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Model Inversion of a Two Degrees of Freedom
Linearized PUMA from Bicausal Bond Graphs

Gilberto Gonzalez-A, Ignacio Rodriguez- A., Duniafféz-P

Abstract—A bond graph model of a two degrees of freedom System inversion is of significant importance isteyns and

PUMA is described. System inversion gives the systaput
required to generate a given system output. Inrdalget the system
inversion of the PUMA manipulator, a linearizatiohthe nonlinear
bond graph is obtained. Hence, the bicausalitheflinearized bond
graph of the PUMA manipulator is applied. Thus, theausal bond
graph provides a systematic way of generating theagons of the
system inversion. Simulation results to verify ttadculated input for
a given output are shown.

control theory as it appears explicitly or impligitn a variety
of problems such as, for example, decoupling, model
matching, perfect output control or parametersgifi0].
Classical inversion methods based on mathematicaleta
tend to obscure the structural features and thesigdly
interpretation of inverse systems. In recent yebosid graph
model based inversion has attracted a lot of istetae to the
bicausality concept that provides a convenient way

Keywords—Bond graph, system inversion, bicausality, PUMArepresent inverse systems [11].

manipulator

|. INTRODUCTION

The main advantage for using bond graphs for stuayds
the graphical representation of the physical stmectof the
system as well as the possible automated derivafiarious

ROBQT|CS is a field of modern technology that crassegquations (or mathematical) models that can beciged with
traditional engineering boundaries. Understandihg t 5 specific problem of interest through the caugaliisignment.

complexity of robots and their applications regsikaowledge
of electrical engineering, mechanical engineerimglustrial
engineering, computer science and mathematics [1].

This bond graph approach therefore enables a iysic
interpretation of inverse dynamics based on strattu
considerations [12].

One well-known approach designed to deal with multi gection 11 describes the basic elements of the hgnaghh
domain engineering problems is the bond graph miethg,odeling. Section IIl summarizes the concept of th

elucidated by Henry Paynter. The application of rieays

bond graph method began with the works of Karnop

Rosenberg, Thoma and others. Over the last 40 yhere
have been numerous publications dealing with tkeerthand
application of bond graphs in different branchesmgineering
[2].

The bond graph technics are useful and importauis tor
physical system modelling [3]. They are based omvgro
representation and enables the description of tstem
through energy storage and dissipative element$g4]

The robotics modelling using bond graphs has ektelys
been developed. In [3] proposes a general methggoio
model mechanical systems with bond graphs. In [8k@nts
an interesting procedure to construct bond graphs@ and
three dimensional robotic manipulators. The thres-a
platform simulation using bond graph models andraage’s
equations is compared in [7].

Also, several papers have been published to caridtand
graphs from the manipulators. In [8] gives a ligraf three-
dimensional joints using bond graph to obtain thdtidbody
system. Finally, [9] shows the multi-body approashbond
graph to write the algebraic constraint equatiarslwe used to
describe mechanical systems.
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bicausality applied to bond graphs. Bicausalityduse get
ystems inversion is proposed in section IV. Theemi
methodology to a two degrees of freedom PUMA mdaipu
modelled by a linearized bond graph to determimeddntrol
inputs for proposed outputs via bicausality is &tpin section
V. Finally, our conclusions are given in section VI

Il. MODELING IN BOND GRAPH

The symbolic form of a Bond Graph in Integral cdisa
assignment (BGI) of a system is shown in Fig. 1 [4].

