
This is a preprint of the article:

Michalis Mountantonakis, Yannis Tzitzikas, How Linked Data can aid

Machine Learning-based Tasks, 21st International Conference on Theory

and Practice of Digital Libraries (TPDL), September 2017, Thessaloniki,

Greece

How Linked Data can aid Machine
Learning-based Tasks

Michalis Mountantonakis and Yannis Tzitzikas

Institute of Computer Science, FORTH-ICS, Greece, and
Computer Science Department, University of Crete, Greece

{mountant,tzitzik}@ics.forth.gr

Abstract. The discovery of useful data for a given problem is of pri-
mary importance since data scientists usually spend a lot of time for
discovering, collecting and preparing data before using them for vari-
ous reasons, e.g., for applying or testing machine learning algorithms.
In this paper we propose a general method for discovering, creating and
selecting, in an easy way, valuable features describing a set of entities for
leveraging them in a machine learning context. We demonstrate the feasi-
bility of this approach by introducing a tool (research prototype), called
LODsyndesisML, which is based on Linked Data technologies, that a)
discovers automatically datasets where the entities of interest occur, b)
shows to the user a big number of useful features for these entities, and c)
creates automatically the selected features by sending SPARQL queries.
We evaluate this approach by exploiting data from several sources, in-
cluding British National Library, for creating datasets in order to predict
whether a book or a movie is popular or non-popular. Our evaluation
contains a 5-fold cross validation and we introduce comparative results
for a number of different features and models. The evaluation showed
that the additional features did improve the accuracy of prediction.

Keywords: Linked Data, Machine Learning, Feature Discovery & Se-
lection, Automatic Classification, Prediction

1 Introduction

It has been written that “Data scientists spend 50%-80% of their time in col-
lecting and preparing unruly digital data, before it can be explored for useful

2 Michalis Mountantonakis and Yannis Tzitzikas

nuggets”1, thereby, it is beneficial to investigate novel methods for reducing
the aforementioned cost. The objective of this paper is to propose a method,
that is based on Linked Data, for discovering, creating and selecting, in an easy
way, valuable features describing a set of entities for being used in any Machine
Learning (ML) problem.

Linked Data [4] refers to a method of publishing structured data while its
ultimate objective is linking and integration. It is based on Semantic Web tech-
nologies, such as HTTP, URI and RDF, which enables the information to be
read automatically by computers and data from different sources to be connected
and queried. It differs from other traditional data formats predominantly due to
the following reasons: Firstly, data linking facilitates the discovery of datasets
containing information about a specific entity (or a set of entities). Secondly,
datasets can be integrated more easily through the existence of common entities
and common schema elements, which is desirable for exploiting the complemen-
tarity of information. For instance, one dataset can contain information about
the authors of a book and another about user reviews for that book, thereby, the
integration of such datasets offer more features for the entities. Thirdly, complex
features can be derived by exploiting SPARQL [17] queries (e.g., “number of
awards for each book”) and graph metrics (e.g., average degree of an entity). A
lot of datasets are published in RDF format, i.e., LODStats [6] provides statistics
about approximately ten thousand discovered linked datasets.

In this work we show how the wealth of Linked Data and the ML machinery
can be jointly exploited for improving the quality of automated methods for var-
ious time consuming and/or tedious tasks, which are important also in the area
of digital libraries, like automatic semantic annotation or classification, comple-
tion of missing values, clustering, or computing recommendations. Specifically,
we focus on exploiting Linked Data for discovering and creating features for a
set of entities. We introduce a process where (i) we discover datasets and URIs
containing information for a set of entities by exploiting LODsyndesis [12], (ii)
we provide the user with a large number of possible features that can be created
for these entities (including features for direct and indirect related entities of any
path) and (iii) we produce automatically a dataset for the features selected by the
user. For testing whether this enriched dataset can improve ML tasks, we report
experimental results over two datasets (from [19]) for predicting the popularity
of a set of movies and books. Figure 1 illustrates the running example, where
we create features for classifying whether a book is Popular or Non-Popular,
containing data discovered from DBpedia [10] and British National Library [16].
We evaluate this approach by performing a 5-fold cross validation for estimating
the performance of different models for the produced datasets. The evaluation
showed that the additional features did improve the accuracy of prediction.

