. Thus, explicitly writing the limit in (C.15) does not provide a positive
contribution to formally close this system.

Now, regarding the original MPC system (C.9)-(C.14), we see that within these equa-
tions in either form, too, the lower dimensional unclosed terms Ĥi{n+1}[l] (C.11) and Ĥn+1

(C.14) can be explicitly written as a limit of higher dimensional functions in order to ap-
parently establish a connection between a lower order equation and the next higher one.
But, as was just explained above, this connection is artificially enforced, since the formal
closure problem is not eliminated by explicitly writing this limit; the closure problem still
exists independently of whether this limit is being written or not. In other words, this
‘lim’ notation is misleading as it suggests a formal closure for the MPC system although
in reality there is none (Frewer, 2015a).

Note that the LMN equations (C.4) also involve such an artificial connection between
the lower and higher order functions, but, in contrast to the MPC equations, the LMN
equations give something in return in that they come along with additional physical con-
straints in order to constitute themselves as a formally closed system. In fact, these addi-
tional constraints will restrict the infinitely many possible solution manifolds of the LMN
evolution equations down to a physical solution manifold.

To explicitly demonstrate such a restriction, let us mimic for example the normalization
property of the LMN equations (C.6), by demanding next to our infinite chain of emulated
equations (C.15) the following e.g. half-sided ‘normalization’ constraint

∫ ∞

0
f1dx1 = 1, and

∫ ∞

0
fn+1dxn+1 = fn, for all n ≥ 1, (C.24)

which is a well-defined constraint for a differential system of type (C.15). If we regard
(C.24) as a physical constraint, then the special solutions (C.18) and (C.20) must be
regarded as unphysical solutions and thus have to be discarded, due to the non-convergence
of the integral if c1 6= 0 or c2 6= 0. But, not only the special solutions, even the general
solution manifolds S2 and S3 themselves have to be discarded as unphysical, because the
functional break fn0 6= fn0+1 = 0 at the chosen order n = n0 is not compatible with
(C.24). Also the special closed form solution (C.16) must be discarded in this sense as
unphysical, since also its functional form is not compatible with the constraint (C.24).
However, the general solution manifold S1 itself must not be discarded, because there may
still exist different special closed form solutions which in contrast to (C.16) are compatible
with (C.24).

Thus we see that the more physical constraints go along with an infinite hierarchy
of equations, the more the general non-unique solution manifold gets restricted down
to a unique (physical) solution manifold. In other words, through a sufficient number
of constraints a formally underdetermined (formally unclosed) system can turn into a
formally fully determined (formally closed) system. And exactly this is the case for the
LMN equations as they are just the discrete version of the functional Hopf equation, which
itself, after all, represents a formally closed equation.

Only due to the fact that the LMN equations go along with additional physical con-
straints, they constitute in contrast to the MPC equations a formally (non-truncated)
closed system. Hence, the LMN system in its non-truncated form thus constitutes a more
physical system than the corresponding non-truncated MPC equations, as already said by
Ievlev (1970): “However, the equations for the probability distributions (the LMN equa-
tions) yield a more complete and compact statistical description of turbulence than do the
usual moment equations (the Friedman-Keller equations) and apparently permit an easier
formulation of the approximate conditions closing the equations.”

Now, in the case of the MPC equations, what would be the appropriate procedure to
turn them into a formally closed system? The only answer is to extend the MPC equa-
tions at each order with the lower order moment equations of the corresponding unclosed
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terms. But this is a non-manageable task, as the lower-order moment equations cannot be
condensed anymore into a single hierarchy as it is the case for the MPC equations, neither
in the differential form (C.9) nor in the integral form (C.12). The reason for this jump
in complexity is that the above artificial limit does not commute with any differential
operator, e.g. as in the relevant expression of (C.9)

∂

∂x(l)

[
lim

x(n+1)→x(l)

Hi{n+1}

]
6= lim

x(n+1)→x(l)

∂

∂x(l)
Hi{n+1}

, (C.25)

nor with any integral operator as in (C.12)

Bn ·
[

lim
xn+1→xn

Hn+1

]
6= lim

xn+1→xn

Bn · Hn+1, (C.26)

which everyone working in fluid mechanics may have already experienced, when writing
the transport equations for the lower n-point order moments as a limit from the higher
(n + 1)-point equations. Due to this non-commuting property, the number of unclosed
terms increases, while at the same time the number constraints decreases. Here a small
explicit example when considering the limit of the two-point continuity constraint (A.15),
which just reduces to a non-useful zero-identity due to the continuity constraint of the
instantaneous velocity field:

0 = lim
x(1)→x(0)

∂Hk(0)i(1)

∂xk(0)

6= ∂

∂xk(0)

[
lim

x(1)→x(0)

Hk(0)i(1)

]

= lim
x(1)→x(0)

∂

∂xk(0)

〈
uk(0)

(x(0))ui(1)
(x(1))

〉
=

∂

∂xk(0)

Hk(0)i(0)

= lim
x(1)→x(0)

〈( ∂

∂xk(0)

uk(0)
(x(0))

)
ui(1)

