Journal article Open Access

Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation

Md. Masum Billah; Mohiuddin Ahmed; Soheli Farhana


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">G. Nejat and Z. Zhang, "The Hunt for Survivors: Identifying Landmarks
for 3D Mapping of Urban Search and Rescue Environments," The
World Multi-Conference on Systemics, Cybernetics and Informatics
(WMSCI 2006), 2006.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">C.-L. Shih and C. A. Klein, "An adaptive gait for legged walking
machines over rough terrain," IEEE Trans. Syst. Man Cybem., vol.
SMC-23, no.4, pp. 1150-1 155, July/Aug. 1993.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">F. Ozguner, S. I. Tsai and R. B. McGhee, "An approach to the use of
terrain-preview information in rough-terrain locomotion by a hexapod
walkin, achine," Int. J. Robotics Res., vol. 3, no. 2, pp. 134- 146,
Summer 1984.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">P. K. Pal and K. Jayarajan, "Generation of free gaita graph search
approach," IEEE Trans. Robot. Automat., vol. 7, no. 3, pp. 299-305,
June. 1991.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">R. B. McGhee and G. I. Iswandhi, "Adaptive locomotion of a
multilegged robot over rough terrain,"IEEE Trans. Syst. Man Cybem.,
vol. SMC-9, no.4, pp. 176-182, Apr. 1979.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Habib Mechanical mine clearance technologies and humanitarian
demining applicability and effectiveness; 2000.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Y. Mori, K. Takayama, T. Adachi, S. Omote and T. Nakamura,
Feasibility study on an excavation-type demining robot, Auton Robot 18
(2005), pp. 263-274.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Rizo J, Coronado J, Campo C, Forero A, Otalora C, Devy M, et al.
URSULA: robotic demining system. In: Proceedings of the 11th
international conference on advanced robotics; 2003. p. 538-43.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Y. Baudoin, M. Acheroy, M. Piette and J.P. Salmon, Humanitarian
demining and robotics, Mine Action Inform Center J 3 (2) (1999).
[10] Hirose S, Kato K. Quadruped walking robot to perform mine detection
and removal task. In: Proceedings of the first international conference on
climbing and walking robots; 1998. p. 261-6.
[11] Nonami K, Huang QJ, Komizo D, Shimoi N, Uchida H. Humanitarian
mine detection six-legged walking robot. In: Proceedings of the third
international conference on climbing and walking robots; 2000. p. 861-
8.
[12] Q.J. Huang and K. Nonami, Humanitarian mine detecting six-legged
walking robot and hybrid neuro walking control with position/force
control, Mechatronics 13 (2003), pp. 773-790.
[13] D. Voth, Nature-s guide to robot design, IEEE Intell Syst (2002), pp. 4-
7.
[14] P. Gonzalez de Santos and M.A. Jimenez, Generation of discontinuous
gaits for quadruped walking machines, J Robot Syst 12 (9) (1995), pp.
599-611.
[15] P. Gonzalez de Santos, M.A. Armada and M.A. Jimenez, Ship building
with ROWER, IEEE Robot Autom Mag 7 (4) (2000), pp. 35-43
[16] P. Gonzalez de Santos, J.A. Galvez, J. Estremera and E. Garcia, SILO4 -
A true walking robot for the comparative study of walking machine
techniques, IEEE Robot Autom Mag 10 (4) (2003), pp. 23-32.
[17] Autonomous Pesticide Spraying Robot for use in a Greenhouse,Philip J.
Sammons, Tomonari Furukawa and Andrew Bulgin ARC Centre of
Excellence for Autonomous Systems,School of Mechanical and
Manufacturing Engineering. The University of New South Wales,
Australia, September 9, 2005.
[18] Zhe Zhang; Hong Guo; Nejat, G.; Peisen Huang, "Finding Disaster
Victims: A Sensory System for Robot-Assisted 3D Mapping of Urban
Search and Rescue Environments," Robotics and Automotion, IEEE -
2007.
[19] R. R. Murphy, "Human-Robot Interaction in Rescue Robotics," IEEE
Transactions on Systems, Man, and Cybernetics-Part C: Applications
and Reviews, Vol. 34, No. 2, pp. 138-153, 2004.
[20] Gan-Mor S., Ronen B., Kazaz I., Josef S., Bilanki Y. (1997), Guidance
for Automatic Vehicle for Greenhouse Transportation", ACTA
Horticulture, Vol 443, pp. 99-104.
[21] Sezen, B. (2003), Modelling Automated Guided Ve- hicle Systems in
material Handling", Dogus Univer- sitesi Dergisi, Vol 4, No. 3, pp. 207-
216.
[22] Schneider A, Zeidis I, Zimmermann K. Comparison of body shapes
of walking machines in regards to stability margins. In: Proceedings of
the third international conference on climbing and walking robots; 2000.
p. 275-81.
[23] "Leg Coordination"- V. Holst tripod gait.
[24] "Adaptive Wave Gait for Hexapod Synchronized Walking "-Katsuhiko
INAGAKI and Hisato KOBAYASHI, Hosei University, Kaj ino-cho,
Koganei, Tokyo 184, JAPAN.
[25] Hexapod Robot Gait, Oricom Technologies, www.oricomtech.com.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Walking robots</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">locomotion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">hexapod robot</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gait</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">hazardous field.</subfield>
  </datafield>
  <controlfield tag="005">20180117094025.0</controlfield>
  <controlfield tag="001">1085249</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Mohiuddin Ahmed</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Soheli Farhana</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">244307</subfield>
    <subfield code="z">md5:1afded1d1fbe9578613213d8bdbdd4af</subfield>
    <subfield code="u">https://zenodo.org/record/1085249/files/15549.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2008-06-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-waset</subfield>
    <subfield code="o">oai:zenodo.org:1085249</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Md. Masum Billah</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-waset</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">In modern day disaster recovery mission has become
one of the top priorities in any natural disaster management regime.
Smart autonomous robots may play a significant role in such
missions, including search for life under earth quake hit rubbles,
Tsunami hit islands, de-mining in war affected areas and many other
such situations. In this paper current state of many walking robots are
compared and advantages of hexapod systems against wheeled robots
are described. In our research we have selected a hexapod spider
robot; we are developing focusing mainly on efficient navigation
method in different terrain using apposite gait of locomotion, which
will make it faster and at the same time energy efficient to navigate
and negotiate difficult terrain. This paper describes the method of
terrain negotiation navigation in a hazardous field.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1085248</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1085249</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
9
6
views
downloads
All versions This version
Views 99
Downloads 66
Data volume 1.5 MB1.5 MB
Unique views 88
Unique downloads 66

Share

Cite as