The rest of this paper is organized as follows: Section 2 discusses background
and related approaches, Section 3 states the problem and describes the func-
tionality of the proposed tool (research prototype), Section 4 discusses the steps

1 http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-
insights-is-janitor-work.html

Title Suppressed Due to Excessive Length 3

Fig. 1: Running Example

4 Michalis Mountantonakis and Yannis Tzitzikas

of the process, Section 5 reports the results of the evaluation and discusses the
effectiveness of the proposed features, and finally, Section 6 concludes the paper.

2 Background & Related Work

Background. The Resource Description Framework (RDF) [2] is a graph-based
data model. RDF uses Triples in order to relate Uniform Resource Identifiers
(URIs) or anonymous resources (blank nodes) where both of them denote a
Resource, with other URIs, blank nodes or constants (Literals). Let U be
the set of all URIs, B the set of all blank nodes, and L the set of all Literals. In
Linked Data each statement (or triple) is of the form subject-predicate-object
where a subject corresponds to an entity (e.g, a book, a person, etc.), a predicate
(or property) to a characteristic of an entity (e.g., genre of a book) and an object
to the value of the predicate for a specific subject, e.g., in the following triple
〈The Green Mile, hasAuthor, Stephen King〉, The Green Mile is the subject,
hasAuthor the predicate and Stephen King the object. Let S be the set of all
subjects, P the set of all properties, and O the set of all objects. Formally,
a triple is any element of T = S × P × O, where S = U ∪ B, P = U and
O = U ∪ L ∪ B, while an RDF graph (or dataset) is any finite subset of T .
The linking of datasets is realized by the existence of common URIs, referring
to schema elements (defined through RDF Schema and OWL [2]), instances, as
well as by equivalence relationships expressed via the owl:sameAs predicate.

Fig. 2: Lattice of four Digital Library datasets (common Real world Objects)

LODsyndesis provides query services and measurements that are useful for
several important tasks like (a) object co-reference, (b) dataset discovery, (c)

Title Suppressed Due to Excessive Length 5

visualization, and (d) connectivity assessment and monitoring [12]. Its public
website also provides measurements that concern the commonalities of Linked
Datasets, i.e., it provides the number of common real world objects between
any set of datasets, that is the number of classes of equivalence of URIs after
having computed the symmetric and transitive closure of the set of owl:sameAs
relationships from all datasets. Such measurements can be visualized as lattices
and Figure 2 shows a lattice for four digital libraries datasets (i.e., British Na-
tional Library, German National Library, French National Library and VIAF).
It is evident that these four datasets share 151,052 real world objects. All
these equivalent URIs (e.g., among these four datasets) can be found by us-
ing the object co-reference service offered by LODsyndesis. For instance, one
can find all the equivalent URIs among any set of sources, e.g., give me all the
equivalent URIs among British, German and French National Libraries, or all
the equivalent URIs for Jules Verne (e.g. http://bnb.data.bl.uk/id/person/
VerneJules1828-1905).

Related Work. There are several proposals for using Linked Data for gener-
ating features. LiDDM [14] is a tool that retrieves data from Linked Data cloud
by sending queries. For finding possible features the users can either construct
their own queries or use an automatic SPARQL query builder that shows to the
users all the possible predicates that can be used (from a specific SPARQL end-
point). It offers also operators for integrating and filtering data from two or more
sources. The authors in [5] presented a modular framework for constructing se-
mantic features from Linked Data, where the user specifies the SPARQL queries
that should be used for generating the features. Another work that uses SPARQL
queries is described in [13], where the user can submit queries which are com-
bined with SPARQL aggregates (e.g., count). Comparing to our approach, the
previous tools presuppose that the user is familiar with SPARQL, and they do
not assist the user in discovering automatically datasets containing information
for the same entities. The closest tool to our approach is FeGeLOD [15] which
combines data from several datasets by traversing owl:sameAs paths and gener-
ates automatically six different categories of features. RapidMiner Semantic Web
Extension tool [18] (which is the extension of FeGeLOD) supports the same fea-
tures while it integrates the data that are derived from multiple sources. Instead
we show the provenance of the data without integrating them, i.e., if a feature is
provided by two or more sources, the user can decide which source to select for
creating this feature. Moreover, we also discover datasets containing the same
entities by exploiting LODsyndesis [12], where the class of equivalence for each
entity has already been pre-computed for more than 300 datasets, whereas the
aforementioned tool finds relevant data by traversing links on-the-fly. Finally, we
also provide other kinds of features, such as degree of an entity, boolean features
for each value of a predicate, as well as features for “sub-entities”, i.e., entities
correlated with the entities that one wants to classify (e.g., actors of a movie).

