Journal article Open Access

The Induction of Antioxidant Enzyme Activities in Cabbage Seedlings by Heavy Metal Stress

J. Kumchai; J. Z. Huang; C. Y. Lee; F. C. Chen; S. W. Chin

Cabbage seedlings grown in vitro were exposed to excess levels of heavy metals, including Cd, Mo, and Zn. High metal levels affected plant growth at cotyledonary stage. Seedlings under Cd, Mo, and Zn treatments could not produce root hairs and true leaves. Under stress conditions, seedlings accumulated a higher amount of anthocyanins in their cotyledons than those in the control. The pigments isolated from Cd and Zn stressed seedling cotyledons appeared as pink, while under Mo stress, was dark pink or purple. Moreover, excess Mo stress increased antioxidant enzyme activities of APX, CAT, SOD. These results suggest that, under excess Mo stress, the induced antioxidant enzyme activity of cabbage seedlings may function as a protective mechanism to shield the plants from toxicity and exacerbated growth.

Files (402.3 kB)
Name Size
402.3 kB Download
  • B. Passariello, V. Giuliano, S. Quaresima, M. Barbaro, S. Caroli, G. Forte, G. Carelli, and I. Iavicoli, "Evaluation of the environmental contamination at an abandoned mining site. Microchem. J., vol. 73, pp. 245-250. 2002.
  • C. Bowler, M. Vanmontagu and D. Inze, "Superoxide dismutase and stress tolerance," Ann. Rev. Plant Physiol. Mol. Biol., vol. 43, pp. 83- 116, June 1992. [10] S. Srivastava. A. D. Pathak, P. S. Gupta, A. K. Shrivastava, and A. K. Srivastava, "Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane," J. Environ. Biol., vol. 33, pp. 657-661, May 2012. [11] T. Murashige, and F. Skoog, "A revised medium for rapid growth and bioassays with tobacco tissue cultures," Physiol. Plant, vol.15, pp. 473- 497, 1962. [12] M. M. Giusti, and R. E. Wrolstad, "Anthocyanins Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy," in Current Protocols in Food Analytical Chemistry Hand Book of Food Analytical Chemistry, vol. 12, R. E. Wrolstad, T. E. Acree, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemker, D. Smith, and P. Sporns, Ed. New York: John Wiley & Sons, 2001, pp.19-32, [13] E. Gajewska, and M. Sk┼éodowska, "Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress," Acta Physiol. Plant, vol. 27, pp. 329-339, 2005. [14] M. M. Bradford, "A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding," Anal. Biochem., vol. 72, pp. 248-254, May 1976. [15] M. Minami, and H. Yoshikawa, "A simplified assay method of super oxide dismutase," Clin. Chim. Acta, vol. 29, pp. 337-342, 1979. [16] F. Paoletti, D. Aldinucci, A. Mocali, and A. Capparini, "A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts," Anal. Biochem., vol. 154, pp. 536- 541, May 1986. [17] Y. Nakano, and K. Asada, "Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts," Plant Cell Physiol., vol. 22, pp. 867-880, 1981. [18] M. Kato, and S. Shimizu, "Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation," Plant Cell Physiol., vol. 26, pp. 1291-1301, 1985. [19] S. P. McGrath, C. Mic├│, R. Curdy, and F. J. Zhao, "Predicting molybdenum toxicity to higher plants: Influence of soil properties," Environ. Poll., vol.158, pp. 3095-3102, Oct. 2010. [20] X. Bia, X. Fenga, Y. Yanga, G. Qiua, G. Lia, F. Lia, T. Liua, Z. Fua, and Z. Jina, "Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China," Environ. Inter., vol. 32, pp. 883-890, Sep. 2006. [21] R. R. Mendel, "Biology of the molybdenum cofactor," J. Exp. Bot., vol. 58, pp. 2289-2296, Mar. 2007. [22] S. S. Sharma, and K. J. Dietz, "The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress," J. Exp. Bot., vol. 57, pp. 711-726, Mar. 2006. [23] S. Chutipaijit, S. Cha-um, and K. Sompornpailin, "High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica," Aust. J. Crop Sci., vol. 5, pp. 1191-1198, 2011. [24] S. L. di Toppi, and R. Gabrielli, "Response to cadmium in higher plants," Environ. Exp. Bot., vol. 41, pp. 105-130, Apr. 