Journal article Open Access
José M. Merigó; Pilar López-Jurado; M.Carmen Gracia; Montserrat Casanovas
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.1084480</identifier> <creators> <creator> <creatorName>José M. Merigó</creatorName> </creator> <creator> <creatorName>Pilar López-Jurado</creatorName> </creator> <creator> <creatorName>M.Carmen Gracia</creatorName> </creator> <creator> <creatorName>Montserrat Casanovas</creatorName> </creator> </creators> <titles> <title>A Method under Uncertain Information for the Selection of Students in Interdisciplinary Studies</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2009</publicationYear> <subjects> <subject>Decision making</subject> <subject>Selection of students</subject> <subject>Uncertainty</subject> <subject>Aggregation operators.</subject> </subjects> <dates> <date dateType="Issued">2009-07-22</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1084480</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1084479</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/waset</relatedIdentifier> </relatedIdentifiers> <version>15144</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">We present a method for the selection of students in interdisciplinary studies based on the hybrid averaging operator. We assume that the available information given in the problem is uncertain so it is necessary to use interval numbers. Therefore, we suggest a new type of hybrid aggregation called uncertain induced generalized hybrid averaging (UIGHA) operator. It is an aggregation operator that considers the weighted average (WA) and the ordered weighted averaging (OWA) operator in the same formulation. Therefore, we are able to consider the degree of optimism of the decision maker and grades of importance in the same approach. By using interval numbers, we are able to represent the information considering the best and worst possible results so the decision maker gets a more complete view of the decision problem. We develop an illustrative example of the proposed scheme in the selection of students in interdisciplinary studies. We see that with the use of the UIGHA operator we get a more complete representation of the selection problem. Then, the decision maker is able to consider a wide range of alternatives depending on his interests. We also show other potential applications that could be used by using the UIGHA operator in educational problems about selection of different types of resources such as students, professors, etc.</description> <description descriptionType="Other">{"references": ["G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions: A guide\nfor practitioners, Springer-Verlag, Berlin, 2007.", "J.M. Merig\u251c\u2502, New Extensions to the OWA Operators and its application\nin decision making, PhD Thesis (in Spanish), Dept. Business\nAdministration, Univ. Barcelona, Barcelona, Spain, 2008.", "J.M. Merig\u251c\u2502, and M. Casanovas, \"Induced aggregation operators in\ndecision making with Dempster-Shafer belief structure\", Int. J.\nIntelligent Systems (to be published).", "J.M. Merig\u251c\u2502, M. Casanovas, \"The induced generalized hybrid averaging\noperator and its application in financial decision making\", International Journal of Business, Economics, Finance and Management Sciences\n(submitted for publication).", "J.M. Merig\u251c\u2502, M. Casanovas, \"Uncertain decision making with\nDempster-Shafer theory\", In Proceedings of the IPMU International\nConference, Torremolinos - M\u251c\u00edlaga, Spain, 2008, pp. 425-432.", "J.M. Merig\u251c\u2502, and A.M. Gil-Lafuente, \"The induced generalized OWA\noperator\", Information Sciences, vol. 179, pp. 729-741, 2009.", "Z.S. Xu, \"A Note on Linguistic Hybrid Arithmetic Averaging Operator\nin Multiple Attribute Group Decision Making with Linguistic\nInformation\", Group Decision and Negotiation, vol. 15, pp. 593-604,\n2006.", "Z.S. Xu, \"An approach based on the uncertain LOWG and induced\nuncertain LOWG operators to group decision making with uncertain\nmultiplicative linguistic preference relations\", Decision Support Systems,\nvol. 41, pp. 488-499, 2006.", "R.R. Yager, and J. Kacprzyck, The Ordered Weighted Averaging\nOperators: Theory and Applications, Kluwer Academic Publishers,\nNorwell, MA, 1997.