http://bnb.data.bl.uk/id/person/VerneJules1828-1905
http://bnb.data.bl.uk/id/person/VerneJules1828-1905

6 Michalis Mountantonakis and Yannis Tzitzikas

3 Linked Data-based Feature Creation Operators

Let E be the set of entities for which we want to generate features. Below we will
show how we can derive a set of features (f1, ..., fk) where each fi is a feature
and fi(e) denotes the value of that feature for an entity e ∈ E. Each fi(e) is
actually derived by the data that are related to e. Specifically we have identified
the following nine (9) frequently occurring Linked Data-based Feature Creation
Operators, for short FCOs. In their definition, shown in Table 1, P denotes the
set of properties, p, p1 and p2 are properties and hereafter T denotes the triples
for the entities that are indexed by LODsyndesis.

Table 1: Feature Creation Operators

id Operator defining fi Type fi(e)

1 p.exists boolean fi(e) = 1 if (e, p, o) or (o, p, e) ∈ T , otherwise
fi(e) = 0

2 p.value num/categ fi(e) = { v | (e, p, v) ∈ T }
3 p.valuesCard int fi(e) = |{ v | (e, p, v) ∈ T }|
4 degree double fi(e) = |{(s, p, o) ∈ T | s = e or o = e}|
5 p1.p2.exists boolean fi(e) = 1 if ∃ o2 s.t. {(e, p1, o1), (o1, p2, o2)} ⊆ T
6 p1.p2.count int fi(e) = |{ o2 | (e, p1, o1), (o1, p2, o2) ∈ T }|
7 p1.p2.value.maxFreq num/categ fi(e) = most frequent o2 in

{ o2 | (e, p1, o1), (o1, p2, o2) ∈ T }
8 average degree double fi(e) = |triples(C)|

|C| s.t. C = { c | (e, p, c) ∈ T } and

triples(C) = {(s, p, o) ∈ T | s ∈ C or o ∈ C}
9 p.values.AsFeatures boolean for each v ∈ { v | (e, p, v) ∈ T } we get the

feature fiv(e) = 1 if (e, p, v) or (v, p, e) ∈ T ,
otherwise fiv(e) = 0

In our running example of Figure 1, FCO1 can be used for representing
whether a book has been nominated for winning an award or not. FCO2 suits to
properties that are functional (one-to-one), e.g. person’s birth country, number
of pages of the book, and its value can be numerical or categorical. FCO3 counts
the values of a property, e.g. the number of genres of a book. FCO4 measures
the number of distinct triples that involve e, in our running example the degree
of the author of “The Green Mile” book is 3, while the degree of the author of
“An episode of Sparrows” is 2. FCO5-FCO9 correspond to features related to
“sub-entities” or “related” entities to e. Specifically, FCO5 corresponds to one
characteristic of a “sub(related)-entity” of e, e.g. whether at least one actor of
a movie has won an award in the past or not. FCO6 counts the distinct values
of one characteristic of the “sub-entities”, e.g. the total number of movies where
the actors of a movie have played. FCO7 finds the most frequently occurring
characteristic of these entities, e.g. the country where most of the actors of a
movie were born. FCO8 measures the average number of distinct triples for a
set of “sub-entities”, e.g., the average number of triples for the actors of a movie.
The last one, FCO9, does not create one feature but a set of features, e.g. one
boolean feature for each genre that a book can possibly belong to. In our run-

Title Suppressed Due to Excessive Length 7

ning example, we take all genres of both books and for each genre (e.g., novel)
we create a distinct boolean feature (both books belong to the genre Novel, but
only “The Green Mile” book belongs to the genre Crime). Generally, the oper-
ators FCO1-FCO4 and FCO9 concern a single entity (e.g., a book, a person, a
country, etc.) while operators FCO5-FCO8 a set of entities (e.g., all actors of a
movie). Consequently, for the “sub-entities” that are connected through a func-
tional property (one-to-one) with the entities that we want to classify, operators
FCO1-FCO4 and FCO9 are used instead of operators FCO5-FCO8. The user
can explore direct or indirect “sub-entities”, e.g., authors of a book, countries
of authors of a book and so forth, for any formulated path, while the list of
operators can be easily extended by adding more operators.