(x(1))
〉

=
∂

∂xk(0)

〈
uk(0)

(x(0))ui(0)
(x(0))

〉

=
〈( ∂

∂xk(0)

uk(0)
(x(0))

)
ui(0)

(x(0))
〉

=
∂

∂xk
〈ukui〉 6= 0

=
∂

∂xk
〈ukui〉 −

〈(
uk

∂

∂xk

)
ui
〉

≡ 0 (C.27)

Hence, the overall degree of unterdeterminism of the MPC equations even increases when
trying to formally close them; and exactly in this sense we can say that the MPC equations
(as they are standardly used by Oberlack et al.) are underdetermined in that they involve
more unknowns than determining equations. Thus, as a consequence, any invariance
analysis performed upon them will only result into weak equivalence transformations and
not into a strong invariance relation as that of a true symmetry transformation.

C.1. The non-equivalent relation between LMN and MPC

Regarding the above discussion, the reader should finally note that the following statement
made in Friedrich et al. (2012) “... It can be shown that the LMN approach is completely
equivalent to the statistical description of turbulence by moment equations. ...” can be
misleading if not carefully drawn from the context.

This cited “equivalence” refers to the fact that not only if a n-point PDF is known
then the n-point moments can be determined from its expectation value, but also that if
all n-point moments are known then the n-point PDF can be reconstructed. The latter
‘inverse’ construction is achieved by making use of Taylor series of the PDFs characteristic
functions (see e.g. Monin (1967)).

The problem now is that in order to perform such a construction either the n-point PDF
or the n-point moments must be known before the other one can be determined. For that
one needs to solve the underlying evolution or transport equations, either for the PDFs or
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for the moments. While the transport equations for the moments (MPC) can be uniquely
determined from the evolution equations of the PDFs (LMN) (see e.g. Monin (1967)),
the reverse cannot be established. In other words, the LMN equations cannot be uniquely
determined from the MPC equations. Ievlev (1970) clearly has shown, which is also
mentioned in Monin & Yaglom (1975) (the statements following the constraint (19.139)),
that at least two different evolution equations for the PDFs can be constructed which
all precisely result into the same MPC equations. Careful, although the two evolution
equations for the PDFs differ by the fact that one is an approximation of the other one,
this approximation is not transferred down to the MPC equations, which is clearly shown
in Ievlev’s proof in section 4.5 on page 89 (Ievlev, 1970).

That the LMN equations cannot be uniquely constructed from the MPC equations can
also be easily understood from a different perspective, which already has been discussed in
detail before: The additional physical constraints which go along with the LMN equations
have no counterpart in the MPC equations and thus, in turn, are unable to uniquely induce
the full LMN equations (including all possible constraint equations).

Hence, the above cited “equivalence” only refers to the defining relations of the PDFs
and its moments (in Monin (1967) given by (3.1)-(3.3)), but definitely not to their un-
derlying evolution equations. The LMN equations imply the MPC equations, but not
oppositely, which is also clear from the aspect that a PDF formulation always operates on
a higher statistical level than a formulation of the moments.

Appendix D. Additional comments on the proof for inconsistency

The proof (4.16) reads:

H̃1 = eqH1 ⇒
〈
ũ(x̃1, t̃)

〉
= eq

〈
u(x1, t)

〉
, for all points x1 = x (D.1)

⇒
〈
ũ(x̃k, t̃)

〉
= eq

〈
u(xk, t)

〉
, for all k ≥ 1 (D.2)

⇒
〈
ũ(x̃k, t̃)

〉
=
〈
equ(xk, t)

〉
, for all possible configurations u (D.3)

⇒ ũ(x̃k, t̃) = equ(xk, t) (D.4)

⇒ ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃) = en·qu(x1, t) ⊗ · · · ⊗ u(xn, t) (D.5)

⇒
〈
ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃)

〉
=
〈
en·qu(x1, t) ⊗ · · · ⊗ u(xn, t)

〉
(D.6)

⇒
〈
ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃)

〉
= en·q〈u(x1, t) ⊗ · · · ⊗ u(xn, t)

〉
(D.7)

⇒ H̃n = en·qHn. (D.8)

D.1. Comment No.1

In the first step (D.1) we identify H̃1 = 〈̃u1〉 as 〈ũ1〉 :=
〈
ũ(x̃1, t̃)

〉
. This conclusion is

based on the simple fact that the transformation of H̃1 is a trivial one, in which all values
of H1 just get globally scaled by a constant factor eq.

In the general case, however, a careful distinction must be made between the two
transformed expressions 〈̃u〉 and 〈ũ〉, since the former directly refers to the transformed
mean velocity field while the latter refers to the transformed instantaneous (fluctuating)
velocity field which is then averaged, and thus, in general, is mathematically distinct from
the former expression. But here we are not considering the case of such a general variable
(point) transformation

t̃ = t̃ (t,xk,Hl), x̃n = x̃n(t,xk,Hl), H̃n = H̃n(t,xk,Hl), k, l = 1, . . . , n,
(D.9)

between the independent variables (t,xn) and the dependent variables Hn, but only, as
given by (4.4), the far more simpler specific case of a globally uniform scaling in the
dependent variables

t̃ = t, x̃n = xn, H̃n = eqHn, (D.10)
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which, when written for example for the one-point moment at x1 = x

t̃ = t, x̃ = x, 〈̃u〉 = eq〈u〉, (D.11)

acts as a trivial subset of (D.9). Note that in the following we only investigate the
mathematical property of the transformation (D.11) itself, i.e. whether it additionally
represents an equational invariance or not is irrelevant. In other words, we will investigate
(D.11) very generally, solely as a transformation of variables detached from any underlying
transport equations.