Source field
(MS,, MSy)

% u

X

o
Storage | X .G D Dissipation
Sield d Junction Structure field
@D z |, 1,MTF,MGY) e (R)

Za

y

Detector
(D)

Fig. 1 Key vectors of a BGI

In Fig. 1, (MSE,MSf), (C,]) and R) denote the source, the

energy storage and the energy dissipation fieldsd a
(0,1,TF,GY) the junction structure with transformeng|TF,
and gyratorsMGY.
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The state x(t)DD” and x, (t) 0OO™ are composed of the bond or in other words a variable imposed patimplies

energy variablesp(t) and q(t) associated withl and C

elements in integral and derivative causality, eetipely
u(t)ooe denotes the plant inputz(t)DD" the co-energy

vector, zd(t)DDm the derivative causality ang, (t)DD’
and D, (t)00" are a mixture of(t) and f (t) showing the

energy exchanges between the dissipation field trel
junction structure.
The relations of the storage and dissipation faekel

z(t) = Fx(t) 1)
% (t) =Fx (1) 2)
Do (t) =LD, (t) (3)
The relations of the junction structure are,

x(t) S: S, S Su z(t)

D, (t) - S, S, S, 0 Doy (t) (4)

y(t) Su Si Si O u(t)

z,(t) | [Sa O 0 0 x(t)

The entries ofs take values inside the s{e@,il,iK +Kg}

t =
where K, and K are transformer and gyrator modulés;;

and S,, are square skew-symmetric matrices &and S,;

are matrices each other negative transpose. Tteeegaation
is [4], [5],

x(t) = A(x)x(t) +B(x)u(t) ©)
y(t)=C(x)x(t) +D(x)u(t) ©)
where
EA(x) :[smsumszﬁsl dd—ﬂF (7)
EB(X) = 3.3 + SlZMSZE (8)
C(x) =(Sy +SuMS,) F 9)
D(x) = S;3 + S MS,; (10)
being
M=(I-LS,)"L (11)
E=1-S,F,'S,F (12)

Next section describes bicausal bond graphs toyamal

system inversion.

Ill.  THE CONCEPT OF THE BICAUSAL BOND GRAPH

its conjugate variable as output.

From a computational point of view, the above slkeda
“unicausal' stroke does not determine all formassignment
statements that can be derived from the constegjuations of
a bond.

The concept of “bicausal' bond introduced by GvegtHi1]
overcomes these restrictions and then enlargesabsbilities
of computation models that can be derived fromradbgraph.
The causal stroke in bicausal bond is seen astrafes each
associated to an effort and a flow variable thatlza imposed
independently at each end of the bond. Causal dtedkes
indicate the fixed or known variables of the bomt eso
determine the right hand side of the assignmemis.fo
For an illustration, Table 1 [12] presents assigmme
statements associated to unicausal and bicaus&lestfor a
bond for which the known acausal constraint equatiare:
g-6=0; f-f,=0.

TABLE |
CAUSALITY AND ASSIGNMENTSTATEMENTS FOR ABOND
Unicausal Assignment Bicausal Assignment
Stroke Statements Stroke Statements
et e|2 e2:=el el, e2 el:=e2
1 T2 f1:=f2 1 f2 f1:=f2
el |;;2 el:=e2 el '—e.z e2:=el
1 2 f2:=11 1 T2 £2:=f1
TABLE Il

SOURCE-SENSORCAUSALITY ASSIGNMENT

SS Element
Type

SS Element
Type

Bicausal
Stroke

Unlcausal
Stroke

Flow source/
effort sensor

Flow source/
effort source

— ss L . ss

Flow sensor/
effort sensor

Effort source/
flow sensor

ss b—— ——— ss

System inversion is an interesting analysis to kiaomnput
considering a given output, this is described aribxt section
by using bicausality property of the bond graphs.

IV. THE USE OF THE BICAUSALITY CONCEPT FOR SYSTEM
INVERSION

An inverse model of the system are obtained by yépgpl
differential and algebraic operations to the stxeations of
the original system.The computational capabilitiefs the
bicausality concept presented above make it bedaqumte
tool for solving the problem of inverse systems tigred in

The acausal bond graph model of a dynamic systeinl]. The bicausality allows fixing or imposing tte same

represents the energy transfer and the constrgutiens in
the system independently of assignment statemeat<én be
derived from those equations.