Additional Functionality of LODsyndesisML.

Here we introduce some useful (for the user) metadata and restrictions for
feature selection .

“Completeness” of a Property for a given set of entities. We compute
the percentage of instances for which a given property exists, e.g., the percentage
of books for which we have information about the number of their pages. If E′p
is the set of entities being subject or object of triples with predicate p, i.e.

E′p = {e ∈ E | (e p o) or (o p e) ∈ T }, then the percentage is given by
|E′

p|
|E| .

Multiplicity & Range of a Property. Here we find the multiplicity of
a specific property, i.e., whether it is a one-to-one or one-to-many relation. We
define the set of one-to-one properties as P1−1 = {p | (e p oi) ∈ T and
@ (e p oii) ∈ T , oi 6= oii,∀ e ∈ E }. The rest properties, i.e., one-to-many, are de-
fined as PMany = P \P1−1, while we denote as range(p) ∈ {String,Numeric,U}
a property’s range, i.e., whether it is a set of Strings, Numeric Values or URIs.

Restrictions derived from metadata. Table 2 shows the restrictions
which are derived by taking into account the “completeness”, the multiplicity
and the range of a property. It is worth mentioning that the “completeness” of
a property can also be exploited for discovering missing values for the entities.
In addition, the users can define their own restrictions, e.g., they can exclude
properties that belong to popular ontologies such as rdf , rdfs, foaf and owl.

Table 2: Restrictions of features with respect to the characteristics of a property

Feature Operators Can be Applied for

Boolean (FCO1, FCO5) All properties having
|E′

p|
|E| < 1

Boolean for each Value (FCO9) All properties p ∈ PMany, range(p) 6= Numeric

One-to-one Relationship (FCO2) All properties p ∈ P1−1

Count (FCO3, FCO6) All properties p ∈ PMany

Degree (FCO4, FCO8) All properties having range(p) =U

8 Michalis Mountantonakis and Yannis Tzitzikas

Fig. 3: Process of LODsyndesisML

4 The Steps of the Proposed Approach

Here we describe the tool (research prototype) LODsyndesisML that we have de-
signed and implemented. It is worth noting that LODsyndesisML discovers and
creates features by exploiting Linked Data for any domain. Even a user that is
not familiar with Semantic Web technologies and SPARQL can use it for creating
features for feeding a Machine Learning problem. The process is shown in Figure
3 and is described in brief below. First, it takes as input a file containing a set of
URIs that refer to particular entities, i.e., movies, books and so forth. In case of
knowing the entities but not their URIs, one can exploit an entity identification
tool like DBpedia Spotlight [11] and XLink [7] for detecting automatically a URI
for a specific entity. Then, it connects to LODsyndesis for discovering automat-
ically datasets containing information for the same entities and shows to the
user the available datasets. Afterwards, it discovers and shows to the user pos-
sible features that can characterize the entities (or related “sub-entities”) of the
dataset and the user selects which features to create. The next step is to create
the features and to produce the output dataset to be used in any ML problem.
Below, we describe in more detail the whole process, while additional information
and a demo can be found in http://www.ics.forth.gr/isl/LODsyndesis.
1. Input: The input of LODsyndesisML is a file in tab separated value (tsv)
format containing URIs describing entities and possibly their class, e.g., URIs
for a book and if each book is Popular or Non-Popular.
2. Discover Data by using LODsyndesis: LODsyndesisML reads the tsv file
and connects to LODsyndesis [12] in order to discover (a) datasets containing
information for the same entities and (b) the URIs for these entities for each
dataset (the indexes of LODsyndesis have already pre-computed the closure of
owl:sameAs relationships for 300 datasets). Then, the user selects the desired
datasets. Concerning the running example of Figure 1, we observe that we found
two different datasets containing information for the books of that example .
3. Discover Possible Features: LODsyndesisML sends SPARQL [17] queries
for a sample of the aforementioned entities to the SPARQL endpoints of the
selected datasets. Afterwards, a number of possible features and their prove-
nance are discovered and returned to the user. Therefore, in this step we do not
create any feature, we just discover possible features and we apply the restric-