Now, it is straightforward to recognize that particularly in this trivial case (D.11), the

two above mentioned transformed one-point expressions H̃1 = 〈̃u〉 and 〈ũ〉 are identical

〈̃u〉 ≡ 〈ũ〉. (D.12)

This conclusion is based on the following argument, in that we can write

H̃1 = eqH1 ⇔ 〈̃u〉 = eq〈u〉 (D.13)

= 〈equ〉 (D.14)

=:
def.

〈u∗〉, (D.15)

due to the fact that any constant factor as eq commutes with every averaging operator 〈, 〉.
Hence one is able to define a unique transformation relation u → u∗ on the instantaneous
level having the same transformational structure

u∗ = equ, (D.16)

as its averaged value given in (D.11), namely a simple multiplication of a constant factor
eq on some field values.† This, then, uniquely allows us to identify

u∗ = ũ. (D.17)

In other words, since the symbol u∗ on the left-hand side of (D.16) is defined by the
mathematical operation on the right-hand side (a simple multiplication of a constant factor
eq), and since this mathematical operation is exactly identical to the right-hand side of the
initial transformation (D.11), one can therefore uniquely identify the transformed symbol
on the left-hand side of (D.16) with the same transformation symbol as it’s used on the
left-hand side of (D.11), i.e. ∗ = ∼.

Again, the reason is that (D.11) and (D.16) show exactly the same transformation
structure on their right-hand sides, namely a simple multiplication of a constant factor eq

on some field values, which then define their left-hand sides. But since we are dealing here
with the same transformational process in (D.16) as in (D.11), we should also explicitly
display it, namely by using ũ and not u∗, which would only unnecessarily overload the
notation. Exactly this fact was implicitly assumed when writing the first line of (4.16).

But, as soon as we would consider a more complicated transformation than (D.11), as
for example

t̃ = t, x̃ = x, 〈̃u〉 = eq(x)〈u〉, (D.18)

where, instead of a globally constant scaling exponent q, we now would have a local scal-
ing exponent q(x) which explicitly depends on the spatial coordinates, the identification
(D.12), of course, generally no longer holds and becomes invalid. The reason simply is that

†Note that if (D.11) would be additionally admitted as a symmetry of some mean field transport
equations, then we may not conclude that (D.16) is a symmetry, too, of the underlying instantaneous
(fluctuating) equations. Because, on the mean field level one can have a symmetric structure which on the
fluctuating level must not exist.
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in contrast to (D.11) the scaling factor in (D.18) is no longer a global constant anymore
which can commute with every averaging operator 〈, 〉. In other words, since generally

〈̃u〉 = eq(x)〈u〉 6= 〈eq(x)u〉, (D.19)

we are no longer able to define a corresponding transformation relation u → ũ on the
instantaneous level which has the same transformational structure as its averaged value
(D.18). On the contrary, its real corresponding transformation rule u → u∗∗ will rather
show a far more complex functional structure than given by (D.18), which in the first
instance also cannot be mathematically determined in a straightforward manner.

Hence, since the situation of proof (4.16) is not dealing with a complex situation like
(D.18), but only with a trivial one as (D.11), the notation used throughout (4.16) is correct
and not misleading.

Note that already from an intuitive point of view the identification (D.12) must be
valid if we consider a simple transformation as (D.11). Because, since in (D.11) only the
field values and not the coordinates get transformed we can perform the following thought
experiment: Imagine we have an ensemble of DNS results for the instantaneous velocity
field u (hereby it is irrelevant from which specific equations this data set was numerically
generated). From the field u we now construct the mean field 〈u〉 (either as an ensemble
average over a set of different u, or, if we have a statistically homogenous direction, over
an integral of a single u in this direction). Thus we then obtain all functional values of 〈u〉,
which we now collectively multiply with a same constant factor, say by eq = 2, to get the
new transformed values 〈̃u〉 of (D.11).

Now, the critical question: How should the underlying DNS data for the instantaneous
field u be transformed in order to generate with the same corresponding averaging process
the just previously constructed values 〈̃u〉? The intuitive and correct answer is that all DNS
data must be coherently multiplied with the same factor eq = 2. Only then will the new
transformed data ũ, if it emerges from the operation ũ := 2 · u and if it’s correspondingly
averaged to 〈ũ〉, give the ability to reconstruct the functional values 〈̃u〉. Since there is no

other option, we hence obtain within this process the unique result 〈ũ〉 = 〈̃u〉. Of course,
this reasoning is only valid for a global (coherent) transformation as given by (D.11); for
a more complicated (local) transformation as (D.18) this reasoning no longer holds.