\n[10] R.R. Yager, \"On Ordered Weighted Averaging Aggregation Operators\nin Multi-Criteria Decision Making\", IEEE Trans. Systems, Man and\nCybernetics, vol. 18, pp. 183-190, 1988.\n[11] Z.S. Xu, and Q.L. Da, \"An Overview of Operators for Aggregating\nInformation\", Int. J. Intelligent Systems, vol. 18, pp. 953-969, 2003.\n[12] R.R. Yager, and D.P. Filev, \"Induced ordered weighted averaging\noperators\", IEEE Trans. Syst. Man Cybern., vol. 29, pp. 141-150, 1999.\n[13] Z.S. Xu, and Q.L. Da, \"The Uncertain OWA Operator\", Int. J. Intelligent\nSystems, vol. 17, pp. 569-575, 2002.\n[14] N. Karayiannis, \"Soft Learning Vector Quantization and Clustering\nAlgorithms Based on Ordered Weighted Aggregation Operators\", IEEE\nTrans. Neural Networks, vol. 11, 1093-1105, 2000.\n[15] R.R. Yager, \"Generalized OWA Aggregation Operators\", Fuzzy Opt.\nDecision Making, vol. 3, pp.93-107, 2004.\n[16] G. Beliakov, \"Learning Weights in the Generalized OWA Operators\",\nFuzzy Opt. Decision Making, vol. 4, pp. 119-130, 2005.\n[17] T. Calvo, G. Mayor, and R. Mesiar, Aggregation Operators: New Trends\nand applications, Physica-Verlag, New York, 2002.\n[18] J. Fodor, J.L. Marichal, and M. Roubens, \"Characterization of the\nordered weighted averaging operators\", IEEE Trans. Fuzzy Systems, vol.\n3, pp. 236-240, 1995.\n[19] J.M. Merig\u251c\u2502, and M. Casanovas, \"The fuzzy generalized OWA\noperator\", In Proceedings of the Conference SIGEF 2007, pp. 504-517,\nPoiana-Brasov, Romania, 2007.\n[20] J.M. Merig\u251c\u2502, M. Casanovas, \"The uncertain generalized OWA operator\nand its application in the selection of financial strategies\", In\nProceedings of the International Conference AEDEM 2007, pp. 547-\n556, Krakow, Poland, 2007.\n[21] J.H. Wang, and J. Hao, \"A new version of 2-tuple fuzzy linguistic\nrepresentation model for computing with words\", IEEE Trans. Fuzzy\nSystems, vol. 14, pp. 435-445, 2006.\n[22] P.A. Schaefer, and H.B. Mitchell, \"A generalized OWA operator\", Int. J.\nIntelligent Systems, vol. 14, pp. 123-143, 1999.\n[23] Z.S. Xu, \"A method based on linguistic aggregation operators for group\ndecision making with linguistic preference relations\", Information\nSciences, vol. 166, pp. 19-30, 2004.\n[24] R.R. Yager, \"On generalized measures of realization in uncertain\nenvironments\", Theory and Decision, vol. 33, pp. 41-69, 1992.\n[25] R.R. Yager, \"Families of OWA operators\", Fuzzy Sets and Systems, vol.\n59, pp. 125-148, 1993.\n[26] R.R. Yager, \"Quantifier Guided Aggregation Using OWA operators\",\nInt. J. Intelligent Systems, vol. 11, pp. 49-73, 1996.\n[27] R.R. Yager, E-Z OWA weights, In Proceedings of the 10th International\nFuzzy Systems Association (IFSA) World Congress, Istanbul, Turkey, pp.\n39-42, 2003.\n[28] R.R. Yager, \"Induced aggregation operators\", Fuzzy Sets and Systems,\nvol. 137, pp. 59-69, 2003.\n[29] R.R. Yager, \"Centered OWA operators\", Soft Computing, vol. 11, pp.\n631-639, 2007.\n[30] R.R. Yager, and D.P. Filev, \"Parameterized \"andlike\" and \"orlike\"\nOWA operators\", Int. J. General Systems, vol. 22, pp. 297-316, 1994.\n[31] R. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966."]}</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 27 | 27 |
Downloads | 21 | 21 |
Data volume | 18.6 MB | 18.6 MB |
Unique views | 26 | 26 |
Unique downloads | 19 | 19 |