http://www.ics.forth.gr/isl/LODsyndesis

Title Suppressed Due to Excessive Length 9

tions described in Section 3. The result is a table where each row corresponds
to a possible feature derived from a specific source while each column consists
of a checkbox for a specific feature category. The order that the features appear
in the rows is descending with respect to the “completeness” of each property.
Particularly, when a property occurs for all the entities, it is placed first in the
list, while those with the smallest number of occurrences are placed at the end
of the list. Moreover, the user can view the metadata described in Section 3.
Afterwards, the user can select the desired features (by taking into account their
provenance) and can also explore features for (direct or indirect) “sub-entities”
of any formulated path and create more features.
4. Feature Selection and 5. Feature Creation: The user selects the desired
features and clicks on a button for initiating the dataset creation. Then, the
tool sends SPARQL queries for creating the features. For each feature opera-
tors category, it sends |E| in number SPARQL queries (one query per entity e
for each operator). It is worth noting that for values that are neither numeric
nor boolean, it performs a mapping for converting them to numeric. Concern-
ing missing values, we just put a unique constant value. However, for improving
datasets’ quality, several transformations could be applied after this step, like
those proposed in [3] for removing erroneous and inconsistent data or filling
missing values. In this paper we do not focus on this task and the data used in
the experiments have not been transformed or cleaned by using such techniques.
6. Production of Features’ Dataset and 7. Exploitation of the Pro-
duced Dataset in a ML problem: The user is informed that the process is
completed and that two csv files have been produced: one for the categorical and
one for the continuous features. Then, the produced datasets can be given as an
input for a ML problem (e.g., classification of books).

5 Evaluation

The datasets, which are used in our experiments (derived from [19]), contain
the URIs of movies and books from DBpedia [10] and the corresponding clas-
sification value, i.e., Popular or Non-Popular according to the number of Face-
book users’ likes. We use 1,570 entities for Movies Dataset and 1,076 entities
for Books Dataset. The initial datasets are loaded and then more data are
discovered by using LODsyndesisML from the following sources: British Na-
tional Library [16], Wikidata [20] and DBpedia [10]. In particular, we exploit
LODsyndesisML for discovering, selecting and creating a number of different
features for predicting the class of these entities. Afterwards, MATLAB [1] is
used for performing a) a 5-fold cross validation for model selection and b) a com-
parison of a number of different models for measuring accuracy, which is defined
as: accuracy = True Positive+True Negative

True Positive+True Negative+False Positive+False Negative [21]. For
each dataset, we repeat the 5-fold cross validation process 15 times for different
sizes of the test set, i.e. 10%, 20%, & 30%. Each time a chi-square test of inde-
pendence [23] is performed (for excluding variables that are independent of the
class variable) for 4 different values of significance level (or threshold) a: 0.01,

10 Michalis Mountantonakis and Yannis Tzitzikas

0.05, 0.1, 1. For each value of threshold a we test 10 different models: (a) 2 Naive
Bayes models (Empirical & Uniform), (b) 3 Random Forest models with 50 trees
and different min leaf sizes: 1, 3 & 5, (c) 3 K-Nearest Neighbours models with K:
3, 5 &15, (d) a linear SVM model and (e) the trivial model. In each iteration the
best model is obtained for the training set (by using cross validation). Finally,
the accuracy of the best model is estimated on the test set.

Fig. 4: Features Number Per Dataset
For Books & Movies

Fig. 5: Generation Time for each Feature Op-
erators Category and Dataset

Fig. 6: Selected Features for Books & Movies with their Provenance

Creation of Features. In Figure 4 we can observe how the number of
possible features increases when a) more datasets are added and b) features of
“sub-entities” are created, i.e., approximately the possible features are doubled
when we explore a “sub-entity” (e.g. the authors of a book). Moreover, Figure
5 shows the time for generating a feature for each different category (and each
dataset) for 1,076 books. As we can see, the generation time depends highly on
the dataset to which we send SPARQL queries, e.g., DBpedia’s response time
is much shorter than Wikidata’s. Concerning the generation time of a specific
feature operators category, the degree operators (FCO4, FCO8) and the boolean
for each value of a predicate (FCO9) need more time to be generated while
the remaining ones need approximately the same time on average for being
generated. Finally, the execution time for retrieving the similar entities from
LODsyndesis was 105 seconds.