D.2. Comment No.2

The conclusion (D.4) is based on the relation (D.3) which goes along with the explicit
comment that this relation, by definition, must hold for all possible configurations or
functional realizations of the fluctuating velocity field u, and not only for any certain
functional specification u = u0(x, t). In this case, of course, conclusion (D.4) would not
be correct, because for a certain specification u = u0, we generally have the situation that
〈ũ0〉 = 〈u0〉 although ũ0 6= u0.

Now, for the reason that (D.3) must hold for all possible configurations u, it is impor-
tant to recognize that (D.3) is not an equation to be solved for, but that it represents a
definition. And exactly this is the argument when going from the third (D.3) to fourth
line (D.4). The third line

〈ũ(x̃k, t̃)〉 = 〈equ(xk, t)〉, (D.20)

does not stand for an equation but for a definition (as it’s the case for any variable
transformation in mathematics)

〈ũ(x̃k, t̃)〉 :=
def.

〈equ(xk, t)〉, (D.21)

since the left-hand side (transformed side) is defined by the mathematical expression and
operation given on the right-hand side. Now, since the right-hand side by definition must
hold for all possible (functional) configurations of the instantaneous velocity field u, and
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since both functions equ and ũ undergo the same operation of averaging, we thus can
only conclude that both functions themselves must be identical. In other words, definition
(D.21) implies the definition

ũ(x̃k, t̃) :=
def.

equ(xk, t), (D.22)

in that the transformed instantaneous velocity field ũ is defined by the expression equ.
This then gives the fourth line (D.4).

Two things should be noted here. Firstly, the above conclusion is similar to the argu-
ments which are standardly used in fluid mechanics when deriving a differential conserva-
tion law from its corresponding integral version. The similarity is given in so far as the
argument for the validity of the integral conservation law is also based on the requirement
‘for all’, however here, for all possible volumes or surfaces. Hence the integral operator
from the integral conservation law can be dropped and the integrand itself is identified as
the corresponding conservation law on the differential level.

Secondly, according to the arguments given in Comment No.1, we are not obliged to
make the direct conclusion (D.4) from relation (D.3). Conclusion (D.4) can already be
directly obtained from (D.1) by considering the result (D.17), i.e. we can directly conclude
that

H̃1 = eqH1 ⇒ ũ(x̃k, t̃) = equ(xk, t), (D.23)

which just explicitly expresses the fact again that result (D.17) was uniquely obtained (for
all xk within the physical space x) as the induced transformation rule u → u∗ = ũ (the
cause on the fluctuating level) from the transformation rule of the mean velocity H1 → H̃1

(the effect on the averaged level).

D.3. Comment No.3

In (D.8) we identify the transformed n-point correlation function H̃n as the transformed
expression

〈
ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃)

〉
. This is just the obvious consequence in knowing the

fact that only from the transformed velocity field ũ, as it is defined in (D.17) and thus in
(D.4), all transformed correlation functions H̃n can be uniquely defined and constructed
without inducing contradictions and without violating the principle of causality. In other
words, making the conclusion

H̃1 = eqH1 ⇒ H̃′
n = en·qHn, (D.24)

where H̃′
n represents the mean product of n spatial coordinate evaluations of the trans-

formed and for all points xn unique instantaneous velocity field ũ = ũ(x̃, t̃), and in which
it then gets identified as the transformed n-point correlation function H̃n, as done in (D.8),

H̃n := H̃′
n =

〈
ũ(x̃1, t̃) ⊗ · · · ⊗ ũ(x̃n, t̃)

〉
, (D.25)

is the only possible conclusion without running into any contractions and without violating
the principle of cause and effect.

D.4. Comment No.4

Note that already from an intuitive point of view only the conclusion

H̃1 = eqH1 ⇒ H̃n = en·qHn, (D.26)

given through (D.1)-(D.8), makes physically sense, while the conclusion induced by (4.4)

H̃1 = eqH1 ⇒ H̃n = eqHn, (D.27)

is physically senseless. This can be seen for example by making again the following small
thought experiment: Imagine we have the following arbitrary but fixed mean velocity pro-
file H1 = 〈u〉 based on some instantaneous (fluctuating) velocity field u. Now, according
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to the left-hand side of (D.26) or (D.27), if we scale this mean profile H1 by, say, a constant
factor eq = 2, we will get the two times amplified mean velocity profile H̃1. Hereby it
should be noted that this scaling is performed globally, i.e. for all points in the considered
physical space x the mean velocity values H1 are scaled uniformly by a constant factor
two.

Intuitively it’s clear that a globally two times higher amplitude in the mean profile can
only go along with a globally two times higher amplitude in the instantaneous velocity. In
other words, in order to account for a global scaling H̃1 = 2H1 on the averaged level (the
effect), the underlying instantaneous velocity must transform accordingly ũ = 2u on the
fluctuating level (the cause), otherwise we would not manage to reproduce this coherent
amplification of a factor two on the averaged level.

