Journal article Open Access
Shohei Maruyama; Yasuo Matsuyama; Sachiyo Aburatani
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">T. Obayashi, Y. Okamura, S. Ito, S. Tadaka, Y. Aoki, M. Shirota, and K. Kinoshita, "ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants," Plant Cell Physiol., vol. 55, no. 1, p. e6, Jan. 2014.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">K. Aoki, Y. Ogata, and D. Shibata, "Approaches for extracting practical information from gene co-expression networks in plant biology," Plant Cell Physiol., vol. 48, no. 3, pp. 381-390, Mar. 2007.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">K. Saito, M. Y. Hirai, and K. Yonekura-Sakakibara, "Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'," Trends Plant Sci., vol. 13, no. 1, pp. 36-43, Jan. 2008.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, pp. 273-297, 1995.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">C.-C. Chang and C.-J. Lin, "LIBSVM: a library for support vector machine," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, Apr. 2011.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">M. P. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, and D. Haussler, "Knowledge-based analysis of microarray gene expression data by using support vector machines," Proc. Natl. Acad. Sci. U. S. A., vol. 97, no. 1, pp. 262-267, Jan. 2000.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">S. Kullback, and R. A. Leibler, "On information and sufficiency," Annals of Mathematical Statistics, vol. 22, pp. 79-86, 1951.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">R. Edgar, M. Domrachev, and A. E. Lash, "Gene Expression Omnibus: NCBI gene expression and hybridization array data repository," Nucleic Acids Res., vol. 30, pp. 207-210, 2002.</subfield> </datafield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">E. Hubbell, W. M. Liu, and R. Mei, "Robust estimators for expression analysis," Bioinformatics, vol. 18, pp. 1585-1592, 2002. [10] S. D. Pepper, E. K. Saunders, L. E. Edwards, C. L. Wilson, and C. J. Miller, "The utility of MAS5 expression summary and detection call algorithms," BMC Bioinformatics, vol. 8, p. 273, 2007. [11] M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, "Data, information, knowledge and principle: back to metabolism in KEGG," Nucleic Acids Res., vol. 42, no. Database issue, pp. D199-205, Jan. 2014.</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Metabolic pathways</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">gene expression data</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">microarray</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Kullback–Leibler divergence</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">KL divergence</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">support vector machines</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">SVM</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">machine learning.</subfield> </datafield> <controlfield tag="005">20200120173429.0</controlfield> <controlfield tag="001">1099834</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Yasuo Matsuyama</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Sachiyo Aburatani</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">254115</subfield> <subfield code="z">md5:288e9650786f21d27bfa04e38403eeed</subfield> <subfield code="u">https://zenodo.org/record/1099834/files/10000800.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2015-02-01</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-waset</subfield> <subfield code="o">oai:zenodo.org:1099834</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Shohei Maruyama</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Application of KL Divergence for Estimation of Each Metabolic Pathway Genes</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-waset</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Development of a method to estimate gene functions is<br> an important task in bioinformatics. One of the approaches for the<br> annotation is the identification of the metabolic pathway that genes are<br> involved in. Since gene expression data reflect various intracellular<br> phenomena, those data are considered to be related with genes&rsquo;<br> functions. However, it has been difficult to estimate the gene function<br> with high accuracy. It is considered that the low accuracy of the<br> estimation is caused by the difficulty of accurately measuring a gene<br> expression. Even though they are measured under the same condition,<br> the gene expressions will vary usually. In this study, we proposed a<br> feature extraction method focusing on the variability of gene<br> expressions to estimate the genes&#39; metabolic pathway accurately. First,<br> we estimated the distribution of each gene expression from replicate<br> data. Next, we calculated the similarity between all gene pairs by KL<br> divergence, which is a method for calculating the similarity between<br> distributions. Finally, we utilized the similarity vectors as feature<br> vectors and trained the multiclass SVM for identifying the genes&#39;<br> metabolic pathway. To evaluate our developed method, we applied the<br> method to budding yeast and trained the multiclass SVM for<br> identifying the seven metabolic pathways. As a result, the accuracy<br> that calculated by our developed method was higher than the one that<br> calculated from the raw gene expression data. Thus, our developed<br> method combined with KL divergence is useful for identifying the<br> genes&#39; metabolic pathway.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.1099833</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.1099834</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 31 | 31 |
Downloads | 10 | 10 |
Data volume | 2.5 MB | 2.5 MB |
Unique views | 27 | 27 |
Unique downloads | 10 | 10 |