The causality expresses in which way constitutefations
of elements and relations among variables of thectjon
structure should be written for model analysis psgs or
derivation of a simulation model. The causal stroked in
conventional bond graphs basically supposes thataah
bond, if the effort (resp. flow) is imposed at thimer end of
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time a variable and it s conjugate as bicausal saetouple
the effort and flow causalities. In the contexttloé inversion
problem, imposing the output variable without mgiti§y the
energy structure (or constraint equations) of tfstesn can be
carried out with anSS element having a flow source/effort
source causality (Table Il). Then, the output toitm@osed
plays the role of input variable of th&85 element while its
conjugate is set to a null value leading to a palver flow on
that bond.
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Similarly, the input variable of the original systeto be
determined will be detected on anot8Srelement with a flow
sensor/effort sensor causality. Table Il shows bifeausality
propagation carried out throughtout junction stuuetof the
bond graph.

TABLE llI
CAUSALITY STROKE AND ASSIGNMENT STATEMENTS FOR BONISRAPH
ELEMENT
Unicausal Assignment Bicausal Assignment
Stroke Statements Stroke Statements
ﬁ'R f:=e/R )
F——=r e:=R*f R R:=e/f
—I f:=p/1 M _
1 p=If I:=p/t
HC :=C*e )
F——c g:=q/C ¢ C:=qle
n e2:=el/n n el:=n*e2
1 40 2 1, 2
—ATF = | r1:=t2/n — L f1:=f2/n
n 1:=n*%e2 n e2:=el/n
1 ) ¢ 1 il 2
—="F"—= |n:=n’n | —ATF—— 2:=n*f1
1 I T2 f1:=e2/r D) el:=r*f2
vl 7 | f2:=el/r 7 CY 7 fl:=e2/r
r el:=r*f2 T e2:=r*fl
1 o 2 1 ps 2
F———=e¥—— |e2:=r'n1__| ———6Y 2:=el/r
Z'F e2:=el Z'F e2:=el
1 3 e3:=el 1 3 e3:=el
— A= |n=pz | "0 13:=f1-12
2 f2:=f1 2 £2:=f1
1 3 13:=f1 13:=f1
F—=1F— |e1:=e2+e3 |1—'1 3 e3:=el-e2

Some concepts used to present the bond graph- bast

procedure for system inversion are introduced ia $iection
through the following definitions [12].

Definition 1. The lenght Lk of a causal path from a variable

V, toa variablevj of a bond graph is defined as the number

of integrators or storage elements in integral abiys
encountered on the causal path when following thesal path

fromV, tov;.

Proposition 1. (Structural invertibility condition) A linear
system modelled by bond graph is invertible if ¢hier at least
one causal path between the input variable andothput
variable of the system.

In the next section, a bond graph model of a PUM,

manipulator and system inversion are proposed.

V.ANALYSIS OF A TWO DEGREES OF FREEDORUMA WITH A
BOND GRAPH APPROACH

A simple two-degrees of freedom (DOF) manipulatot b
three-dimensional appears in Fig. 2. This can barded as a
simplified PUMA with the elbow and wrist locked at
appropriate angles and zero joint offset.

Fig. 2 Scheme of 2 DOF PUMA
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The second link, although moving in three dimensjon
rotates about a fixed point: joint 2. Its dynaméce therefore
determined by the Euler ring. The first link is ingle one-
dimensional rotating inertia coupled to the sectink by a
joint [6]. The angular velocities of the secondklabout thex
andy axesw, and w, are entirely determined by that of the

first link w,

(13)
W, =W, * cos(6,) (14)

The corresponding bond graph with integral causalit

assignment of the PUMA manipulator is shown in Bigvith
notation in Table 4.

w, =w, *sin(6,)

1:i2
2]
MSe:T2 11:wit2t 1:w 2t R:R2
3
c:C2 }5
+ \
1wz
7
8 9
MGYy, l:iz MGY
10 12,50 I'iygj\‘w
./,\ 1ix :
Tow x| 14 MGy 15 Al:wy
I:i1 15T L:i F”’
—>»TF:tx fE.
TR e
MSe:T1 23 11:wt1 22 11:w 1
23.|: 21[
c:C1 R:R1

Fig. 3 Bond graph of the PUMA manipulator

Note that the bond graph contains four storage ehénm an
integral causality assignment, that is indepentieagrly state
variables.