But now, if the instantaneous velocity u globally scales (i.e. for all points xn in physical
space x) by a factor two, then e.g. the two-point correlation function H2 will globally scale
with a factor e2q = 4 as given in (D.26), and not as in (D.27) with the same factor eq = 2
as the mean velocity H1 is scaling. Hence the conclusion (D.27) is obviously unphysical.

Appendix E. Statistical scaling of the nonlinear Schrödinger equation

This section will demonstrate that the unphysical statistical scaling invariance QE (4.4) is
not specific to the incompressible Navier-Stokes equation (2.1), or (2.2), when transcribed
into its statistical form for the n-point velocity correlation moments Hn (3.1), respectively,
either into its local differential form (A.14)-(A.15) or into its nonlocal integro-differential
form (B.6). Because, as a representative example, the unphysical statistical scaling invari-
ance QE (4.4) is also admitted e.g. by the following cubic nonlinear Schrödinger equation
(see e.g. Sulem & Sulem (1999))

i∂tψ + ∆ψ + κ|ψ|2ψ = 0, (E.1)

when transcribed into its statistical form (in the thermodynamical sense) for the corre-
sponding (equal-time) multi-point correlation moments

H1 = 〈ψ1〉,
H2n−1 = 〈ψ1 · · ·ψn · ψ∗

n+1 · · ·ψ∗
2n−1〉, n ≥ 2, n ∈ N,

}
(E.2)

of the full instantaneous (fluctuating) scalar wave function ψ = ψ(t,x), where, respectively,
ψn and ψ∗

n stand for the evaluation of the field and its complex conjugate at the specific
point x = xn within the single physical domain x ∈ R

3. Note that in (E.1) the parameter
κ is defined as a real constant, and that |ψ|2 = ψ ·ψ∗ stands for the square modulus of the
wave function. Further note that the main difference between the deterministic Navier-
Stokes equation (2.1) and the deterministic nonlinear Schrödinger equation (E.1) is that
the former involves a quadratic nonlinearity while the latter shows a cubic nonlinearity,
thus having the effect that the complete Schrödinger hierarchy of multi-point moments
(E.2) is ordered by odd numbers only.

To derive the corresponding transport equations for the multi-point moments (E.2) we
proceed as given in Oberlack & Rosteck (2010) for the Navier-Stokes equation. In the first
step the necessary deterministic equations for the wave function and its complex conjugate
will be abbreviated as

Nψ = i∂tψ + ∆ψ + κ · ψ · ψ · ψ∗ = 0,

Nψ∗ = −i∂tψ∗ + ∆ψ∗ + κ · ψ · ψ∗ · ψ∗ = 0,

}
(E.3)

in order to then allow, in the second step, the construction of the statistical transport
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equations for all moments (E.2)

n = 1 : 〈Nψ1〉 = 0, (E.4)

n ≥ 2 : 〈Nψ1 · ψ2 · · ·ψn · ψ∗
n+1 · · ·ψ∗

2n−1〉 + 〈ψ1 ·Nψ2 · ψ3 · · ·ψn · ψ∗
n+1 · · ·ψ∗

2n−1〉
+ · · · + 〈ψ1 · · ·ψn−1 ·Nψn

· ψ∗
n+1 · · ·ψ∗

2n−1〉
− 〈ψ1 · · ·ψn ·Nψ∗

n+1
· ψ∗

n+2 · · ·ψ∗
2n−1〉 − 〈ψ1 · · ·ψn · ψ∗

n+1 ·Nψ∗
n+2

· ψ∗
n+3 · · ·ψ∗

2n−1〉
− · · · − 〈ψ1 · · ·ψn · ψ∗

n+1 · · ·ψ∗
2n−2 ·Nψ∗

2n−1
〉 = 0, (E.5)

which can be condensed and written as the following infinite hierarchy of linear equations

n = 1 : i∂tH1 + ∆H1 + κĤ3 = 0, (E.6)

n ≥ 2 : i∂tH2n−1 +
n∑

k=1

∆xk
H2n−1 −

2n−1∑

k=n+1

∆xk
H2n−1

+ κ
n∑

k=1

Ĥk; 2(n+1)−1 − κ
2n−1∑

k=n+1

Ĥk; 2(n+1)−1 = 0. (E.7)

Exactly as in the case of the Navier-Stokes hierarchy, either as shown in its local differential
form (A.14)-(A.15), or as in its nonlocal integro-differential form (B.6), the corresponding
lower dimensional Schrödinger moments Ĥ3 in (E.6) and Ĥk; 2(n+1)−1 in (E.7) can be
uniquely constructed from the corresponding higher dimensional Schrödinger moments
H3 and H2(n+1)−1, too, namely as

Ĥ3 = lim
x3→x1,x2→x1

H3, (E.8)

and for all n ≥ 2 as

Ĥk; 2(n+1)−1 = lim
x2n+1→xn+1

[
lim

x2n→xk,xn+1→xk

H2(n+1)−1

]
, for k = 1, . . . , 2n − 1. (E.9)