1999. [25] I. Sperdouli and M. Moustakas, "Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress," J. Plant Physiol., vol. 169, pp. 577-585, Apr. 2012. [26] K. S. Gould, "Nature-s Swiss army knife: The diverse protective roles of anthocyanins in leaves," J. Biomed. Biotechnol., vol. 2004, pp. 314-320, Dec. 2004. [27] V. V. Bolda, D. Botau1, R. Sz├┤ll├┤si, A. Pet├┤, A Gallé, and I. Tari, "Studies on elemental composition and antioxidant capacity in callus cultures and native plants of Vaccinium myrtillus L. local populations," Acta Biol. Szeged., vol. 55, pp. 255-259, 2011. [28] L. P. Dai, X. J. Dong, and H. H. Ma, "Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricate," Chemosphere, vol. 87, pp. 319-325, Jan. 2012. [29] V. Pasqualini, C. Robles, S. Garzino, S. Greff, A. Bousquet-Melou, and G. Bonin, "Phenolic compounds content in Pinus halepensis Mill. needles: a bioindicator of air pollution," Chemosphere, vol. 52, pp. 239- 248, Jul. 2003. [30] M. Mobin, and N. A. Khan, "Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress," J. Plant Physiol., vol. 164, pp. 601-610, Apr. 2007. [31] A. Sivaci, and E. Elmas, "The combined effects of cadmium and salinity on some pigments and total phenolic compounds of Myriophyllum heterophyllum Michx. and Potamogeton crispus L.," Afr. J. Agric. Res., vol. 7, pp. 3813-3818, Jul. 2012. [32] R. K. Tewari, S. Y. Kim, E. J. Hahn, and K. Y. Paek, "Involvement of nitric oxideinduced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng," Plant Biotechnol. Rep., vol. 2, pp. 113-122, June 2008. [33] M. D. Groppa, M. L. Tomaro, and M. P. Benavides, "Polyamines as protector against cadmium or copper-induced oxidative damage in sunflower leaf discs," Plant Sci., vol. 161, pp. 481-488, Aug. 2001. [34] E. Lombi, F. J. Zhao, S. J. Dunhan, and S. P. McGrath, "Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense," New Phytol., vol. 145, pp.11-20, Jan. 2000. [35] M. C. Romero-Puertas, I. McCarthy, L. M. Sandalio, J. M. Palma, F. J. Corpas, M. Gomez, and L. A. del Rio, "Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes," Fee Rad. Res., vol. 31, pp. 21-31, Dec. 1999. [36] P. Liu, Y. S. Yang, G.D. Xu, Y. H. Fang, and Y. A. Yang, "The response of antioxidant enzymes of three soybean varieties to molybdenum and boron in soil with a connection to plant quality," Plant Soil Environ., vol. 51, pp. 351-359, 2005.
  • J. L. Stroud, F. J. Zhao, P. Buchner, F. Shinmachi, S. P. McGrath, J. Abecassis, M. J. Hawkesford, and P. R. Shewry, "Impacts of sulphur nutrition on selenium and molybdenum concentrations in wheat grain," J. Cereal Sci., vol. 52, pp. 111-113, 2010.
  • K. S. Smith, L. S. Balistrieri, S. M. Smith and R. C. Severson, "Distribution and Mobility of Molybdenum in the Terrestrial Environment," in Molybdenum in Agriculture, U. C. Gupta, Ed. Cambridge: Cambridge University Press, 1997, pp. 23-46.
  • M. M. Posmyk, R. Kontek and K. M. Janas, "Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress," Ecotoxicol. Environ. Saf., vol. 72, pp. 596- 602, Feb. 2009.
  • M. S. Warne, D. Heemsbergen, D. Stevens, M. McLaughlin, G. Cozens, M. Whatmuff, K. Broos, G. Barry, M. Bell, D. Nash, D. Pritchard, and N. Penney, "Modeling the toxicity of copper and zinc salts to wheat in 14 soils," Environ. Toxicol. Chem., vol. 27, pp. 786-792, Apr. 2008.
  • P. Mohanpuria, N. K. Rana, and S. K. Yadav, "Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze," Environ. Toxicol., vol. 22, pp. 368-374, Aug. 2007.
  • R. R. Mendel, "Molybdenum: biological activity and metabolism," Dalton Trans. vol. 21, pp. 3404-3409, Nov. 2005.
  • T. J. Bricker, J. Pichtel, H. J. Brown, and M. Simmons, "Phytoextraction of Pb and Cd from superficial soil: effects of amendments and croppings," J. Environ. Science. Health. Part A Toxic/Hazardous Substances and Environmental Engineering, vol. 36, pp. 1597-1610, 2001.
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00


Cite as