TABLE IV
BOND GRAPH LABELS

A

Label Component type Associated physical variable

wti, wt2 Common velocity junctions | Joint angular velocities él, 02

wX, wy, wz | Common velocity junctions | Angular velocities wx, wy, wz

i1 Inertia component Inertia of link 1

ix, iy, iz Inertia components Principle angular mementa hx, hy, hz

ax, gy, gz Gyrators Coupling due to rotating coordinate system
T1, T2 Sources Torques T1, T2

tx, ty Transformers Transformations of the second link

(¢}

Compliance component Provides the joint angle 62
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The key vectors of the nonlinear bond graph are, -R, -h -1 0
i, i, C,
P, & f, h -R , -1
I Pl €l _| T i i C,
o [ [ EA(x) =
G 3 & 1 0 0 0o
Oz3 fo €3 i,
Pe % fo o 1 o0 o
X, = P2 ;;(d: elz;Zd: f, L Iy J
Pis €3 f13 1 0 0O i
p19 elg f19 EB(X) = |:0 1 o 0:|

AN
le e21
Y fs}

u: ’y:
ol

the constitutive relations of the fields are

1111
F =diag;i—,—,—,—
ag{lzllc C}

Fd@yllﬁ
(P P

and the junction structure matrices are

[0 -h -1 0 -1 0
|h 0 0 -1/ |0 -1
951 0 0 of*7 0 o
0 1 0 O 0 0
-1 o 0 0
S,= 0 -sin(g;) -cofa,) -
0 0 0 0
|0 0 0 0
100 O
S“__o 10 o}

S,=5,;=0;S,,= S S —S14
where hl = p133|n(q3) ~ P12 cos(q 3)'
From

E=| 0 1+h, 0 O
0 0 10
0 0 01

wherehz [| cos' (q,) +i sinz(q3)+i}

l
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It is an unfortunate fact that most physical system
encoutered in practice are not linear. It is alnadgtays the
case that when one encounters a linear model fanyaical
system, it is an idealized or simplified version afmore
accurate but much more complicated nonlinear médelrder
to create a linear model of the PUMA manipulat@resented
in bond graph from the nonlinear bond graph shawfigure
3, we introduce a linearized bond graph of the paator in
figure 4 [13].

1:i2

d

MSe:TZ%ﬂ 1:wt2'4ﬁ1:w2!6ﬁR:R2

3]
c:c2 [5
. I
MGY:h3 liwz
7
r JO]
M_TF MGY:r Iz MGY:s

[ %2 tix  LiYoq w
tix : 3
MSFf24(t) Twx '/\T MGY—r 1wy

1:i1 18 i 17

TF:tx =
MSe:T1I—22 —fwtd —22 5343

23-|; 1[
c:c1 R:R1
MSTf2(t)—— mTF:R3 ——MG

A
Fig. 4 Linearized bond graph

In order to verify that linearized bond graph reserats the
linearization of the nonlinear manipulator, the dtion
structure matrix of the linearized bond graph arsza paths to
obtain the state variables description can be ufhd.space
state representation of a linearized system is

= Xs (t) = Ay, (t) + Byu, (1)

Hence, the state variables matrices are

—dlag{1+ 1+I * 1,]}
I2 I1
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R g0
I I 2
h _ 3 — 1
2R R, 2
A)' = I:]L. |1 1 ; BJ - O
- 0 0 0
i, 0
0 l 0 0
L hh J
where h, = hl?((t)’ hs = ha;((t) and h, = p13cos(q3) + Py, Sil’(q 3)

By obtaining the direct paths, i.e., causal patbmfinput to

output, we have
U - Y1 €578y~ fzz
U -Y,.6-6- fz

then these causal paths are of lenght land thetstal

invertibility condition is verified.

Now, bicausality to the linearized bond graph & BIUMA
manipulator is applied to get a system inversiag. & shows

the bicausal bond graph of the PUMA manipulator.