Results for Movies Dataset. Figure 6 shows the selected features (and
their category) for the dataset of movies (features belonging in the additional
categories that we propose in this paper are underlined). In total we sent 39,250
queries and we created 159 features (147 categorical and 12 continuous). In Fig-
ure 7 we can see a plot with the accuracy of each test size (using the best model

Title Suppressed Due to Excessive Length 11

Table 3: Accuracy for each Feature Operators Category (Movies & Books test size 0.2)

Feature Operators Category
Average Max Average Max
(Movies) (Movies) (Books) (Books)

All Features (FCO1-FCO9) 0.871 0.906 0.730 0.762

Continuous Features 0.861 0.896 0.709 0.739

New Features (FCO4-FCO9) 0.835 0.865 0.650 0.675

Existing Features (FCO1-FCO3) 0.827 0.855 0.694 0.716

Count (FCO3,FCO6) 0.830 0.862 0.706 0.709

1-1 Relationship (FCO2) 0.791 0.808 0.570 0.607

Categorical Features 0.760 0.818 0.673 0.694

Boolean (FCO1, FCO5, FCO9) 0.750 0.774 0.634 0.656

Degree (FCO4,FCO8) 0.741 0.780 0.608 0.627

Most Frequent Value (FCO7) 0.698 0.758 0.560 0.595

Trivial Case 0.495 0.532 0.508 0.551

Fig. 7: Accuracy in Each Iteration &
Test Size for Dataset Books and Movies

Fig. 8: Average Accuracy of Models in Cross
Validation for Movies with Test Size 0.2

selected by the cross validation process) and we can observe that the accuracy
is much higher comparing to a trivial case while the highest variation occurred
for test size equal to 0.1. In all iterations, the best model was a Random Forest
(with different parameters in many cases). Figure 8 shows the average accuracy
for each model (and each threshold a) in the cross validation process for test size
0.2. We observe that Random Forest models achieved higher accuracy (mainly
when min leaf size equals 1, i.e., Random Forest 1) comparing to the other mod-
els. The next ones with the highest accuracy is the linear SVM, followed by the
two Naive Bayes models and finally the K-NN ones. However, all these models
are better comparing to the trivial one whose accuracy is approximately 0.5.
Table 3 shows the average and maximum accuracy for each different features’
category in descending order with respect to their average accuracy. The contin-
uous ones (mainly the count features, i.e., FCO3 and FCO6) seem to be the most
predictive while all the categories achieved high accuracy comparing to a triv-
ial case. Moreover, the average accuracy of features that other approaches also
support (i.e., FCO1-FCO3) was 0.827 while for the additional features that we
propose (e, FCO4-FCO9 in Table 3) the average accuracy was 0.835. By combin-
ing all the categories of features, the average accuracy was 0.871, which means
that the additional features improved the accuracy in this particular problem.

Results for Books Dataset. Figure 6 shows the selected features (and their
categories) for the books dataset. In total we sent 21,520 queries and we created
190 features (180 categorical and 10 continuous). In Figure 7 we can see a plot
with the accuracy of each test size and we observe that the accuracy is much
higher comparing to the trivial case while the highest variation occurred for test
size equal to 0.1. In 42 iterations, the best model was a Random Forest (with
different parameters in many cases) while in 3 cases the best model was a linear

12 Michalis Mountantonakis and Yannis Tzitzikas

SVM while the variations of K-NN algorithms were more effective than the Naive
Bayes ones. As we can observe in Table 3, the combination of all features gave
the maximum accuracy, while the continuous features, and especially the count
features (FCO3, FCO6), were more predictive comparing to the remaining ones.
Moreover, for the feature operators FCO1-FCO3 the average accuracy was 0.694
while for the feature operators FCO4-FCO9 was 0.65. However, by combining
both types of features the average accuracy improved, i.e., 0.73, therefore the
additional features improved the accuracy for books’ dataset, too.

6 Concluding Remarks

We have shown how we can exploit the wealth of Linked Data and the ML
machinery for improving the quality of automatic classification. We presented
a tool, called LODsyndesisML, which exploits Linked Data (and the related
technologies) for discovering automatically features for any set of entities. We
categorized the features and we detailed the process for producing them. For
evaluating the benefits of our approach, we used two datasets and the results
showed that the additional features did improve the accuracy of predictions,
while the most effective model for both datasets was a Random Forest one. As
future work, we plan to extend our tool for supporting more operators and trans-
formations for improving the quality of the produced dataset. Furthermore, we
plan to evaluate our tool in other tasks, e.g., completion of missing values, to
support users’ SPARQL endpoints and to connect our tool with SPARQL-LD [8]
for incorporating also data stored in files (i.e. not hosted by SPARQL endpoints).
Finally, it would be interesting to investigate techniques for automatic feature se-
lection [22], such as those described in [9], where a novel machine learning-based
feature selection method is used for predicting candidates features usefulness.

