There is a newer version of this record available.

Software Open Access

Bridge 0.7.0

Moritz Schauer

This is the release accompanying the article:

F. v. d. Meulen, M. Schauer: Continuous-discrete smoothing of diffusions, 2017.

The article describes a novel smoothing algorithm for discretely observed diffusions. From the abstract:

Suppose X is a multivariate diffusion process that is observed discretely in time. At each observation time, a linear transformation of the state of the process is observed with additive noise. The smoothing problem consists of recovering the path of the process, consistent with the observations. We derive a novel Markov Chain Monte Carlo algorithm to sample from the exact smoothing distribution. Key to this is an extension of the linear guided proposals introduced in Schauer et. al (2017). We illustrate the efficiciency of our method on both the Lorenz system and a partially observed integrated diffusion model.

The code supplementing the article is in the folder supplements/smoothing. It makes heavy use of the new GuidedBridge, which provides a new unifying interface proposal processes for conditional diffusion processes under different observation scheme and for different auxilliary processes.

Further changes

  • Refactored Gaussian
  • Updated to StaticArrays 0.6.3
  • Notebook illustrating how to do parameter inference for multivariate stochastic differential equations with this package with nice 3d-illustrations:
  • Plot recipes for Plots (and convenience functions for Makie in the folder extra)
  • Thinning sampler for inhomogenous Poisson process
  • Interoperability changes to allow for calling solvers in Bridge from within the JuliaDiffEq common interface via BridgeDiffEq.jl (
  • Exact sampling of Ornstein-Uhlenbeck processes
  • Add an example for Levy driven SDEs.

Files (492.6 kB)
Name Size
492.6 kB Download
All versions This version
Views 144
Downloads 244
Data volume 10.5 MB2.0 MB
Unique views 84
Unique downloads 72


Cite as