1:i2 sSwy2
ZT 4
1 4 6
ssi2b—twe2r——1:w2——R:R2
3]
c:c2 %
_ /
MGY:h3 1wz
7
r e
M-TF MGY:rr Iz MGY:s

\y},\mx I:ivg;\‘;

MSf:f24(t) 1wxf 12 MY —Alwy

1:i1 18 i 17

TF:tx =
24[ N[ 20 TRty
5 22 ;

11:wt1 1:

2
23[ 11 x
c:c1 R:R1 S5

MTF:R3 ! MG

A

Fig. 5 Bicausal bond graph of the manipulator

SS:ut

SER2(t)

The generalized state equations of the inverse humtaed
from the inverse bond graph in Fig. 5 can be writie a
descriptor form or alternatively in the followingemeralized

state equations form:

where
Z'(t)=[ac, qc,];F=0

o, ]

and the causal paths are used ta-hahdJ(p). Then,

Causal pathy, -, u, Gain
f,-f,—f,—e,—e,—e, R,
f,-f,—e,—¢ 1/C,

International Scholarly and Scientific Research & Innovation 6(9) 2012

f,-f,-f,—f,—e;—e,—e,—e, I,
fz_fé_eé_el |2
Causal pathy, -, u, Gain
fo—fp—fy—€,—€e,€, R
[P P 4~ € 1/C,
fzs fzz f19 €97€ €y, Iy
f23 f23 ezs I1
Causal pathy, — u, Gain
fza_fzz_fzo_ 1:17_99_65_e4_e kzs
f23_f22_f18_f16_flO_e7_e5_e4_e klr
Causal pathy, _ u, Gain
fz - f4_ fs_ fg_en_en_ezo_ezz_e 2! kgs
fz_ fg_ f5_ f7_elo_e16_e18_e22_e2 klr

Thus, the input of the system inversion is given by

1
— 0
C t
RN I
0o — 21 22 2
CZ
where
1 dl
= — | —1
[Cl +R+ y}+ p
a12 = klr +st
a, =kr-ks

azzz[é+R2+|Z]+(1:tz

2

In order to verify the system inversion of the npaator,
the 20-SIM sofware to simulate linearized bond brapth a
calculated control input is used. Figure 6 shows kond

graph diagram on 20-SIM platform.

Fig. 6 Bond graph of the manipulator on 20-SIM
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The numerical parameters of the bond graph are: VI. CONCLUSIONS
C, =0.rad /N-m, C,=0.2ad /N-m: l,=0.IN-m-s" The bond graph representation and the conceptafibality
I,=02N-m-s’, 1=1,=1,=1,=IN-m-s’, R=4N-s/m are used to obtain the system inversion of a PUMA

and R, =3N -s/m.
The first case is to determine the necessary infoutstep
outputs and Fig. 7 shows the simulation results.

15 - Input 2
—Output 2
~Input 1
- Output 1

0.5

0 1 2 3 4 5 6 7 8 9 10
time {s}

Fig. 7 Simulation of the system inversion for stejpputs

The second case is to prove the system inversiowdoes
square outputs, the effectiveness of the methoglakbghown
in Fig. 8.

=Input 2

—Qutput 2,

—Input 1
2 = Output 1

ik e
i l\ |

V v V

0 10 20 30 40 50 60 70
time {s}

Fig. 8 Simulation of the system inversion for wasgsare

Fig. 9 shows the final proof of the system invemsigsing
waves saw outputs and the necessary inputs armethta

Model

- Input 2
—Output 2
—Output 1
a -Input1 |

0 10 20 30 40 50 60 70
time {s}

Fig. 9 Simulation of the system inversion

It is important to consider the bond graph bicausdbws to
determine system inversion state estimation andcrpeter
estimation [11].
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manipulator. Hence, the nonlinear bond graph of tthe
degrees of freedom PUMA is linearized. Then, thedrized
bond graph bicausal is obtained. Thus, the systgmt ito get
a given system output of the linearized PUMA isedained in
a bond graph approach.
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