Acknowledgements. This work has received funding from the European Union’s
Horizon 2020 Research and Innovation programme under the BlueBRIDGE project
(Grant agreement No: 675680).

References

1. MATLAB - MathWorks. https://www.mathworks.com/products/matlab.html.
2. G. Antoniou and F. Van Harmelen. A semantic web primer. MIT press, 2004.
3. S. Bischof, C. Martin, A. Polleres, and P. Schneider. Collecting, integrating, en-

riching and republishing open city data as linked data. In International Semantic
Web Conference, pages 57–75. Springer, 2015.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. Semantic
Services, Interoperability and Web Applications: Emerging Concepts, pages 205–
227, 2009.

5. W. Cheng, G. Kasneci, T. Graepel, D. Stern, and R. Herbrich. Automated feature
generation from structured knowledge. In CIKM, pages 1395–1404. ACM, 2011.

6. I. Ermilov, J. Lehmann, M. Martin, and S. Auer. Lodstats: The data web census
dataset. In International Semantic Web Conference, pages 38–46. Springer, 2016.

https://www.mathworks.com/products/matlab.html

Title Suppressed Due to Excessive Length 13

7. P. Fafalios, M. Baritakis, and Y. Tzitzikas. Configuring named entity extraction
through real-time exploitation of linked data. In WIMS14, page 10. ACM, 2014.

8. P. Fafalios, T. Yannakis, and Y. Tzitzikas. Querying the web of data with sparql-ld.
In International Conference on TPDL, pages 175–187. Springer, 2016.

9. G. Katz, E. C. R. Shin, and D. Song. Explorekit: Automatic feature generation
and selection. In ICDM, 2016, pages 979–984. IEEE, 2016.

10. J. Lehmann, R. Isele, Jakob, et al. Dbpedia–a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

11. P. N. Mendes, M. Jakob, A. Garćıa-Silva, and C. Bizer. Dbpedia spotlight: shedding
light on the web of documents. In I-SEMANTICS, pages 1–8. ACM, 2011.

12. M. Mountantonakis and Y. Tzitzikas. On measuring the lattice of commonalities
among several linked datasets. Proceedings of the VLDB Endowment, 9(12), 2016.

13. J. Mynarz and V. Svátek. Towards a benchmark for lod-enhanced knowledge
discovery from structured data. In KNOW@ LOD, pages 41–48, 2013.

14. V. Narasimha, P. Kappara, R. Ichise, and O. Vyas. Liddm: A data mining system
for linked data. In Workshop on LDOW, volume 813, 2011.

15. H. Paulheim and J. Fümkranz. Unsupervised generation of data mining features
from linked open data. In Proceedings of WIMS 2012, page 31. ACM, 2012.

16. M. Pennock and M. Day. Managing and preserving digital collections at the british
library. Managing Digital Cultural Objects: Analysis, discovery and retrieval, page
111, 2016.

17. E. Prud’ Hommeaux, A. Seaborne, et al. Sparql query language for rdf. W3C
recommendation, 15, 2008.

18. P. Ristoski, C. Bizer, and H. Paulheim. Mining the web of linked data with rapid-
miner. Web Semantics: Science, Services and Agents on the World Wide Web,
35:142–151, 2015.

19. P. Ristoski, G. K. D. de Vries, and H. Paulheim. A collection of benchmark datasets
for systematic evaluations of machine learning on the semantic web. In Interna-
tional Semantic Web Conference, pages 186–194. Springer, 2016.

20. D. Vrandečić and M. Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

21. I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

22. Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In Icml, volume 97, pages 412–420, 1997.

23. M. F. Zibran. Chi-squared test of independence. Department of Computer Science,
University of Calgary, Alberta, Canada, 2007.

	 This is a preprint of the article: Michalis Mountantonakis, Yannis Tzitzikas, How Linked Data can aid Machine Learning-based Tasks, 21st International Conference on Theory and Practice of Digital Libraries (TPDL), September 2017, Thessaloniki, Greece How Linked Data can aid Machine Learning-based Tasks

