Journal article Open Access

Automatic Moment-Based Texture Segmentation

Tudor Barbu


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">L. Shapiro, G. Stockman, Computer Vision, New Jersey, Prentice-Hall, 2001, pp. 279-325.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M. Tuceryan, A. K. Jain, Texture Analysis. Handbook Pattern Recognition and Computer Vision. Singapore: World Scientific, ch. 2, 1993, pp. 235–276.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M. K. Pietikäinen, "Texture Analysis in Machine Vision", Series in Machine Perception and Artificial Intelligence, vol. 40, 2000.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">V. Levesque, "Texture segmentation using Gabor filters", in Center for Intelligent Machines Journal, 2000.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M. N. Do, M. Vetterli, "Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance", in IEEE Transactions on Image Processing, 11:2, February 2002.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">T. Barbu, "A Pattern Recognition Approach to Image Segmentation", Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, Volume 4, Number 2, 2003, pp. 143 – 148.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">T. Barbu, "An Automatic Graphical Recognition System using Area Moments", WSEAS Transactions on Computers, Issue 9, Volume 5, 2006, pp. 2142-2147.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">B. Abraham, O. I. Camps, M. Sznaier, "Dynamic Texture with Fourier Descriptors", Proceedings of the 4th International Workshop on Texture Analysis and Synthesis, 2005, pp. 53-58.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M. Tuceryan, A. K. Jain, "Texture Segmentation Using Voronoi Polygons", IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12, 1990, pp. 211 - 216.
[10]	R. M. Haralick, K. Shanmugam, I. Dinstein, "Textural features for image classification", IEEE Transactions on Systems, Man, and Cybernetics, SMC - 3, 1973, pp. 610 - 621.
[11]	F. S. Cohen, D. B. Cooper, "Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields", IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9, 1987, pp. 195-219.
[12]	T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu, "An Efficient K-Means Clustering Algorithm: Analysis and Implementation", IEEE Trans. on Pattern Analysis and Machine Intelligence, Volume 24, Number 7, 2002, pp. 881-892.
[13]	J. Dunn, "Well separated clusters and optimal fuzzy partitions", Journal of Cybernetics vol.  4, 1974, pp. 95-104.
[14]	D. L. Davies, D. W. Bouldin, "A cluster separation measure", IEEE Transactions on  Pattern Analysis and Machine Intelligence,  Vol. 1 (4), 2000, pp. 224-227.
[15]	T. Barbu, "Approximations of the filtering problem via fractional steps method", Communications in Applied Analysis, Vol. 8, No. 2, Dynamic Publishers, USA, 2004, pp. 263-278.
[16]	T. Barbu, V. Barbu, V., Biga, D. Coca, "A PDE variational approach to image denoising and restoration", Nonlinear Analysis: Real World Applications, Volume 10, Issue 3, 2009, pp. 1351-1361.
[17]	T. Kurita, "An Efficient Agglomerative Clustering Algorithm for Region Growing", Proc. of IAPR Workshop on Machine Vision Applications, MVA '94, Kawasaki, Dec. 13-15, 1994, pp. 210-213.
[18]	T. Barbu, "An Automatic Unsupervised Pattern Recognition Approach", Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, Vol. 7, Number 1, January 2006, pp. 73 – 78.
[19]	B. S. Manjunath, W. Y. Ma, "Texture Features for Browsing and Retrieval of Image Data", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 18, Number 8, Aug. 1996, pp. 837-842.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Image segmentation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">moment-based texture analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">automatic classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">validity indexes.</subfield>
  </datafield>
  <controlfield tag="005">20181206105906.0</controlfield>
  <controlfield tag="001">1089619</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4099</subfield>
    <subfield code="z">md5:7f992ac060dcf99582d67ae1b0692cba</subfield>
    <subfield code="u">https://zenodo.org/record/1089619/files/9996875.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2013-11-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-waset</subfield>
    <subfield code="o">oai:zenodo.org:1089619</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Tudor Barbu</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Automatic Moment-Based Texture Segmentation</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-waset</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Then, an automatic pixel classification approach is proposed. The feature vectors are clustered using an unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1089618</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1089619</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
5
3
views
downloads
All versions This version
Views 55
Downloads 33
Data volume 12.3 kB12.3 kB
Unique views 55
Unique downloads 22

Share

Cite as