However, since of course the inverse construction fails, i.e. since the higher dimensional
moments H3 and H2(n+1)−1 cannot be uniquely constructed from the lower dimensional

moments Ĥ3 and Ĥk; 2(n+1)−1, and therefore, since these latter moments do not directly
enter the next higher correlation equation in the hierarchy (E.7), they have to be identified
as unclosed terms. In particular, since this infinite hierarchy of Schrödinger moments also
does not come along with additional constraint equations in order to realize the single
physical solution (E.2), which uniquely emerges from the underlying deterministic equation
(E.1) as a multiple evaluation of the single instantaneous (fluctuating) wave function
ψ = ψ(t,x), the system of equations (E.6)-(E.7) is permanently underdetermined and
therefore unclosed if no prior modelling assumption is invoked beforehand (see Appendix C
for a more detailed explanation, which, in a one-to-one way, can be carried over from the
Navier-Stokes to the present Schrödinger case). The unclosed Schrödinger moments Ĥ3

(E.8) and Ĥk; 2(n+1)−1 (E.9) thus play the same role as the unclosed Navier-Stokes moments

Ĥi{n+1}[l] = limxn+1→xl
Hi{n+1}

(A.22) in the local differential formulation, or equivalently

Ĥi,n+1 = limxn+1→xi
Hn+1 (B.8) in the nonlocal integro-differential formulation. However,

note that the sequence in the limit process of (E.9) is crucial as it’s not interchangeable,
i.e. the inner and outer limits have to be taken only in this order as given in (E.9), otherwise
the limit process would give a different result.

Now, since the infinite hierarchy of linear equations (E.6)-(E.7) is unclosed it can at
most only admit equivalence transformations. It is straightforward to see that this system
(E.6)-(E.7) admits the same unphysical scaling equivalence QE (4.4) for the Schrödinger
moments as for the Navier-Stokes moments. For the Schrödinger moments (E.2) the un-
physical invariance QE thus reads

QE : t̃ = t, x̃n = xn, H̃2n−1 = eqH2n−1, n ≥ 1, (E.10)
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which, again, only arises due to the fact that for the underlying nonlinear deterministic
equation (E.1) the corresponding statistical hierarchy of moments (E.6)-(E.7) is mislead-
ingly formulated as a linear system. In other words, as was thoroughly explained and
demonstrated in this study at the example of the Navier-Stokes moments, the linear
statistical formulation (E.6)-(E.7) for the Schrödinger moments is misleading too when
employing an invariance analysis upon them, since one directly obtains the inconsistent
and unphysical result (E.10).

Note again that as the invariance (E.10) only scales the dependent variables while
leaving the coordinates unchanged, the transformation rule for the lower dimensional (un-
closed) moments Ĥ3 (E.8) and Ĥk; 2(n+1)−1 (E.9) is identical to the transformation rule
(E.10) for the corresponding higher dimensional moments H3 and Hk; 2(n+1)−1, i.e.

˜̂
H3 = eqĤ3, (E.11)

˜̂
Hk; 2(n+1)−1 = eqĤk; 2(n+1)−1, for k = 1, . . . , 2n − 1, and n ≥ 2, (E.12)

as it was also respectively derived in more detail for the corresponding lower dimensional
(unclosed) Navier-Stokes moments in (4.6). Finally note that when decomposing the in-
stantaneous wave function into its mean and purely fluctuating field ψ = 〈ψ〉 + ψ′, the
equivalence transformation for the instantaneous moments (E.10) will then bijectively
change to the corresponding more detailed representation (4.19), from which, then, the
artificial transformation behavior of (E.10) is immediately recognized.

To conclude, this demonstrating example makes it clear that the scaling invariance QE

(4.4) for the statistical moments is neither specific to the Navier-Stokes nor specific to
any nonlinear Schrödinger equation. It is just (besides its unphysical nature) only a non-
specific and thus a non-significant equivalence transformation, since it will be admitted
by any nonlinear deterministic system which necessitates a statistical description (in the
thermodynamical sense) for its solution manifold when considering a certain hierarchy of
multi-point moments.

Appendix F. Generating scaling laws from invariant transformations

According to Oberlack & Rosteck (2010) the key invariant Lie-point transformations to
generate useful statistical scaling laws for wall-bounded flows in the inertial region are, at
first, the physical translation symmetry in the space-time coordinates

T : t̃ = t+ c0,0, x̃n = xn + c0,n, H̃n = Hn, (F.1)

and the two physical scaling symmetries of the inviscid Euler equations, which inherently
translate to the instantaneous multi-point functions in their most general form as

S1 : t̃ = ea1t, x̃n = xn, H̃n = e−n·a1Hn, (F.2)

S2 : t̃ = t, x̃n = ea2xn, H̃n = en·a2Hn, (F.3)

and then finally the two new unphysical invariant transformations, which are not reflected
by the deterministic Euler or Navier-Stokes equations (2.1), as they only apply to the
notationally oversimplified statistical transport equations (4.5)

Q1 : t̃ = t, x̃n = xn, H̃n = eqHn, (F.4)

