Journal article Open Access

Flexure of Simply Supported Thick Beams Using Refined Shear Deformation Theory

Yuwaraj M. Ghugal; Ajay G. Dahake

A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick simply supported isotropic beams are considered for the numerical studies to demonstrate the efficiency of the results obtained is discussed critically with those of other theories.

Files (4.1 kB)
Name Size
4.1 kB Download
  • A. V. Krishna Murty, "Towards a consistent beam theory", AIAA J., vol. 22, no. 6, pp. 811-816, 1984. [10] M. H. Baluch,, A. K. Azad, M. A. Khidir, "Technical theory of beams with normal strain", ASCE J. of Engineering Mechanics, vol. 110, no. 8, pp. 1233-1237, 1984. [11] A. Bhimaraddi, K. Chandrashekhara, "Observations on higher order beam Theory", ASCE J. of Aerospace Engineering, vol. 6, no.4, pp. 408-413, 1993. [12] H. Irretier, "Refined effects in beam theories and their influence on natural frequencies of beam", Int. Proceeding of Euromech Colloquium, 219, on Refined Dynamical Theories of Beam, Plates and Shells and Their Applications, Edited by I. Elishak off and H. Irretier ,Springer-Verlag, Berlin, pp. 163-179, 1986. [13] T. Kant, A. Gupta, "A finite element model for higher order shears deformable beam theory", J. of Sound and Vibration, vol. 125, no. 2, pp. 193-202, 1988. [14] P. R. Heyliger, J. N. Reddy, "A higher order beam finite element for bending and vibration problems", J. of Sound and Vibration, vol. 126, no. 2, pp. 309-326, 1988. [15] R. C. Averill, J. N. Reddy, "An assessment of four-noded plate finite elements based on a generalized third order theory", Int. J. of Numerical Methods in Engineering, vol. 33, pp. 1553-1572, 1992. [16] J. N. Reddy, "An Introduction to Finite Element Method". 2nd Ed., McGraw-Hill, Inc., New York, 1993. [17] V. Z. Vlasov, U. N. Leont'ev, "Beams, Plates and Shells on Elastic Foundations" Moskva, Chapter 1, 1-8. Translated from the Russian by A. Barouch and T. Plez Israel Program for Scientific Translation Ltd., Jerusalem, 1966. [18] M. Stein, "Vibration of beams and plate strips with three dimensional flexibility", ASME J. of Applied Mechanics, vol. 56, no. 1, pp. 228-231, 1989. [19] Y. M. Ghugal, R. P. Shmipi, "A review of refined shear deformation theories for isotropic and anisotropic laminated beams", J. of Reinforced Plastics and Composites, vol. 20, no. 3, pp. 255-272, 2001.
  • G. R. Cowper, "On the accuracy of Timoshenko beam theory", ASCE J. of Engineering Mechanics Division. Vol. 94, no. EM6, pp. 1447-1453, 1968.
  • G. R. Cowper, "The shear coefficients in Timoshenko beam theory", ASME J. of Applied Mechanic, vol. 33, no. 2, pp. 335-340, 1966.
  • J. A. C. Bresse, "Cours de Mechanique Applique", Mallet-Bachelier, Paris, 1859.
  • J. W. S. Lord Rayleigh, "The Theory of Sound", Macmillan Publishers, London, 1877.
  • L. W. Rehfield, P. L. N. Murthy, "Toward a new engineering theory of bending: fundamentals", AIAA J. vol. 20, no. 5, pp. 693-699, 1982.
  • M. Levinson, "A new rectangular beam theory", J. of Sound and Vibration, vol. 74, no.1, pp. 81-87, 1981.
  • S. P. Timoshenko, J. N. Goodier, "Theory of Elasticity", Third Int. Ed., McGraw-Hill, Singapore. 1970.
  • W. B. Bickford, "A consistent higher order beam theory", Int. Proceeding of Dev. in Theoretical and Applied Mechanics (SECTAM), vol. 11, pp. 137-150, 1982.
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00


Cite as