Journal article Open Access

Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm

J. S. Yadav; N. P. Patidar; J. Singhai

One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.

Files (120.7 kB)
Name Size
15825.pdf
md5:4f4207bab0c3fc09deaf51d0ab6b4a95
120.7 kB Download
  • C.P. Therapos, "A direct method for model reduction of discrete system", Journal of Franklin Institute, Vol. 318, pp. 243-251, 1984.

  • D.A. Wilson and R.N. Mishra, "Design of low order estimators using reduced models", Int. J. Control, Vol. 29, pp. 267-278, 1979.

  • J. S. Yadav, N. P. Patidar, J. Singhai, S. Panda, and C. Ardil "A Combined Conventional and Differential Evolution Method for Model Order Reduction", International Journal of Computational Intelligence, Vol. 5, No. 2, pp. 111-118, 2009.

  • J.A. Davis and R.E. Skelton, "Another balanced controller reduction algorithm" Systems and Controller Letters, Vol. 4, pp. 79-83, 1884.

  • J.P. Tiwari, and S.K. Bhagat, "Simplification of discrete time systems by improved Routh stability criterion via p-domain", Journal of IE (India), Vol. 85, pp. 89-192, 2004.

  • J.S. Yadav, N.P. Patidar and J. Singhai, S. Panda, "Differential Evolution Algorithm for Model Reduction of SISO Discrete Systems", Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) 2009, pp. 1053-1058.

  • R Stron. And K. Price, "Differential Evolution - A simple and efficient adaptive scheme for Global Optimization over continuous spaces, Journal of Global Optimization, Vol. 11, pp. 341-359, 1995. [10] Sidhartha Panda, "Differential Evolutionary Algorithm for TCSC-based Controller Design", Simulation Modelling Practice and Theory, Vol. 17, pp. 1618-1634, 2009. [11] S. Mukhrjee and R.N. Mishra, "Optimal order reduction of discrete systems", Journal of Institution of Engineers, Vol. 68, pp. 142-149, 1988. [12] K. Ramesh, A. Nirmalkumar and G. Gurusamy, "Design of discrete controller via a novel model order reduction technique", International Journal of Electrical Power and Engineering, Vol. 3, pp. 163-168, 2009.

  • S. Panda, J. S. Yadav, N. P. Patidar and C. Ardil, "Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems", International Journal of Applied Science, Engineering and Technology, Vol. 5, No. 1, pp. 22-28, 2009.

  • Y. Shamash, "Continued fraction methods for the reduction of discrete time dynamic systems", Int. Journal of Control, Vol. 20, pages 267-268, 1974.

6
3
views
downloads
All versions This version
Views 66
Downloads 33
Data volume 362.2 kB362.2 kB
Unique views 66
Unique downloads 22

Share

Cite as