Q2 : t̃ = t, x̃n = xn, H̃n = Hn + c1,n, (F.5)

where only the globally invariant scaling Q1 = QE (4.4) has been explicitly exposed in
this study as an unphysical transformation. However, by using the procedure developed
in Section 4, in particular (4.16), it is straightforward to also expose the globally invariant
translation Q2 (F.5) as an unphysical transformation. Up to now, no higher level functional
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Hopf-symmetry has been found which can induce this translation invariance via (4.2), as
it is the case for the scaling invariance Q1 (F.4) which is induced by the Hopf-symmetry
Q (4.1). It is the non-holonomic constraint in (3.4) which mostly breaks every symmetry,
as it is too restrictive to find a symmetry which is compatible to it for all times t ≥ 0.
Note that in all five transformations (F.1)-(F.5) we suppressed the transformation rule for
all pressure correlations, in contrast to the listing in Oberlack & Rosteck (2010), since we
only consider the solenoidal (nonlocal) statistical transport equations (4.5), based on the
deterministic form (2.2) in which the pressure got eliminated by the continuity equation.
Indeed, both Q1 (F.4) and Q2 (F.5) are admitted by the underlying (unclosed) Friedmann-
Keller equations (4.5) as equivalence transformations.

Already these few invariant Lie-group transformations in their most general form (F.1)-
(F.5) allow now to generate a vast range of turbulent scaling laws. Our interest here how-
ever is to focus only on the considerably smaller set of scaling laws for one-point statistics.
To generate these scalings, the above transformations for multi-point correlations has to
be reduced to one-point statistics, as was also done in Oberlack & Rosteck (2010) by
performing the smooth and regular limit (xn − x1) → 0, for all n ≥ 2.

Furthermore, since we are also only interested in the scaling behavior of geometrically
simple wall-bounded flows in the inertial region, we will additionally perform next to the
one-point limit the following approximation: According to Oberlack (2001); Oberlack &
Rosteck (2010) and Lindgren et al. (2004) the flow in the inertial region between the inner
(near-wall) and outer region is approximated as a stationary inviscid parallel shear flow.
Under this assumption the wall-normal velocity component can be neglected, and all fields
only depend on one independent coordinate, the wall-normal coordinate y, described then
by an inviscid set of balance equations.

If we now consider the specific flow configuration of a ZPG turbulent boundary layer
flow, in order to compare to the DNS results in Section 5, the invariant transformations
(F.1)-(F.5) will then simplify even further. Due to spanwise homogeneity and a span-
wise reflection symmetry in the flow, the mean spanwise velocity as well as all moments
involving an uneven number of spanwise velocity fields vanish.

In this approximation within the one-point limit for ZPG turbulent boundary layer
flow, the above transformations (F.1)-(F.5) reduce to

T : ỹ = y + c2
0, Ũ = U, H̃ ij = H ij , H̃ ijk = H ijk,

S1 : ỹ = y, Ũ = e−a1U, H̃ ij = e−2a1H ij , H̃ ijk = e−3a1H ijk,

S2 : ỹ = ea2y, Ũ = ea2U, H̃ ij = e2a2H ij , H̃ ijk = e3a2H ijk,

Q1 : ỹ = y, Ũ = eqU, H̃ ij = eqH ij, H̃ ijk = eqH ijk,

Q2 : ỹ = y, Ũ = U + c1
1, H̃ ij = H ij + cij1 , H̃ ijk = H ijk + cijk1 ,





(F.6)

where we considered the chain only up to third moment (n ≤ 3), and where the number
of superscript indices on each term denotes the tensor rank of the corresponding variable,
i.e. x = (xi), H1 = (H i), H2 = (H ij), H3 = (H ijk), etc., with the short-hand notation
x2 = y and H1 = U .

Hence the corresponding invariant surface condition (Olver, 1993; Ibragimov, 1994;
Bluman & Kumei, 1996) to generate invariant functions from (F.6) reads

dy

a2 · y + c2
0

=
dU

(−a1 + a2 + q)U + c1
1

=
dH ij

(−2a1 + 2a2 + q)H ij + cij1
=

dH ijk

(−3a1 + 3a2 + q)H ijk + cijk1

. (F.7)

To note is that in the above expression all indices are open and not contracted, i.e. they
are not being summed over, and, due to the symmetries in the flow, only those indexed
moments give a contribution which involve an even number of spanwise velocity fields.
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According to Oberlack (2001); Oberlack & Rosteck (2010) and Lindgren et al. (2004)
equation (F.7) provokes a further critical assumption. The line of argumentation is, since

the friction velocity at the wall Uτ ∼
√
∂yU |y=0 can be seen as an external parameter

or boundary condition which inhibits the free scaling of the streamwise velocity U , the
corresponding scaling invariance must get broken, i.e. the scaling coefficient of U must be
put to zero: −a1 + a2 + q = 0. As in Oberlack & Rosteck (2010) we choose solving for
a1 = a2 + q. Inserting this restriction and dividing the equation by a2 6= 0 gives instead
of (F.7) the more simplified zero-surface condition

dy

y + c̄2
0

=
dU

c̄1
1

=
dH ij

−q̄ ·H ij + c̄ij1
=

dH ijk

−2q̄ ·H ijk + c̄ijk1

, (F.8)

where all overbared constants represent the original constants relative to a2. Finally,
solving these equations lead to the following set of invariant scaling laws in the inertial
region on the basis of the full instantaneous-fields

U(y) = αU · ln(y + c) + βU ,

H ij(y) = αijH + βijH · (y + c)γ , H ijk(y) = αijkH + βijkH · (y + c)2γ ,

}
(F.9)

where all the β’s are integration constants, whereas the rest of the parameters comprise the
group constants relative to a2 as: γ = −q̄, c = c̄2

0, αU = c̄1
1, αijH = c̄ij1 /q̄, and αijkH = c̄ijk1 /2q̄.

Note the strong dependence of the scaling laws (F.9) on the two unphysical invariance
transformations Q1 (F.4) and Q2 (F.5). Except for the parameter c̄2

0, all other parameters
stem from Q1 and Q2.

Finally, using the Reynolds decomposition as given in (4.17) and (4.18) will give the
transformation rule for the corresponding moments of the fluctuating fields

U(y) = αU · ln(y + c) + βU ,

τ ij(y) = αijH + βijH · (y + c)γ − δ1iδ1jU(y)2,

T 111 = α111
H + β111

H · (y + c)2γ − 3U(y) · τ11(y) − U(y)3,

T 112 = α112
H + β112

H · (y + c)2γ − 2U(y) · τ12(y),

T ij1 = αij1H + βij1H · (y + c)2γ − U(y) · τ ij(y), for (i, j) = (2, 2), (3, 3),

T ij2 = αij2H + βij2H · (y + c)2γ , for (i, j) = (2, 2), (3, 3).





(F.10)

We see that the above set of invariant scaling functions is lead by a generalized log-law in
the mean velocity profile U , which differs from the classical von Kármán log-law by the
presence of a constant shift c. This non-classical log-law was first obtained in Oberlack
(2001), however, on basis of a different invariance procedure as developed in Oberlack &
Rosteck (2010) and as presented herein.† In Lindgren et al. (2004) it is referred to as the
modified log-law extending the predictability in the lower end of the inertial region. By
construction all parameters are completely independent of the Reynolds number, which
obviously stems from the strong approximation that the inertial region was identified as
an inviscid parallel shear layer.

Important to note in (F.10) are the new results for the streamwise Reynolds stress τ11

and for several triple moments T ijk, which, due to the presence of the mean streamwise
velocity profile U , all scale in the inertial region as a combination of a log-law and a
power-law. It should be clear that this peculiar scaling behavior simply and only has
its origins in the unphysical invariance transformations Q1 (F.4) and Q2 (F.5), which
again are due to having performed an invariance analysis on the notational oversimplified

†To note is that the Lie-group based derivation of the generalized log-law as given in (F.10) is not only
heavily misleading in Oberlack & Rosteck (2010), but also in Oberlack (2001). While the derivation in
Oberlack & Rosteck (2010) is based on an unphysical invariance, the derivation in Oberlack (2001) is based
on an incorrectly concluded invariance (Frewer et al., 2014b).
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set of equations (4.5), which misleadingly represent themselves as a linear gradient-type
set of equations due to not incorporating the underlying deterministic equations into the
analysis. It should also be clear that this unphysical scaling in the streamwise direction
is not restricted to one-point quantities only, but essentially is incorporated in all multi-
point quantities.

Finally also note again that, independent of the fact that the scaling laws (F.9) or
(F.10) are based on two unphysical invariant transformations, it would be more than
misleading to identify these invariant functions as a set of privileged solutions to the
underlying unmodelled system (4.5). As it was already discussed in Section 2.1, the reason
is that the unclosed system (4.5) is not arbitrarily underdetermined, but underdetermined
in the sense that all its unknown terms can be physically and uniquely determined from the
underlying but yet analytically not accessible instantaneous (fluctuating) velocity field u
according to (3.1).

Hence, the result (F.9) or (F.10) can only be interpreted as a set of functional relations
which stay invariant under the global group transformations (F.1)-(F.5), and which pos-
sibly but not necessarily could scale the region of the inertial layer within ZPG turbulent
boundary layer flow. But, since there can be only one physical realization for all moments,
which all are driven by the same single deterministic velocity field u according to (3.1),
and since the performed statistical invariance analysis in Oberlack & Rosteck (2010) did
not appropriately involve this underlying deterministic layer of description, the chances
are extremely low that exactly this determined set (F.9) or (F.10) of invariant functions
should represent the statistically correct and thus for all correlation orders consistent so-
lution to the complex inertial scaling problem of incompressible wall-bounded turbulence
(aside from the fact, of course, that these functions are additionally based on unphysical
reasoning and thus being physically void). The obvious reason for this negative result is
that currently no method (including the invariant Lie-group method) exists to establish a
profound and at the same time an analytically accessible and correct connection between
the deterministic and the statistical description of the wall-bounded Navier-Stokes theory.
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Ünal, G. 1994 Application of equivalence transformations to inertial subrange of turbu-
lence. Lie Groups Appl. 1 (1), 232–240.
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